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Introduction

• Interpretability one of the main frontiers in AI research

• Most studies focus on vision (Zeiler and Fergus, 2014)

• Spoken language is an ideal testing ground
▶ Speech is more interpretable than vision
▶ Humans discretize continuous physical property (speech sounds) into

representations with various degrees of complexity
▶ Generation data in speech is easier to access
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Beguš & Zhou ICASSP 2023 {begus,azhou314}@berkeley.edu 2 / 32



Introduction

• Interpretability one of the main frontiers in AI research

• Most studies focus on vision (Zeiler and Fergus, 2014)

• Spoken language is an ideal testing ground
▶ Speech is more interpretable than vision
▶ Humans discretize continuous physical property (speech sounds) into

representations with various degrees of complexity
▶ Generation data in speech is easier to access
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Introduction

Proposal

1 A technique to interpret and visualize intermediate layers in
generative CNNs (trained on raw speech data in an unsupervised
manner)

2 Any acoustic property can be tested (where it is encoded)
▶ F0, intensity, duration, formants, and other acoustic properties
▶ test where and how CNNs encode various types of information

3 Combine this technique with linear interpolation of a model’s latent
space to show a causal relationship between individual variables in
the latent space and activations in a model’s intermediate
convolutional layers
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Advantages of the new approach

• Manipulating and interpolating individual latent variables well beyond
training range while visualizing intermediate layers

• Observing the causal relationship between individual variables in the
latent space and linguistically meaningful units in intermediate layers

• Testing which acoustic properties are encoded at which layer via
correlations

• Testing not only encoding of acoustic properties or words, but also of
phonological processes and higher-level morphophonological processes
such as reduplication

• Unsupervised generative models trained on raw speech
(Beguš and Zhou, 2022)

• Our proposal requires no further processing of the outputs
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(Beguš and Zhou, 2022)

• Our proposal requires no further processing of the outputs
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Beguš & Zhou ICASSP 2023 {begus,azhou314}@berkeley.edu 4 / 32



Advantages of the new approach

• Manipulating and interpolating individual latent variables well
beyond training range while visualizing intermediate layers

• Observing the causal relationship between individual variables in the
latent space and linguistically meaningful units in intermediate layers

• Testing which acoustic properties are encoded at which layer via
correlations

• Testing not only encoding of acoustic properties or words, but also of
phonological processes and higher-level morphophonological processes
such as reduplication

• Unsupervised generative models trained on raw speech
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Beguš & Zhou ICASSP 2023 {begus,azhou314}@berkeley.edu 4 / 32



Advantages of the new approach

• Manipulating and interpolating individual latent variables well
beyond training range while visualizing intermediate layers

• Observing the causal relationship between individual variables in the
latent space and linguistically meaningful units in intermediate layers

• Testing which acoustic properties are encoded at which layer via
correlations

• Testing not only encoding of acoustic properties or words, but also of
phonological processes and higher-level morphophonological
processes such as reduplication

• Unsupervised generative models trained on raw speech
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The model (Donahue et al., 2019; Beguš, 2021a)
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Individual feature maps
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Averaging over feature maps

1

∥C∥

∥C∥∑
i=1

Ci (1)
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Layers
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Correlations
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The model (Beguš, 2020)
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The model (Beguš, 2021a)

• Find a single variable in the latent space z that correspond to [s]
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Interpolation and a causal relationship #STV – Out
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Interpolation and a causal relationship #STV – Conv4
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Interpolation and a causal relationship #STV – Conv3
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Interpolation and a causal relationship #STV – Conv2
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Interpolation and a causal relationship #STV – Conv1
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More complex processes

• Reduplication (copying) one of the most complex processes in speech

• Learned from speech (Beguš, 2021b)
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Interpolation and a causal relationship [d@daj] – Out
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Interpolation and a causal relationship [d@daj] – Conv4
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Interpolation and a causal relationship [d@daj] – Conv3
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Interpolation and a causal relationship [d@daj] – Conv2
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Interpolation and a causal relationship [d@daj] – Conv1
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Individual feature maps

• Lower-frequency properties such as acoustic envelope are encoded in
earlier convolutional layers and that properties with frequencies higher
than acoustic envelope (such as F0 or formant structure) get added
on top of the envelope outline in the later layers.
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Individual feature maps
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Beguš & Zhou ICASSP 2023 {begus,azhou314}@berkeley.edu 27 / 32



Individual feature maps—causal interpolation
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Beguš & Zhou ICASSP 2023 {begus,azhou314}@berkeley.edu 28 / 32



Individual feature maps—causal interpolation
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Individual feature maps—causal interpolation
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Conclusions

• We can analyze which acoustic properties are encoded in which
intermediate convolutional layers

• Understanding how phonological processes are encoded will be
increasingly important as unsupervised speech technology systems
become available in languages other than English

• Exploration of the causal relationship between individual latent
variables and intermediate convolutional layers by manipulating and
linearly interpolating latent variables to values outside of the training
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Future directions

• Other properties such as acoustic correlates of gender, dialects, race,
or socioeconomic background can be probed with the same
techniques as well.

• A diagnostic for improving the performance of CNNs trained on
speech

• Brain–artificial neural network comparison (Beguš et al., 2023)
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Thank you!

: {begus,azhou314}@berkeley.edu
7: @BerkeleySClab
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