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ABSTRACT

The interpretation and explanation of decision-making pro-
cesses of neural networks are becoming a key factor in the
deep learning field. Although several approaches have been
presented for classification problems, the application to re-
gression models needs to be further investigated. In this
manuscript we propose a Grad-CAM-inspired approach for
the visual explanation of neural network architecture for re-
gression problems. We apply this methodology to a recent
physics-informed approach for Nearfield Acoustic Hologra-
phy, called Kirchhoff-Helmholtz-based Convolutional Neural
Network (KHCNN) architecture. We focus on the interpre-
tation of KHCNN using vibrating rectangular plates with
different boundary conditions and violin top plates with com-
plex shapes. Results highlight the more informative regions
of the input that the network exploits to correctly predict the
desired output. The devised approach has been validated in
terms of NCC and NMSE using the original input and the
filtered one coming from the algorithm.

Index Terms— Grad-CAM, regression, Nearfield Acous-
tic Holography, Physics-Informed Neural Network

1. INTRODUCTION

In the field of vibroacoustics, Nearfield Acoustic Holography
(NAH) [1] represents a powerful tool for performing modal
analysis in a fully contactless way. It aims to retrieve the
surface velocity field on vibrating structures starting from
the radiated pressure field measured with a microphone array
placed nearby the object, called holographic plane. NAH is
particularly suitable in the context of fragile or lightweight
objects, such as musical instruments, where the use of ac-
celerometer sensors could damage the surface or alter the
vibration due to the local change of mass.

The problem of NAH relies on the inversion of the well-
known Kirchhoff-Helmholtz (KH) integral [1]. However, this
inversion is a highly ill-conditioned problem, thus requiring a
regularisation technique [2, 3, 4, 5].

In the last decade Deep Neural Networks (DNNs) have
gained huge popularity. From computer vision [6] and sound-
field analysis [7] to speech enhancement [8] and musical

acoustics [9], DNNs proved their ability to learn useful rep-
resentations from data.

Recently, new data-driven-based solutions have been ex-
ploited also in the context of NAH. In [10, 11, 12] DNN ar-
chitectures were proposed that are able to learn compressed
representation of the data inferring useful information for the
estimation of the desired velocity field. Although these ap-
proaches avoid the computation of complex matrix inversions,
they discard prior information related to the physical prob-
lem. For this reason, authors in [13] presented a new approach
based on Physics-Informed Neural Network (PINN) for NAH.

The Kirchhoff-Helmholtz-based Convolutional Neural
Network (KHCNN) proposed in [13] combines the advan-
tages of deep learning techniques with prior knowledge com-
ing from the physical KH model. This solution proved to
provide an accurate estimate of the surface velocity field on
rectangular isotropic plates with different boundary condi-
tions and orthotropic violin top plates with complex shape,
outperforming other NAH methods available in the litera-
ture [5, 11].

It is worth noting that, with the increasing utilisation of
deep learning strategies, there is a strong need of interpretabil-
ity [14]. While DNNs enable superior performance, their de-
cisions become difficult to explain and cannot be directly in-
terpreted by a human-user. Recently, several approaches [15,
16] attempt to tackle this problem. One of the most used tech-
niques for explainable CNN is the Gradient-weighted Class
Activation Mapping (Grad-CAM) method [17]. Authors ap-
plied this methodology in the context of image classification
and image captioning providing useful insights into failure
modes of these models. However, to date, the explainable ar-
tificial intelligence field for regression problems lacks of con-
solidated methodologies [18].

In this paper we present a modified version of the Grad-
CAM algorithm. The goal of this work is twofold. First, we
develop a gradient-weighted algorithm able to produce a vi-
sual explanation for regression model estimates. Second, we
apply the devised method to KHCNN model to infer infor-
mation about the NAH problem. Note that we do not aim at
increasing the reliability of the model and improving its per-
formance, but rather to exploit its interpretability.



