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Background () muA CEiETP:

Common Framework for discriminative multi-modal learning

Mid-concatenation of uni-modal features
MLP for label-wise logit scores

Optimization by Softmax and Cross-entropy
flz;); = WJ?‘T(b? + W]'-“Tqbf +0b;  Logit score of sample x; for label j
wi Wy Modality-relevant weight in MLP
% @Y Uni-modal features

RICH
Lyani = NZZ 15092n T (@0); Softmax+Cross-entropy loss
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Background

B Imbalance in joint multi-modal learning
 Training multiple modalities jointly with a single optimization objective is sub-optimall!l

« The potential of the weak modality is not fully exploited!?!

B Previous work
*  OGM-GE: Modality-specific dynamic learning rate

*  G-blendingl!l: Additional uni-modal classifiers and loss terms

[1] Weiyao Wang, Du Tran, and Matt Feiszli, “What makes training multi-modal classification networks hard?,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 12695-12705.
[2] xiaokang Peng, Yake Wei, Andong Deng, Dong Wang, and Di Hu, “Balanced multimodal learning via on-the-fly gradient modulation,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2022, pp. 8238-8247. 3
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Background

B Limitation of Previous work
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* These methods fail to enhance the discriminability of the entire model on
harder audio-visual fine-grained tasks



Motivation

B Mitigate the imbalance between uni-modalities

B Boost the discriminability of the weak modality
and the joint model
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B Analysis of imbalance from the perspective of weight norm
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Uni-modal performance and logit scores in the end-to-end trianing
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B Analysis of imbalance from the perspective of weight norm
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Uni-modal weight norm 1n the end-to-end training

One uni-modality dominates the overall model performance and logit scores by its
fast-growing weight norm
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Method

B Multi-modal cosine loss
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* Modality-wise L, normalization = -> Remove the radial variance
* Rescaling by s = Guarantee the convergence of the network

Normalized Feature
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B Multi-modal cosine loss

Modality-wise L2 normalization
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B Audio-visual fine-grained tasks and datasets

* Speaker Verification: Voxceleb
* Emotion Recognition: Crema-D
* Bird categorization: SSW60

Uni-modal backbone: Similar Resnet-like network for all branches

10



Experiments ) WA TRAEER:
Ly S aoling School of Artificial Intelligence
B Universal enhancement with various fusion methods
Method CREMA-D SSWe60 Voxceleb
Topl-Accuracy(%) Topl-Accuracy(%) VCI1 EER(%) VC1minDCF VC2EER(%) VC2 minDCF
Mid-concat 60.08 T332 6.81 0.578 6.21 0.580
FiLM 59.68 7167 11.50 537 8.31 0.644
Gated 60.48 70.64 10.39 0.567 f 077 0.640
Mid-concatf 63.44 75.95 4.26 0.461 4.13 0.371
FiLM7 61.42 74.30 8.03 0.373 4.58 0.342
Gatedf 66.40 75.70 5.34 0.335 4.30 0.322

Table 1. Performance of various fusion strategies on three AVFG tasks. { indicates MMCosine is applied. Combined with
MMCosine, most of the fusion methods gain considerable improvement.
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Experiments
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» Imbalance mitigation

Metric | Vanilla Softmax MMCosine . o g
»> Extension to other modalities
A-probe 56.32 48.66
V-probe 32.26 42.40
Modalit Soft +CE MMCosine
A-V gap 24.06 6.26 ocaty ormax :
RGB+flow 81.15 82.02
Uni-modal accuracy by linear-probing RGB+flow+diff 82.29 83.22
T B poeea Experiments on coarse-grained dataset UCF-101.
Mid-concat 1532 75.95
OGM-GE 72.50 74.30
G-blending 72.24 74.51

Comparison with previous imbalance-mitigating methods 5
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» Symmetric constraints on cooperation and discrepancy

< 6% + 6v 9¢ — @Y
f(xi); = cosd; + cost; = 2cos(—* > 1) - cos(-2 5 L)

» More compact and discriminative feature distribution
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Conclusion

* Explained imbalance from a view of weight-norm

* Proposed a plug-and-use and versatile substitute for cross-entropy

« Mitigated the modality imbalance and boosted the entire joint model
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Thank You for listening!

e * Visit the Project Homepage for paper,

L g L code, and supplementary materials

Contact: xrz0315@ruc.edu.cn

Lab Page: https://gewu-lab.github.io
15
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1. PROOF OF EQUATION 4

Equation 4: The Lower Bound of The Scaling Parame-
ter. Denoting C' as the total class number and p as the ex-
pected posterior probability for the ground-truth class, the
lower bound of s in MMCosine can be given as:

R i I e
2(C+1) © 1-p

()

We follow the demonstration of [1] in single-modality sce-
nario and hypothesize that the learned features of audio and
visual encoder lie on a modality-specific hypersphere. The
corresponding weight vectors serve as the learned uni-modal
class centers. We denote W; = [W7: W] as the weight af-
ter modality-wise L, normalization. It should be noted that
W, W, = We' W + Wy Wy = 2. Denoting p, as the
predicted probability for class center W, for the ground-truth
label y, we have:

eWIW,
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Further. to satisfy p,, > p. we have:
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With Jensen’s inequality, we have:
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Then we can simplify (4) further by:

c c c .
Y wrw; = QW)=Y (W) 2 -4C. 5)
v y

y=1j#y

c
1 S(WTW Sds
c—(c-l)zz"’( v Wi) > eT=T, (6)

y=1j#y

We plug (6) into (3) and get:

14 (C—-1)e 283 < ;l) o

By further simplification, we get the final formulation of the
lower bound as:

C-1 (C-1)p
log :

s>
a1 -8 ®

This formula provides a theoretical view that the scaling pa-
rameter should be enlarged with higher expectation of p and
larger class numbers. Considering s as the radius of each hy-
persphere, larger radius allows features of more labels to dis-
tribute in a compact space, which is associated with higher
p. It should also be noticed that formula (4) is a loose scal-
ing without constraints to the combined uni-modal weight and
might not be the best.
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