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Background
n Common Framework for discriminative multi-modal learning 
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• Mid-concatenation of uni-modal features

• MLP for label-wise logit scores

• Optimization by Softmax and Cross-entropy 

Logit score of sample 𝑥! for label 𝑗

Modality-relevant weight in MLP

Uni-modal features

Softmax+Cross-entropy loss



Background
n Imbalance in joint multi-modal learning

3

• Training multiple modalities jointly with a single optimization objective is sub-optimal[1]

• The potential of the weak modality is not fully exploited[2]

[1] Weiyao Wang, Du Tran, and Matt Feiszli, “What makes training multi-modal classification networks hard?,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, 2020, pp. 12695–12705.
[2] xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu, “Balanced multimodal learning via on-the-fly gradient modulation,” in Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2022, pp. 8238–8247.

n Previous work
• OGM-GE[2]: Modality-specific dynamic learning rate 

• G-blending[1]: Additional uni-modal classifiers and loss terms



Background

4

n Limitation of Previous work

• These methods fail to enhance the discriminability of the entire model on 
harder audio-visual fine-grained tasks



Motivation
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n Mitigate the imbalance between uni-modalities 

n Boost the discriminability of the weak modality 
and the joint model
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Method
n Analysis of imbalance from the perspective of weight norm

Uni-modal performance and logit scores in the end-to-end trianing
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Uni-modal weight norm in the end-to-end training

Method
n Analysis of imbalance from the perspective of weight norm

One uni-modality dominates the overall model performance and logit scores by its 
fast-growing weight norm
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Method
n Multi-modal cosine loss

• Modality-wise 𝐿" normalization à Remove the radial variance
• Rescaling by 𝑠 à Guarantee the convergence of the network
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Method
n Multi-modal cosine loss

Lower bound of 𝑠

Modality-wise L2 normalization



10

Experiments

• Speaker Verification: Voxceleb
• Emotion Recognition: Crema-D
• Bird categorization: SSW60

n Audio-visual fine-grained tasks and datasets

Uni-modal backbone: Similar Resnet-like network for all branches
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Experiments
n Universal enhancement with various fusion methods
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Experiments
Ø Imbalance mitigation

Ø Extension to other modalities

Experiments on coarse-grained dataset UCF-101.

Uni-modal accuracy by linear-probing

Comparison with previous imbalance-mitigating methods



13

Qualitive Analysis

Ø Symmetric constraints on cooperation and discrepancy

Ø More compact and discriminative feature distribution
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Conclusion

• Explained imbalance from a view of weight-norm

• Proposed a plug-and-use and versatile substitute for cross-entropy

• Mitigated the modality imbalance and boosted the entire joint model
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Thank You for listening!
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Contact: xrz0315@ruc.edu.cn

Lab Page: https://gewu-lab.github.io

Visit the Project Homepage for paper, 

code, and supplementary materials
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