2. SCIENTIFIC BACKGROUND

2.1. Nearfield Acoustic Holography

Let us consider a surface S that vibrates at a frequency f .
The complex exterior radiated pressure p(r, ω) (i.e., magni-
tude and phase information) measured at a point r due to the
vibration of the structure at ω = 2πf can be formulated with
the Kirchhoff-Helmholtz (KH) integral [1] as

p(r, ω) =

∫

S
p(s, ω)

∂

∂n
gω(r, s)dS

−jωρ0

∫

S
vn(s, ω)gω(r, s)dS,

(1)

where s is a point on the surface S, j is the imaginary unit,
ρ0 is the density of the medium (for air ρ0 = 1.225 kg ·m−3)
and n is the outward vector normal to the surface at s. Equa-
tion (1) models the radiated complex pressure as the super-
position of the normal velocity field vn(s, ω) and the pres-
sure field p(s, ω) on the vibrating surface considering the
propagation from s to r with the free-field Green’s function
gω(r, s) [1].

Nearfield Acoustic Holography (NAH) aims at comput-
ing vn(s, ω) starting from p(r, ω) acquired by a microphone
array on the holographic plane H, thus r ∈ H. Notice that
to satisfy the near-field condition, H is required to be close to
S [1]. Therefore, the goal of NAH relies on the inversion of
(1), namely

v̂n(s, ω)
∣∣∣
s∈S

≈ Γ−1
[
p(r, ω)

]∣∣∣
r∈H

, (2)

where Γ is a discrete estimator that approximates the sound-
field on the hologram plane. However, the inverse propaga-
tion problem (2) is highly ill-conditioned, thus often necessi-
tates a regularisation procedure.

2.2. Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM)
[17] is a post-hoc explanation via visualisation of class dis-
criminative activation for a network. Similar to gradient-
based methods, Grad-CAM leverages the structure of the
CNN to produce a heatmap of the pixels from the input image
that contribute to the prediction of a particular class.

Grad-CAM takes advantage on a key property of deep
convolutional layers. It is well-known that CNNs act as high-
level feature extractors. Moreover, the feature maps of the last
convolution layer reflect the structural spatial information of
objects in the image [19].

Nevertheless, differently from other gradient-based meth-
ods, which propagate the gradient till the input layer, Grad-
CAM propagates the value up to the last convolutional layer
of the network, in order to infer the high-level feature infor-
mation from the neural network point of view.

Let assume a classification network with c ∈ C classes
having K feature maps in the last convolution layer, de-
noted as Ak. Grad-CAM determines the neuron importance
weights αc

k for all maps k = 1, . . . ,K and class c, as the
global average pooling of the gradients over the spatial di-
mension, namely

αc
k =

1

Z

H∑

i

W∑

j

∂yc

∂Ak
ij

, (3)

where yc represents the score for class c and Z = H × W
is the spatial resolution of the feature map with height H and
width W .

The activation maps Ak are linear weighted summed with
αc
k weights, and ReLU [20] function is then applied to con-

sider just the positive contributions of features, thus obtaining
the relevance map Rc as

Rc = ReLU

(∑

k

αc
kA

k

)
, (4)

where Rc ∈ RH×W is a 2D map with the same spatial dimen-
sion as the feature maps of the last convolution layer. Finally,
Rc is linear interpolated up to the input image resolution and
scaled in its magnitude to the interval [0, 1] to obtain the final
heatmap Hc for the class c.

3. PROPOSED METHOD

Inspired by the Grad-CAM algorithm [17], where the use of
the gradients flowing through the convolutional layers pro-
duces a coarse localisation map highlighting the important
regions of the input image, here we propose a visual expla-
nation of CNN for regression problems based on a similar
gradient-weighted approach.

Although the devised algorithm can be used with different
regression problems, in this manuscript we consider the NAH
problem (2) as a case study.

3.1. Kirchhoff-Helmholtz-based CNN for NAH

Among several data-driven strategies for NAH [10, 11, 12],
here we focus on the Kirchhoff-Helmholtz-based Convolution
Neural Network (KHCNN) architecture presented in [13].
KHCNN addresses the NAH problem (2) with a physics-
informed approach by combining the advantages of CNN
with the KH model that governs the physical phenomenon.

