The Secret Source : Incorporating Source Features to Improve Acoustic-to-articulatory Speech Inversion

• Acoustic-to-articulatory Speech Inversion (SI)

Constriction	Vocal tract variables (TVs)
Lip	Lip Aperture (LA) Lip Protrusion(LP)
Tongue Tip	Tongue tip constriction degree (TTCD) Tongue tip constriction location (TTCL)
Tongue Body	Tongue body constriction degree (TBCD) Tongue body constriction location (TBCL)
Velum	Velum (VEL)
Glottis	Glottis (GLO)

• Articulatory Datasets

The X-ray microbeam (XRMB)

(TMCL) and Tongue Middle Constriction Degree (TMCD)

Yashish M. Siriwardena and Carol Espy-Wilson Institute for Systems Research, Electrical and Computer Engineering, University of Maryland College Park, USA

• **Results**

TBCL	TBCD	TTCL	TTCD	Ap.	Per.	Pitch	AVG. TVs	Avg. all
0.7883	0.7836	0.7743	0.7684	-	-	-	0.7844	-
0.8604	0.8818	0.9029	0.9005	0.9082	0.8860	0.9021	0.8770 (9.3%)	0.8834
0.7366	0.7244	0.7244	0.6993	-	-	-	0.7273	-
0.8727	0.8607	0.8807	0.8917	0.8732	0.9005	0.8638	0.8677 (14%)	0.8715
0.8580	0.7382	0.6922	0.9206	-	-	-	0.7848	-
0.8628	0.7365	0.7019	0.9191	0.8693	0.9163	0.7209	0.7871 (0.2%)	0.8032
0.8505	0.7355	0.7146	0.9171	-	-	-	0.7858	-
0.8566	0.7302	0.7065	0.9175	0.8794	0.9296	0.7441	0.7859 (0.01%)	0.8076
0.8463	0.7200	0.6915	0.9197	-	-	-	0.7788	-
0.8525	0.7172	0.6941	0.9180	0.8734	0.9263	0.7442	0.7799 (0.1%)	0.8026

k			
	6 TVs		
C6	+		
	Pitch		
	; + ;		
	Aperiodicity		
	+		
1	Periodicity		
 Batch Norm, ReLU, Upsample Batch Norm, Tanh Batch Norm, ReLU, AVG pool ReLU Batch Norm, ReLU Group Norm 			
th TVs and source level			
e output			
a dama a dama (fa ala: a a			

• **Comparison with baseline SI systems: HPRC dataset**

Model TCN-Audspec **TCN-SF-Audspec** TCN-Mspec TCN-SF-Mspec **BIGRNN-MFCC BIGRNN-SF-MFCC CNN-BiGRNN-Mspec** CNN-BiGRNN-SF-Mspec **CNN-BLSTM-Mspec** CNN-BLSTM-SF-Mspec

Conclusions and Future Work

- best improvement in performance
- articulatory datasets (XRMB and HPRC datasets)
- models are actually capturing as source-filter interactions

Acknowledgments

• **References**

[1] Catherine P Browman and Louis Goldstein, "Articulatory Phonology : An Overview *," Phonetica, vol. 49, pp. 155-180, 1992 2] John R Westbury, "Speech Production Database User ' S Handbook," IEEE Personal Communications - IEEE Pers. Commun., vol. 0, no. June, 1994

[3] Kuansan Wang and S. Shamma, "Self-normalization and noise-robustness in early auditory representations," IEEE Transactions on Speech and Audio Processing, vol. 2, no. 3, pp. 421–435, 1994

Paper #5096

AVG. 9 TVs	Avg. all
0.4805	-
0.7573 (27.7%)	0.7636
0.4763	-
0.6503 (17.4%)	0.6621
0.7118	-
0.7153 (0.3%)	0.7263
0.7277	-
0.7290 (0.1%)	0.7461
0.7245	-
0.7259 (0.1%)	0.7428

 \blacktriangleright Incorporating source features into the mix of TVs is helping the estimation of articulatory variables and hence improving the performance of SI systems

The proposed TCN model which uses Audspecs (or Mspecs) as inputs shows the

 \blacktriangleright The improvement in performance is consistent across two publicly available

> Both the input speech representation and the DNN model architecture play a role in learning complex dependencies between the source and articulatory targets

 \blacktriangleright Further analysis needs to be done to investigate the ways and instances by which the source features are actually interacting with the TVs and what the TCN

This work was supported by the National Science Foundation grant IIS1764010