
6. RESULTS

The fig shows three examples

of rectangular plates

having different BCs

along with the input

hologram pressure

in 𝑀 = 1024 points, 

the velocity estimate and

its ground truth in

𝑁 = 1024 points.

From the output of

decoder 𝐷! we applied

the algorithm to obtain

the heatmap 𝐻 . In general, inspecting the resulting heatmaps 𝐻 , we noticed:

• the network focuses on the regions where vibrational lobes of the velocity fields are present. 

• KHCNN exploits the symmetry of vibrations and the edges for different BCs inferring 

the estimates as interpolation of the vibrational patterns.

For the violin top plate

we analyze the KHCNN

architecture using

𝑀 = 64 points for

the input pressure.

Again, three examples of

violin top plates vibrating 

at different 𝑓 with the

computed 𝐻 ∈ ℝ"×" .

We can notice that the network is more affected by the edges of the input mainly at low 𝑓. 

Conversely, when 𝑓 increases the network focuses on the internal regions.

CONTEXT

ISSUE: Visual explanation of a recent physics-informed approach for Nearfield Acoustic

Holography (NAH) using vibrating rectangular plates with different boundary conditions

and violin top plates with complex shapes.

GOAL: Interpret and explain the decision-making process of the Kirchhoff-Helmholtz-

based Convolutional Neural Network (KHCNN) architecture.

PROPOSED METHODOLOGY: Propose a Grad-CAM-inspired approach for the

visual explanation of neural network architecture for regression problems.
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ABSTRACT

The interpretation and explanation of decision-making processes of neural networks are

becoming a key factor in the deep learning field. Although several approaches have been

presented for classification problems, the application to regression models needs to be further

investigated. In this manuscript we propose a Grad-CAM-inspired approach for the visual

explanation of neural network architecture for regression problems. We apply this

methodology to a recent physics-informed approach for Nearfield Acoustic Holography, called

Kirchhoff-Helmholtz-based Convolutional Neural Network (KHCNN) architecture.

We focus on the interpretation of KHCNN using vibrating rectangular plates with different

boundary conditions and violin top plates with complex shapes. Results highlight the more

informative regions of the input that the network exploits to correctly predict the

desired output. The devised approach has been validated in terms of NCC and NMSE

using the original input and the filtered one coming from the algorithm.
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1. SCIENTIFIC BACKGROUND - Nearfield Acoustic Holography
The complex exterior radiated pressure (i.e., magnitude and phase information) measured at a

point r due to the vibration of the structure at 𝜔 = 2𝜋𝑓 can be formulated with the

Kirchhoff-Helmholtz (KH) integral as:

• 𝑠 a point of surface 𝑆
• 𝜌$ the density of the medium (for air 𝜌$ = 1.225 𝑘𝑔 𝑚%& ) 
• 𝑛 the outward vector normal to the surface at 𝑠
• 𝑣' 𝑠, 𝜔 the normal velocity field 
• 𝑝(𝑠, 𝜔) pressure field on the vibrating surface considering the propagation from s to r

• 𝑔( (𝑟, 𝑠) Free-field Green’s function

Nearfield Acoustic Holography (NAH) aims at computing 𝑣' 𝑠, 𝜔 starting from 𝑝(𝑟, 𝜔) acquired

by a microphone array on the holographic plane ℋ (𝑟 ∈ ℋ). Therefore, the goal of NAH relies on

the inversion of the equation above, namely:

2. SCIENTIFIC BACKGROUND - Grad-CAM
Gradient-weighted Class Activation Mapping (Grad-CAM) is a post-hoc explanation via 
visualisation of class discriminative activation for a network. Grad-CAM takes advantage on a 
key property of deep convolutional layers.

Grad-CAM determines the neuron importance weights as the global
average pooling of the gradients over the spatial dimension, namely:
• 𝑐 a class ∈ 𝐶

• 𝑘 feature maps  in the last convolution layer (𝐴) )
• 𝑦* the score for class c

• 𝛼)
* the neuron importance weights

𝑍 = 𝐻×𝑊 the spatial resolution of the feature map with height 𝐻 and width 𝑊 .

Applying ReLU function to the linear weighted sum of the activation maps.

4. EVALUATION METRICS

• Normalized Cross Correlation (NCC)

• Normalized Mean Square Error (NMSE)

between the KHCNN estimates coming from the acquired input

pressure and the filtered one by the resulting heatmap H

5. SETUP

Using the pre-trained KHCNN architecture, we focus on two datasets: 

• 672 aluminum rectangular plates (different dimensions and boundary conditions)

• 1568 violin top plates made of Sitka spruce (different resolutions and only free BC)

• The datasets were generated using COMSOL Multiphysics® software simulating the radiated 

pressure in 𝑀 points and the normal velocity field in 𝑁 points of different plates excited at 

different 𝜔 .

