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 The SI system solves the inverse problem of determining the trajectories of the 
movement of speech articulators from speech

 The resulting time varying trajectories are called vocal tract variables (TVs)

 

 Takes in the Audspecs as input and estimates both TVs and source level 
features (aperiodicity, periodicity and pitch) as the output

 All models trained and evaluated in a ‘speaker-independent’ fashion

Acoustic-to-articulatory Speech Inversion (SI)

 Vocal Tract Variables (TVs)

Motivation for our work
Input Acoustic Features
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Why SI systems ?
 To better understand the speech production process
 To improve speech applications like ASR, speech synthesis, speech therapy 

and mental health assessment

Constriction Vocal tract variables (TVs)

Lip Lip Aperture (LA)
Lip Protrusion(LP)

Tongue Tip Tongue tip constriction degree (TTCD)
Tongue tip constriction location (TTCL)

Tongue Body Tongue body constriction degree (TBCD)
Tongue body constriction location (TBCL)

Velum Velum (VEL)

Glottis Glottis (GLO)

 Learning proxy source level features (Aperiodicity, Periodicity and Pitch) to 
leverage any source-filter interactions to improve SI task

 Effectiveness of Multi Task Learning (MTL) frameworks in learning parallel 
tasks or related additional targets to improve SI

 Exploring different deep neural network (DNN) based model architectures (eg. 
BiLSTMS, CNN-BiLSTMs, Temporal Convolutional Networks (TCN)) in 
developing speaker-independent SI systems

 Auditory Spectrograms (Audspecs)
  Sound signals in the auditory pathway undergo a series of complex 

transformations and converts the acoustic spectrum of the stimulus into an 
internal representation, called the auditory spectrum

  Enhanced and a noise-robust estimate of the Fourier-based spectrogram with 
roughly a logarithmic frequency scale (Wang et al., 1994)

 Temporal Convolution Network (TCN)Articulatory Datasets

The X-ray microbeam (XRMB)
 Naturally spoken isolated sentences and short read paragraphs collected from 32 

male and 25 female subjects
X-ray microbeam cinematography of the midsagittal plane

Haskins Production Rate Comparison (HPRC)
 Recordings from 4 female and 4 male subjects reciting 720 phonetically 

balanced IEEE sentences (IEEE, 1969) at normal and fast production rates (Tiede 
et al., 2017)

 Recordings done using 5-D electromagnetic articulometry (EMA) system
 Three additional TVs: Jaw Angle (JA), Tongue Middle Constriction Location 

(TMCL) and Tongue Middle Constriction Degree (TMCD)

Conclusions and Future Work
 Incorporating source features into the mix of TVs is helping the estimation of 

articulatory variables and hence improving the performance of SI systems
 The proposed TCN model which uses Audspecs (or Mspecs) as inputs shows the 

best improvement in performance
 The improvement in performance is consistent across two publicly available 

articulatory datasets (XRMB and HPRC datasets)
 Both the input speech representation and the DNN model architecture play a role 

in learning complex dependencies between the source and articulatory targets
 Further analysis needs to be done to investigate the ways and instances by which 

the source features are actually interacting with the TVs and what the TCN 
models are actually capturing as source-filter interactions 
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Results

 Comparison with baseline SI systems: HPRC dataset

Model AVG. 9 TVs Avg. all

TCN-Audspec 0.4805 -
TCN-SF-Audspec 0.7573 (27.7%) 0.7636
TCN-Mspec 0.4763 -
TCN-SF-Mspec 0.6503 (17.4%) 0.6621
BiGRNN-MFCC 0.7118 -
BiGRNN-SF-MFCC 0.7153 (0.3%) 0.7263
CNN-BiGRNN-Mspec 0.7277 -
CNN-BiGRNN-SF-Mspec 0.7290 (0.1%) 0.7461
CNN-BLSTM-Mspec 0.7245 -
CNN-BLSTM-SF-Mspec 0.7259 (0.1%) 0.7428

Model LA LP TBCL TBCD TTCL TTCD Ap. Per. Pitch AVG. TVs Avg. all

TCN-Audspec 0.7977 0.7942 0.7883 0.7836 0.7743 0.7684 - - - 0.7844 -

TCN-SF-Audspec 0.8448 0.8640 0.8604 0.8818 0.9029 0.9005 0.9082 0.8860 0.9021 0.8770 (9.3%) 0.8834

TCN-Mspec 0.7432 0.7427 0.7366 0.7244 0.7244 0.6993 - - - 0.7273 -

TCN-SF-Mspec 0.8364 0.8639 0.8727 0.8607 0.8807 0.8917 0.8732 0.9005 0.8638 0.8677 (14%) 0.8715

BiGRNN-MFCC 0.8801 0.6200 0.8580 0.7382 0.6922 0.9206 - - - 0.7848 -

BiGRNN-SF-MFCC 0.8810 0.6211 0.8628 0.7365 0.7019 0.9191 0.8693 0.9163 0.7209 0.7871 (0.2%) 0.8032

CNN-BiGRNN-Mspec 0.8801 0.6165 0.8505 0.7355 0.7146 0.9171 - - - 0.7858 -

CNN-BiGRNN-SF-Mspec 0.8799 0.6246 0.8566 0.7302 0.7065 0.9175 0.8794 0.9296 0.7441 0.7859 (0.01%) 0.8076

CNN-BLSTM-Mspec 0.8770 0.6184 0.8463 0.7200 0.6915 0.9197 - - - 0.7788 -

CNN-BLSTM-SF-Mspec 0.8774 0.6202 0.8525 0.7172 0.6941 0.9180 0.8734 0.9263 0.7442 0.7799 (0.1%) 0.8026

 LA and constriction degree TVs + source features for the utterance ‘second 
children are often special’ estimated by the proposed TCN-SF-Audspec model 
compared to the TCN-Audspec 

 

Estimated TVs and Source Features

Comparison with baseline SI systems: XRMB dataset
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