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Decentralized multi-sensor fusion

Figure 1. Scenario with three objects observed by two sensors with partially overlapping field-of-views.

Image taken from [1].

Multiple sensors with possibly different field-of-views (FoVs), where tracking is

performed locally at each sensor, are utilized to estimate the moving objects in the

region of interest.

To leverage the information available at local sensors, the local multi-object densities

(MODs) obtained at each sensor need to be fused to obtain a global MOD.

Limitations of model-based methods

Current model-based methods, in theory, do not provide Bayesian optimal fusion results.

Current fusion methods only use the local multi-object posterior densities at the current

time while ignoring information regarding the objects’ previous states.

It is difficult to develop a model-based method that leverages all the uncertainties

captured in the MODs on sets of trajectories [2].

Contributions

The first deep learning-based solution to the fusion of MODs.

MT3 [3], a transformer-based deep neural network, is used to fuse local MODs on

sets of trajectories to obtain a global MOD that describes the set of current objects.

Problem formulation
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Figure 2. Diagram of fusion of MODs using transformer.

The local MOD f s(XT | zs
1:T ) at the s-th sensor represents the posterior density of the

set XT of trajectories in the time interval 1 : T in the form of multi-Bernoulli (MB) [2].

The global MOD f (xT | z1
1:T , . . . , zS

1:T ) represents the set of detected objects xT at time

step T in the form of MB, where an existence probability and a Gaussian single-object

density characterize each Bernoulli component.
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Figure 3. The structure of MT3 [3].

Preprocessing Concatenate parameters of the i-th Bernoulli at the s-th sensor:
Existence probability rs,i.

Trajectory start time ts,i.

Probability mass function of trajectory length ws,i
j , j ∈ {1, . . . , `s,j}.

Mean of state sequence xs,i
1:`s,i ∈ R4`s,i

.

(Reduced) covariance of state sequence P s,i
1:`s,i ∈ R4`s,i×4`s,i

.

Include sensor position information when sensors are mobile.

Positional encoding Encode time step t ∈ {ts,i, . . . , ts,i + `s,i − 1}, trajectory index
i ∈ {1, . . . , ns} and sensor index s ∈ {1, . . . , S} into the input embedding.

Loss Negative log-likelihood (NLL) of the MB density evaluated at the ground truth [4].

Scenario setup

Figure 4. An illustration of scenario 1 (top left), scenario 2 (top right), and a sample plot of scenario 3 (bottom,

sensor trajectories are shown in solid lines).

Results on synthetic data

Scenario 1 2 3

Method Bayesian MT3 Bayesian MT3 Bayesian MT3

GOSPA-total 1.618 1.373 1.440 1.413 1.294 0.885

GOSPA-loc 0.596 0.959 0.693 1.040 0.256 0.597

GOSPA-miss 0.058 0.051 0.076 0.031 0.003 0.025

GOSPA-false 0.964 0.363 0.671 0.342 1.035 0.263

NLL-total 12.207 1.195 2.695 1.833 13.105 0.429

NLL-loc 11.766 0.572 2.103 1.169 12.656 0.089

NLL-miss 0.320 0.304 0.253 0.411 0.428 0.137

NLL-false 0.121 0.319 0.340 0.253 0.021 0.202

Table 1. Performance comparison with [1] in terms of GOSPA [5] and NLL [4].

Results show that MT3 [3] outperforms the model-based Bayesian fusion method [1] in

terms of both GOSPA and NLL in all the scenarios.

Figure 5. Sample plot of Bayesian method (Left) and MT3 (Right). Yellow-filled circles indicate estimated

positions obtained from local filters. The ground truth positions/velocities at the current time are shown in

red crosses/arrows, respectively, while predicted positions/velocities are shown in blue plus signs/arrows.

The blue/black dished ellipses represent the 3-σ level of predicted velocities/positions.

Figure 6. Left: attention maps of the predictions of MT3 in blue-filled circles. Right: corresponding trajectory

estimates from different sensors, indicated using different colours.
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