We consider high-resolution input with 𝑀 = 16×64 points and low-resolution input with 

𝑀 = 8×8 points. In both cases KHCNN estimates the desired velocity in 𝑁 = 16×64 points.
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3. PROPOSED METHOD
The block scheme of KHCNN architecture is:

• INPUT: 𝑃+ ( ∈ ℂ,-×,. - the normal velocity field and the pressure field on S

• OUTPUT: K𝑃+ ( ∈ ℂ/-×/. - the acoustic pressure fields

NETWORK ARCHITECTURE:

• Deep Neural Network Block - CNN with one encoder 𝐸 and two decoders 𝐷0 and 𝐷! to 

estimate the latent variable K𝑃1 and the velocity K𝑉 from the input.

• Mathematical model block – contain layers of mathematical steps according to the KH integral 

to create the estimate K𝑃+ for the training.

THE LOSS FUNCTION:

The proposed algorithm aims to visualize the heatmap 𝐇 to highlight the important regions 

of the input 𝑃+ needed to produce the KHCNN estimate K𝑉.

We use the loss function defined as: ℒ = 0.5 P ℒ23 + 0.5 P ℒ45 , with:

For regression problem, the Grad-Cam weights are modified:
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Fig. 1. Block scheme of KHCNN architecture.

estimate the latent variable bPS and the velocity bV on the sur-
face, respectively, from the measured hologram pressure PH

at the input. The second block validates the CNN outputs by
applying the discretized version of the KH integral (1), thus
having an estimate of bPH from the forward propagation.

The loss function L considers both the desired velocity
and the hologram pressure, thus imposing a physical meaning
to the regularisation, as discussed in [13].

3.2. Grad-CAM-inspired for KHCNN

The proposed algorithm aims to visualise the heatmap H(!)

to highlight the important regions of the input PH(!) needed
to produce the KHCNN estimate bV(!). Notice that, differ-
ently from Grad-CAM [17], the resulting heatmap H does
not depend on class c, but on the same vibrating frequency !

of the input PH.
The devised algorithm can operate with different resolu-

tion of the KHCNN. Hence, with input in M = M1 ⇥ M2

points and output in N = N1 ⇥ N2 points. Moreover, it
produces a heatmap H for each of the two decoders, thus dis-
closing the regions of the input that drives the outputs, bPS

and bV respectively.
We use the loss function defined in [13] as L = 0.5·LRe+

0.5 · LIm, with
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(5)
where Re(·) and Im(·) are operators that take the real and
imaginary part of the complex field, respectively. The pres-
sure and velocity fields in (5) are represented without the de-
pendence of ! for the sake of simplicity. Moreover, the true
values V come from the synthesised datasets [13] computed
with Finite Element simulations.

In order to tackle the regression problem, we modify
Equation (3) by deriving the loss function given the activa-
tion map, namely
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ij

, (6)

where A
k is the activation map of the last layer of KHCNN

decoder. In Equation (6) we replace the score with the loss

function based on the assumption that the loss function holds
the information of the meaningful parts of the input with re-
spect to the output.

Finally, the resulting heatmap H is linear interpolated to
the input resolution M1 ⇥M2 with values in [0, 1].

4. RESULTS

4.1. Setup

We analyse the explainability of KHCNN by applying the
proposed method to decoder D2, thus obtaining the heatmap
H related to the estimate bV.

Using the pre-trained KHCNN architecture of [13], we
focus on two datasets: 672 aluminium rectangular plates and
1568 violin top plates made of Sitka spruce. The datasets was
generated using COMSOL Multiphysics® software simulating
the radiated pressure in M points and the normal velocity field
in N points of different plates excited at different !.

The aluminium plate dataset available in [21] comprises
15 570 samples of rectangular vibrating plates with differ-
ent dimensions and boundary conditions (BCs): simply sup-
ported, clamped and free BCs, that characterised the vibration
based on the conditions imposed to the edges of the struc-
ture [22]. The input resolution of PH is M = M1 ⇥ M2 =

16⇥64 points. On the other hand, the violin dataset comprises
7256 samples of plates with free BCs and input resolution of
M = M1 ⇥ M2 = 8 ⇥ 8. In both cases KHCNN estimates
the desired velocity on N = N1 ⇥N2 = 16⇥ 64 points.

