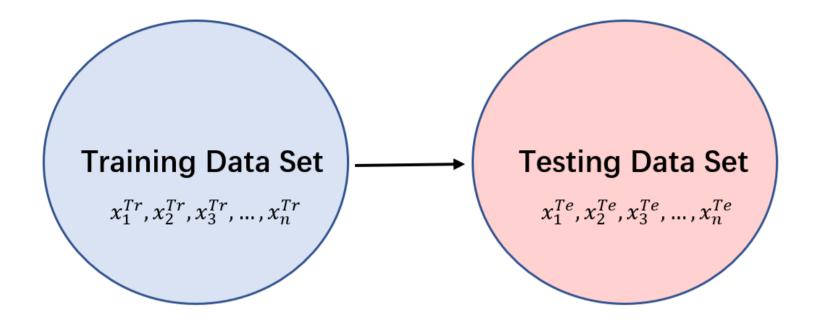


Introduction to Online learning

Traditional Machine Learning:

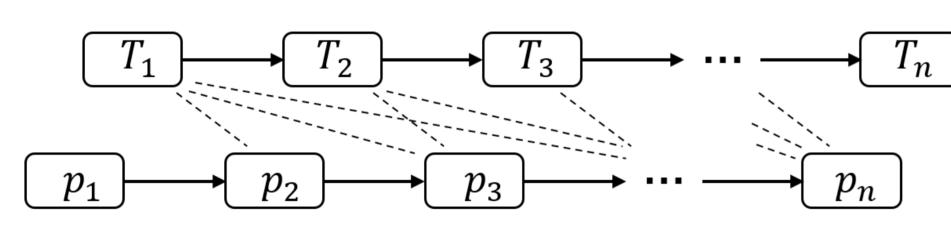
All training data are known initially.



Online Learning:

The data arrive sequentially.

Target Sequence



Prediction Sequence

Experts and Side Information

	Target		x_1^T	x_2^T	x_3^T		x_n^T	A Simpl Weather Fo
	Experts	$\theta = 1$ $\theta = 2$, ,		5.15	T Loca E Prediction
-		$\theta = N$	f_1^N	f_2^N	f_3^N	•••	f_n^N	n Side in
Seque	ential Side Inf	ormation	<i>s</i> ₁	<i>s</i> ₂	<i>S</i> ₃		S _n	The weather t

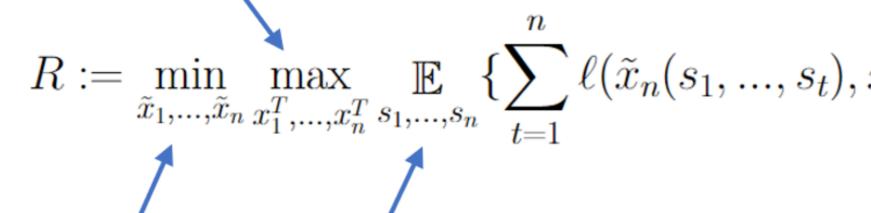
On the Value of Stochastic Side Information in Online Learning

Junzhang Jia, Xuetong Wu, Jamie Evans, Jingge Zhu

Department of Electrical and Electronic Engineering, The University of Melbourne

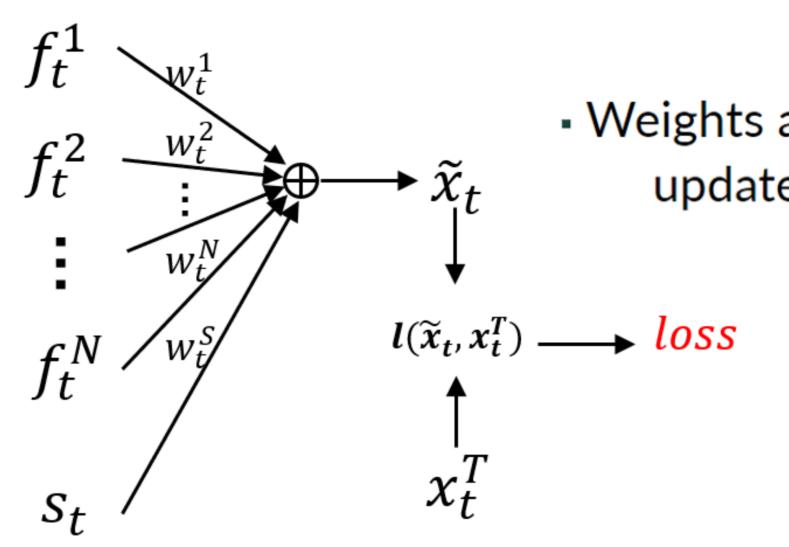
Minimax Expected Regret

Maximum over all possible target sequences Comparing to the best expert



Expectation over the stochastic side information Minimum over all possible algorithms

Weighted Average Algorithm



Main Contribution

This work mainly contributes to three aspects:

- A Novel Setup: We proposed a novel online learning problem formulation with stochastic side information.
- Negative Regret: We showed that introducing SSI can improve the typical learning rate under some possible cases.

ple Motivation Forecaster System

Target: cal weather

Experts: ons from different models

information:

from a nearby area

$$(x_t^T) - \min_{\theta} \sum_{t=1}^n \ell(f_t^{\theta}, x_t^T)$$

 Weights are exponentially updated by their induced loss.

dicting the target sequence with length n:

$$R \le \sqrt{\frac{n}{2}} \log \frac{1}{2}$$

 ℓ is the absolute loss $\ell(x,y) = |x - y|$, then

$$R \ge \sqrt{\frac{n}{2}} \log \frac{n}{2}$$

where ξ^* is a constant related to side information.

Both upper and lower bound could be negative!

Examples

SSI via a binary symmetric channel

$$R \le \sqrt{\frac{n}{2}} \log R$$
$$R \ge \sqrt{\frac{n}{2}} \log R$$

SSI via a Zero-mean Gaussian Channel

$$R \le \sqrt{\frac{n}{2}} \log R$$
$$R \ge \sqrt{\frac{n}{2}} \log R$$

Results

- **Theorem 1(Upper Bound):** The minimax expected regret for pre
 - $og(N+1) + min\{F(n), 0\},\$
- where F(n) depends on the problems' specifications.
- **Theorem 2(Lower Bound):** Consider $\mathcal{X} = \{0, 1\}$ and $\mathcal{D} = [0, 1]$, and $\log(N+1) + \left(\xi^* - \frac{1}{2}\right)n,$

- $\log(N+1) + \min\{0, nc_1\}$
- $\log\left(N+1\right) + nc_2.$
- $\log(N+1) + \min\{0, nc_3\}$
- $\log\left(N+1\right) + nc_4.$