The block scheme of KHCNN architecture is depicted in
Fig. 1. PH(ω), P̂H(ω) ∈ CM1×M2 are the acoustic pressure
fields on H with dimension M1 × M2 and V̂(ω), P̂S(ω) ∈
CN1×N2 are the normal velocity field and the pressure field
on S, respectively, with dimension N1 × N2. The architec-
ture is composed of two main blocks. The first consists of
a CNN with one encoder E and two decoders D1 and D2 to
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Fig. 1. Block scheme of KHCNN architecture.

estimate the latent variable P̂S and the velocity V̂ on the sur-
face, respectively, from the measured hologram pressure PH
at the input. The second block validates the CNN outputs by
applying the discretized version of the KH integral (1), thus
having an estimate of P̂H from the forward propagation.

The loss function L considers both the desired velocity
and the hologram pressure, thus imposing a physical meaning
to the regularisation, as discussed in [13].

3.2. Grad-CAM-inspired for KHCNN

The proposed algorithm aims to visualise the heatmap H(ω)
to highlight the important regions of the input PH(ω) needed
to produce the KHCNN estimate V̂(ω). Notice that, differ-
ently from Grad-CAM [17], the resulting heatmap H does
not depend on class c, but on the same vibrating frequency ω
of the input PH.

The devised algorithm can operate with different resolu-
tion of the KHCNN. Hence, with input in M = M1 × M2

points and output in N = N1 × N2 points. Moreover, it
produces a heatmap H for each of the two decoders, thus dis-
closing the regions of the input that drives the outputs, P̂S
and V̂ respectively.

We use the loss function defined in [13] as L = 0.5·LRe+
0.5 · LIm, with

LRe =
∥∥∥Re (V)− Re

(
V̂
)∥∥∥

2

2
+
∥∥∥Re (PH)− Re

(
P̂H
)∥∥∥

2

2
,

LIm =
∥∥∥Im (V)− Im

(
V̂
)∥∥∥

2

2
+
∥∥∥Im (PH)− Im

(
P̂H
)∥∥∥

2

2
,

(5)
where Re(·) and Im(·) are operators that take the real and
imaginary part of the complex field, respectively. The pres-
sure and velocity fields in (5) are represented without the de-
pendence of ω for the sake of simplicity. Moreover, the true
values V come from the synthesised datasets [13] computed
with Finite Element simulations.

In order to tackle the regression problem, we modify
Equation (3) by deriving the loss function given the activa-
tion map, namely

αk =
1

Z

∑

i

∑

j

∂L
∂Ak

ij

, (6)

where Ak is the activation map of the last layer of KHCNN
decoder. In Equation (6) we replace the score with the loss

function based on the assumption that the loss function holds
the information of the meaningful parts of the input with re-
spect to the output.

Finally, the resulting heatmap H is linear interpolated to
the input resolution M1 ×M2 with values in [0, 1].

4. RESULTS

4.1. Setup

We analyse the explainability of KHCNN by applying the
proposed method to decoder D2, thus obtaining the heatmap
H related to the estimate V̂.

Using the pre-trained KHCNN architecture of [13], we
focus on two datasets: 672 aluminium rectangular plates and
1568 violin top plates made of Sitka spruce. The datasets was
generated using COMSOL Multiphysics® software simulating
the radiated pressure in M points and the normal velocity field
in N points of different plates excited at different ω.

The aluminium plate dataset available in [21] comprises
15 570 samples of rectangular vibrating plates with differ-
ent dimensions and boundary conditions (BCs): simply sup-
ported, clamped and free BCs, that characterised the vibration
based on the conditions imposed to the edges of the struc-
ture [22]. The input resolution of PH is M = M1 × M2 =
16×64 points. On the other hand, the violin dataset comprises
7256 samples of plates with free BCs and input resolution of
M = M1 × M2 = 8 × 8. In both cases KHCNN estimates
the desired velocity on N = N1 ×N2 = 16× 64 points.

4.2. Evaluation

Fig. 2 shows three examples of rectangular plates having dif-
ferent BCs along with the input hologram pressure in M =
1024 points, the velocity estimate and its ground truth in N =
1024 points. From the output of decoder D2 we apply the
proposed algorithm to obtain the heatmap H ∈ R16×64 as
depicted in the last row of the figure.

