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Decentralized multi-sensor fusion Deep MOD fusion using transformer Results on synthetic data
Scenario 1 2 3
Selection Method  Bayesian MT3 Bayesian MT3 Bayesian MT3
>
Mechanism GOSPA-total 1.618 1.373 1440 1413 1.294 0.885
GOSPA-loc  0.596 0.959 0.693 1.040 0.256 0.59/
1:k ~1:k GOSPA-miss  0.058 0.051 0.0/76 0.031 0.003 0.025
A O ! < ! GOSPA-false  0.964 0.363 0.671 0.342 1.035 0.263
s ™ 1:m NLL-total 12.207 1.195 2.695 1.833 13.105 0.429
e NLL-loc  11.766 0.572 2.103 1.169 12.656 0.089
Encoder Decoder NLL-miss ~ 0.320 0304 0253 0411 0428 0.137
- J NLL-false 0.121 0.319 0.340 0.253 0.021 0.202
i Table 1. Performance comparison with [1] in terms of GOSPA [5] and NLL [4].
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Zl:m POSItIO_naI Predictions Results show that MT3 [3] outperforms the model-based Bayesian fusion method [1] in
L y L EnCOdmg ) terms of both GOSPA and NLL in all the scenarios.
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Figure 3. The structure of MT3 [3]. ST \ ‘}
= Preprocessing Concatenate parameters of the i-th Bernoulli at the s-th sensor: 1 | | f
Figure 1. Scenario with three objects observed by two sensors with partially overlapping field-of-views. = Existence probability . oL
Image taken from [1]. = Trajectory start time ¢, | I '
= Probability mass function of trajectory length w?*, j € {1,..., £/}, 1} T
= Multiple sensors with possibly different field-of-views (FoVs), where tracking is Viean of state sequence ., € T o A5 ugsi
" . . : : = (Reduced) covariance of state sequence P, ,,; € R . 5l 1 3t
performed locally at each sensor, are utilized to estimate the moving objects in the L . - .
. . Include sensor position information when sensors are mobile. AL | 4t .
region of interest. e : : iy si \ psi : : -0
| | | o N = Positional encoding Encode time step t € {¢*,...,t%" + %" — 1}, trajectory index | .l f/
= To leverage the information available at local sensors, the I.ocal multi-object densities i € {1,....n°} and sensor index s € {1,...,S} into the input embedding. 1 | _ﬁ_: :
(MODs) obtained at each sensor need to be fused to obtain a global MOD. = Loss Negative log-likelihood (NLL) of the MB density evaluated at the ground truth [4]. ,, N
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Limitations of model-based methods _
Scenario setup Figure 5. Sample plot of Bayesian method (Left) and MT3 (Right). Yellow-filled circles indicate estimated
. . . _ . positions obtained from local filters. The ground truth positions/velocities at the current time are shown in
= Current model-based methods, in theory, do not provide Bayesian optimal fusion results. o 10 , e . red crosses/arrows, respectively, while predicted positions/velocities are shown in blue plus signs/arrows.
= Current fusion methods only use the local multi-object posterior densities at the current 0l The blue/black dished ellipses represent the 3-o level of predicted velocities/positions.
time while ignoring information regarding the objects’ previous states. g 2 gl
= |t is difficult to develop a model-based method that leverages all the uncertainties = 0} = 1.5
captured in the MODs on sets of trajectories |2]. o
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= The first deep learning-based solution to the fusion of MODs. ' ' ' f ' ' ' ' O >
= MT3 [3], a transformer-based deep neural network, is used to fuse local MODs on 10 | _ 05
sets of trajectories to obtain a global MOD that describes the set of current objects. -4 | e
®
= OF - ' -1
. Sl -4 -2 0 2 4 1 2 3 4
Problem formulation =
1ol ) x|m| x|m]
(" ) . . - . . . . .
L ocal MODs Figure 6. Left: attention maps of the predictions of MT3 in blue-filled circles. Right: corresponding trajectory
from sensor —>» Preprocessing—>» Transformer —>» Global MOD 20 L . . . . . . . o estimates from different sensors, indicated using different colours.
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