

- The local MOD $f^s(\mathbf{X}_T \mid \mathbf{z}_{1:T}^s)$ at the s-th sensor represents the posterior density of the set \mathbf{X}_T of trajectories in the time interval 1:T in the form of multi-Bernoulli (MB) [2].
- The global MOD $f(\mathbf{x}_T \mid \mathbf{z}_{1:T}^1, \dots, \mathbf{z}_{1:T}^S)$ represents the set of detected objects \mathbf{x}_T at time step T in the form of MB, where an existence probability and a Gaussian single-object density characterize each Bernoulli component.

Deep Fusion of Multi-Object Densities Using Transformer

Lechi Li, Chen Dai, Yuxuan Xia, Lennart Svensson

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Results on synthetic data

Scenario	1		2		3	
Method	Bayesian	MT3	Bayesian	MT3	Bayesian	MT3
GOSPA-total	1.618	1.373	1.440	1.413	1.294	0.885
GOSPA-loc	0.596	0.959	0.693	1.040	0.256	0.597
GOSPA-miss	0.058	0.051	0.076	0.031	0.003	0.025
GOSPA-false	0.964	0.363	0.671	0.342	1.035	0.263
NLL-total	12.207	1.195	2.695	1.833	13.105	0.429
NLL-loc	11.766	0.572	2.103	1.169	12.656	0.089
NLL-miss	0.320	0.304	0.253	0.411	0.428	0.137
NLL-false	0.121	0.319	0.340	0.253	0.021	0.202

Table 1. Performance comparison with [1] in terms of GOSPA [5] and NLL [4].

terms of both GOSPA and NLL in all the scenarios.

Figure 5. Sample plot of Bayesian method (Left) and MT3 (Right). Yellow-filled circles indicate estimated positions obtained from local filters. The ground truth positions/velocities at the current time are shown in red crosses/arrows, respectively, while predicted positions/velocities are shown in blue plus signs/arrows. The blue/black dished ellipses represent the 3- σ level of predicted velocities/positions.

Figure 6. Left: attention maps of the predictions of MT3 in blue-filled circles. Right: corresponding trajectory estimates from different sensors, indicated using different colours.

- vol. 8, pp. 126414-126427, 2020.
- Trans. on Signal Process., vol. 68, pp. 4933–4945, 2020.
- Signal Process Lett., vol. 28, pp. 1689–1693, 2021.
- International Conference on Information Fusion, IEEE, 2017.

Results show that MT3 [3] outperforms the model-based Bayesian fusion method [1] in

[1] M. Fröhle, K. Granström, and H. Wymeersch, "Decentralized Poisson multi-Bernoulli filtering for vehicle tracking," IEEE Access,

[2] Á. F. García-Fernández, L. Svensson, J. L. Williams, Y. Xia, and K. Granström, "Trajectory Poisson multi-Bernoulli filters," IEEE

[3] J. Pinto, G. Hess, W. Ljungbergh, Y. Xia, L. Svensson, and H. Wymeersch, "Next generation multitarget trackers: Random finite set methods vs transformer-based deep learning," in 24th International Conference on Information Fusion, IEEE, 2021.

[4] J. Pinto, Y. Xia, L. Svensson, and H. Wymeersch, "An uncertainty-aware performance measure for multi-object tracking," *IEEE*

[5] A. S. Rahmathullah, Á. F. García-Fernández, and L. Svensson, "Generalized optimal sub-pattern assignment metric," in 20th