In general, inspecting the resulting heatmaps H, we no-
ticed that the network focuses on the regions where vibra-
tional lobes of the velocity fields are present. In particular,
KHCNN exploits the symmetry of vibrations and the edges
for different BCs inferring the estimates as interpolation of
the vibrational patterns.

For the simply supported and clamped cases in Fig. 2(a)
and Fig. 2(b), respectively, the regions with maximum ampli-
tude correspond to the areas of the largest magnitude velocity
|V̂| discarding the edges, where the velocity is zero. Con-
versely, for the free BCs, where the edges are free to move,
the resulting heatmap highlights that the network based the
decision by taking into account also the external regions of
the input, as shown in Fig. 2(c)

For the violin top plate dataset we analyse the KHCNN
architecture using M = 64 points for the input pressure. In
Fig. 3 we show three examples of violin top plates vibrating
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Fig. 2. Reconstruction examples on rectangular plates for
simply (a), clamped (b), and free (c) BCs. First row is the
magnitude hologram pressure at the input with M1 = 16 and
M2 = 64. Second and third rows are the magnitude of the
velocity estimate and ground truth, respectively. The last row
depicts the resulting heatmap of the algorithm coming from
decoder D2.

at different frequencies with the realtive heatmaps H ∈ R8×8

computed by the proposed algorithm from decoder D2.
We can notice that the network is more affected by the

edges of the input pressure mainly at low frequencies, as
shown in Fig. 3(a) and Fig. 3(b). On the other hand, when
the frequency increases the network focuses on the internal
regions of the pressure, as in Fig. 3(c). However, also in this
case the main regions of interest correspond to the maximum
lobes of the velocity field.

4.3. Validation

In order to assess the performance of the proposed explain-
able algorithm we computed the Normalised Cross Correla-
tion (NCC) and Normalised Mean Square Error (NMSE) be-
tween the KHCNN estimates coming from the acquired in-
put pressure and the filtered one by the resulting heatmap H,
namely

NCC =
|v̂H

f · v̂|
∥v̂f∥2 · ∥v̂∥2

, NMSE = 10 log10

(
eH · e
v̂H · v̂

)
,

(7)

where H is the Hermitian transpose operator, e = v̂f − v̂, and
v̂, v̂f are the vectorized form of V̂ = KHCNN(PH) and
V̂f = KHCNN(PH ⊙ H), respectively, where ⊙ denotes
the Hadamard product. Notice that, v̂f and v̂ should ideally
match if the computed H highlights correct regions of the
input, which drives the output decision. Therefore, NCC ∈
[0, 1] is optimum when it is close to 1 and NMSE, in decibel,
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Fig. 3. Reconstruction examples on violin top plates with
free BCs with different shapes and vibrating frequencies. The
magnitude of the input hologram pressure with M1 = 8 and
M2 = 8 is depicted in the first row. Second and third rows
are the magnitude of the velocity estimate and ground truth,
respectively. The resulting heatmap of the algorithm is shown
in the last row.

should be as lower as possible. We computed Equation (7)
for the 7256 samples of the violin dataset reaching an average
NCC value of 0.98 and NMSE = −13.93 dB on average.

5. CONCLUSIONS

In this manuscript we proposed a modified version of the
Grad-CAM algorithm for regression problems. We applied
the devised method to a recent physics-informed approach
for NAH, called KHCNN. We focused on the explainable
KHCNN when operating with vibrating rectangular plates
having different boundary conditions and with violin top
plates with different shapes. The proposed algorithm is able
to compute visual heatmaps that highlight the important
regions of the input responsible of the KHCNN velocity es-
timates. Moreover, the methodology is flexible enough to be
able to work with different resolutions of the input hologram
pressure field. We validated the performance in terms of
NCC and NMSE by comparing the KHCNN estimates stem-
ming from the acquired hologram pressure and the filtered
one with the computed heatmap, thus proving the reliabil-
ity of the method. Results help in the interpretation of the
KHCNN decision process inspecting how the network infers
the symmetry of vibrational patterns and the behaviour at
the edges. Future works can exploit this knowledge for the
implementation of new architectures. In particular, we fore-
see new compact and lightweight architectures defined with
well-designed constraints to archive good results for more
complex objects, such as industrial machineries.
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