4.2. Evaluation

Fig. 2 shows three examples of rectangular plates having dif-
ferent BCs along with the input hologram pressure in M =

1024 points, the velocity estimate and its ground truth in N =

1024 points. From the output of decoder D2 we apply the
proposed algorithm to obtain the heatmap H 2 R16⇥64 as
depicted in the last row of the figure.

In general, inspecting the resulting heatmaps H, we no-
ticed that the network focuses on the regions where vibra-
tional lobes of the velocity fields are present. In particular,
KHCNN exploits the symmetry of vibrations and the edges
for different BCs inferring the estimates as interpolation of
the vibrational patterns.

For the simply supported and clamped cases in Fig. 2(a)
and Fig. 2(b), respectively, the regions with maximum ampli-
tude correspond to the areas of the largest magnitude velocity
|bV| discarding the edges, where the velocity is zero. Con-
versely, for the free BCs, where the edges are free to move,
the resulting heatmap highlights that the network based the
decision by taking into account also the external regions of
the input, as shown in Fig. 2(c)

For the violin top plate dataset we analyse the KHCNN
architecture using M = 64 points for the input pressure. In
Fig. 3 we show three examples of violin top plates vibrating
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Fig. 2. Reconstruction examples on rectangular plates for
simply (a), clamped (b), and free (c) BCs. First row is the
magnitude hologram pressure at the input with M1 = 16 and
M2 = 64. Second and third rows are the magnitude of the
velocity estimate and ground truth, respectively. The last row
depicts the resulting heatmap of the algorithm coming from
decoder D2.

at different frequencies with the realtive heatmaps H 2 R8⇥8

computed by the proposed algorithm from decoder D2.
We can notice that the network is more affected by the

edges of the input pressure mainly at low frequencies, as
shown in Fig. 3(a) and Fig. 3(b). On the other hand, when
the frequency increases the network focuses on the internal
regions of the pressure, as in Fig. 3(c). However, also in this
case the main regions of interest correspond to the maximum
lobes of the velocity field.

4.3. Validation

In order to assess the performance of the proposed explain-
able algorithm we computed the Normalised Cross Correla-
tion (NCC) and Normalised Mean Square Error (NMSE) be-
tween the KHCNN estimates coming from the acquired in-
put pressure and the filtered one by the resulting heatmap H,
namely

NCC =
|v̂

H

f
· v̂|

kv̂fk2 · kv̂k2

, NMSE = 10 log10

✓
e
H
· e

v̂H · v̂

◆
,

(7)

where H is the Hermitian transpose operator, e = v̂f � v̂, and
v̂, v̂f are the vectorized form of bV = KHCNN(PH) and
bVf = KHCNN(PH � H), respectively, where � denotes
the Hadamard product. Notice that, v̂f and v̂ should ideally
match if the computed H highlights correct regions of the
input, which drives the output decision. Therefore, NCC 2

[0, 1] is optimum when it is close to 1 and NMSE, in decibel,
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Fig. 3. Reconstruction examples on violin top plates with
free BCs with different shapes and vibrating frequencies. The
magnitude of the input hologram pressure with M1 = 8 and
M2 = 8 is depicted in the first row. Second and third rows
are the magnitude of the velocity estimate and ground truth,
respectively. The resulting heatmap of the algorithm is shown
in the last row.

should be as lower as possible. We computed Equation (7)
for the 7256 samples of the violin dataset reaching an average
NCC value of 0.98 and NMSE = �13.93 dB on average.

5. CONCLUSIONS

In this manuscript we proposed a modified version of the
Grad-CAM algorithm for regression problems. We applied
the devised method to a recent physics-informed approach
for NAH, called KHCNN. We focused on the explainable
KHCNN when operating with vibrating rectangular plates
having different boundary conditions and with violin top
plates with different shapes. The proposed algorithm is able
to compute visual heatmaps that highlight the important
regions of the input responsible of the KHCNN velocity es-
timates. Moreover, the methodology is flexible enough to be
able to work with different resolutions of the input hologram
pressure field. We validated the performance in terms of
NCC and NMSE by comparing the KHCNN estimates stem-
ming from the acquired hologram pressure and the filtered
one with the computed heatmap, thus proving the reliabil-
ity of the method. Results help in the interpretation of the
KHCNN decision process inspecting how the network infers
the symmetry of vibrational patterns and the behaviour at
the edges. Future works can exploit this knowledge for the
implementation of new architectures. In particular, we fore-
see new compact and lightweight architectures defined with
well-designed constraints to archive good results for more
complex objects, such as industrial machineries.


