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Introduction Model Performance Quantitative Comparison
@ Most generative speech synthesis models are trained to directly generate waveforms T =T
or spec tral data Synthesized from generated EMA TIMIT training data ) N (X »
e Humans, however, produce speech by performing articulatory gestures VAN \/ | S o (}\ (3 I
@ Can a deep neural network learn to produce speech with human-like articulatory \ X
. : . : : 4 mpi
gestures given only a unsupervised training objective? - o i - o : . T
.
Model Architecture R o I
N S typ
12-channel EMA o - LAE - RN 7
+voicing | AN s )
\\S ";"-:I;"":" lower incisor E g . . . .
= = Figure: Real EMA channels (blue circles) and smoothed, generated EMA (green triangles) in 2D space for
Loy 2y lowerlip _ % % output transcribed as wash (left) and fast (right).
Pre-trained S | S
Articulatory  w-d™Will LT Y tongue socy Physical 2 = h f
Gege(;j\tor PTMUMAS S, ongue dorsum Model was ast
W, T ewew | (EMa2wav) o) — 0 Place XV XY
T I weeerte | tongue tip 0.70 0.90 0.99 0.96
— v L tongue body  0.94 0.91 0.32 0.79
D(x, G(2)) . : —— : ' -
T Model Intelligible Unintelligible Innovative lower lip 0.52°0.70 0.85 0.94

0.51 0.90 0.64 0.43

o Upper L (U1 WaveGAN 174 (87%) 26 (13%) | 87 (50%) Fpper lip.
Lower Lip (LL) ArtlculatlonGAN 143 (72%) 57 (29%) 110 (77%) OW€I' 11’1CISOI' 0.87 0.66 0.31 0.72

m\ Lower Ingisor (LI)
S ¢ Tongue Tp (1) tongue dorsum 0.41 0.91 0.24 0.89
2\ / . IZ?fnuxe(Ef reum (1) @ Afr ained phOnetiCian was hlr ed to transcribe SpeeCh Table: Pearson’s product-moment correlation (r) for wash and fast after DTW alignment of two time series.
(~7

1, outputs of tested models and annotate them as Intelligible,

@ We see similar gestures between real and generated EMA

Unintelligible. Intelligible outputs were further annotated For wash (left), tongue gestures are extremely similar
3(1)5 Innlolvatl;’ i ifpthey ?id noéif)pear iri the tr ailrllinig)lda? For fast (right), we see almost identical patterns for gestures in
@ Overall, while ArticulationGAN was less intelligible than tongue tip and lower lip, and high correlations elsewhere
¢ Three subnetworks in a GAN framework WaveGAN, its intelligible outputs were much nigore °
An Articulatory Generator that takes in random noise and generates synthetic electromagentic : G COHCIUSIOHS
articulography (EMA) data to pass to a physical model nnova 1V.e @ Our model is able to generate human-like articulatory
A pre-trained Physical Model that transforms articulatory gestures from the Generator into a S mo Othln g gestures in a fully unsupervised setting
speech waveform x @ While our model is somewhat less intelligible than a
A Discriminator that receives the outputs from the articulatory model or real speech data and 61 . o , ,
produces a realness store g et || WA | traditional mode, it also produces a much higher
@ During training, we freeze the physical model, and update the generator and T || r proportion of 1nn.ovatlve 1.ntelhg1ble outputs N
discriminator according to a WGAN-GP training objective o WA || T Y o We argue that this model is not only a more cognitively
e We train the model on 8 words from TIMIT, and compare the Articulatory 2 51 MR || AL, | plausible model of how humans lealt n to produce .sp.eech,
Generator’s outputs with real EMA data . ; but also potentually useful for creating more realistic
— - ; speech synthesis technologies
Training Data I e [T forer oo Manuscript
@ The physical model was trained on the MNGUO dataset, consisting of articulatory data AN é See paper. arxiv.org/pdf/
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from one male British English speaker sample 2210.15173.pdf

@ The rest of the model was trained on 8 words sliced from TIMIT (ask, dark, year, water,

@ As the articulatory generator is not penalized for
wash, rag, oily, and greasy)

producing extremely fast movements, we smooth the
outputs using LOESS smoothing
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