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CONTEXT Noisy and reverberant environment



CONTEXT Extract the talker in front of the array

case 1



CONTEXT Discard all the interferers

case 2



SETUP and GOALS
Uniform Linear Array (ULA)

1 Signal Of Interest (SOI)

• within a region in front of the array

• DOA ≈ 𝜃!" = 90°

𝑅 ∈ {0, . . . , 4} interferers

• in the noisy and reverberant room

OBJECTIVES
q Real-time model for the SOI separation and enhancement

q Evaluation on real recordings whereas training on simulated data

q Robust system with respect to multiple array geometries and acoustic conditions



SIGNAL MODEL and BACKGROUND
𝑰 microphones with 𝒅 inter-sensor spacing

𝑱 speakers 
𝜸 diffuse noise component

𝝂 additive noise component

BEAMSPACE REPRESENTATION:
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Fig. 1. Setup of the system. The ULA is composed by I microphone
with distance d. The SOI is placed in a predefined region in front of
the array (shown in filled grey), thus ✓b̄ = 90

�. Other interferers are
present in the room (outside the SOI region and the one with gray
lines) along with diffuse noise components.

Transform (STFT) representation of the signal acquired by the ith

microphone can be written as:

yi[t, f ] =
JX

j=1

hj,i[t, f ]sj [t, f ] + �i[t, f ] + vi[t, f ]

=

JX

j=1

xj,i[t, f ] + �i[t, f ] + vi[t, f ],

(1)

where t = 1, . . . , T and f = 1, . . . , F are the STFT time and fre-
quency indexes, respectively, yi is the signal acquired at microphone
i, hj,i is the acoustic transfer function from source j to the ith sen-
sor, sj is the signal emitted by the jth speaker, while �i and vi are
the diffuse and additive noise components, respectively, measured at
microphone i and xj,i is the reverberant speech emitted by speaker
j and measured at microphone i. The overall setup of the system
is depicted in Fig. 1. Notice that the SOI is placed in a region of
interest in front of the array. Therefore the DOA of the SOI is ap-
proximately known in advanced as ✓b̄ = 90

�. Moreover, multiple
interfering talkers are present in the reverberant environment along
with diffuse noise components.

3. PROPOSED METHOD

In this section we describe the proposed lightweight speech separa-
tion and enhancement technique. Given that in the proposed method,
we consider the DOA of the SOI to be approximately known a-priori,
we exploit this information by applying to the mixture STFT the
beamspace transform [17], which is based on a plane-wave decom-
position of the signal in B directions ✓b, b = 1, . . . , B [20]. More
specifically, the beamspace transform used in the proposed method
is based on the application of a superdirective beamformer [19].

Let us define Y 2 CT⇥F⇥I as the 3D tensor created by stacking
together the STFTs of the signals acquired by the I microphones. If
we define W 2 CI⇥B as the beamspace transform matrix, we can
then compute, for each STFT frame t, the beamspace Ỹ of the signal
acquired by the microphones

Ỹt = YtW. (2)

Given the desired speaker j̄, whose DOA from the region of interest
corresponds to the beamspace channel b̄, the desired output of the

network then consists of the Ideal Ratio Mask (IRM) [18] M 2
RT⇥F . The mask is computed by considering as the target signal the
one that corresponds to direction ✓b̄ of the beamspace of the matrix
Xj̄ , built by stacking together the STFTs of the signal emitted by
speaker j̄, acquired by the I microphones.

In order for the network to be both lightweight and able to op-
erate in real-time we output the Mt 2 R1⇥F mask relative to one
STFT frame t at a time, using as input Tctx frames of Y. More for-
mally, the function U(·) modeled by the proposed network can be
written as

M̂t = U(Ỹt�Tctx/2:t+Tctx/2), (3)

where M̂t is an estimate of the ground truth IRM mask Mt at frame
t. Finally, an estimate X̂j̄,t of the desired signal Xj̄,t at frame t can
be simply obtained through

X̂j̄,t = M̂t � Ỹb̄,t, (4)

where � denotes the Hadamard product and Ỹb̄,t corresponds to
channel b̄ of the beamspace of the acquired signals pointing at ✓b̄ =

90
� at frame t. The network pipeline is depicted in Fig. 2.

3.1. Network Architecture

The proposed network architecture is defined as follows. We first
compute the Power Spectral Density of Ỹ and then convert it into a
64-bands log-mel spectrogram representation, before feeding it into
three convolutional blocks, each consisting of two convolutional lay-
ers. The three blocks compute the following number of feature maps:
i) 16, ii) 32, iii) 64. While the first convolutional layer in each block
has stride (1, 1), the second one has an asymmetric stride (1, 2) in
order to compress the representation along the frequency axis. We
apply no padding along the time axis, while we adopt a symmetric
padding for what concerns the frequency axis, in order to avoid spu-
rious artefacts. All convolutional layers have kernel size (3 ⇥ 3),
and are followed by Batch Normalization and a ReLU activation.
The output of the convolutional blocks is averaged along the time
axis and is then flattened before being fed into a fully connected
layer with 64 neurons, followed by Batch normalization and ReLU.
Finally the output Mt is obtained through a fully connected layer
with F neurons, followed by a sigmoid activation.

3.2. Training Procedure

During the training phase, the beamspace-transformed mixture Ỹ is
computed along with the ground truth IRM mask M. Then for a
STFT frame t the corresponding Tctx frames are extracted. Finally,
the estimated mask M̂t is used in the loss computation at frame t as

L(t) = 1

F

FX

f=1

(Mt,f � M̂t,f )
2, (5)

where the batch index is omitted for simplicity.

4. RESULTS

In this Section, we present results obtained with real recordings in or-
der to show the speech separation capabilities of the proposed model
and we compare them with the Neural Beamspace-Domain Filter
(NBDF) 1 method proposed in [16] and with the beamformer used

1https://github.com/lucacoma/NeuralBeamspaceDomainFilter
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Fig. 1. Setup of the system. The ULA is composed by I microphone
with distance d. The SOI is placed in a predefined region in front of
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present in the room (outside the SOI region and the one with gray
lines) along with diffuse noise components.
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be simply obtained through
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where � denotes the Hadamard product and Ỹb̄,t corresponds to
channel b̄ of the beamspace of the acquired signals pointing at ✓b̄ =
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The proposed network architecture is defined as follows. We first
compute the Power Spectral Density of Ỹ and then convert it into a
64-bands log-mel spectrogram representation, before feeding it into
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ers. The three blocks compute the following number of feature maps:
i) 16, ii) 32, iii) 64. While the first convolutional layer in each block
has stride (1, 1), the second one has an asymmetric stride (1, 2) in
order to compress the representation along the frequency axis. We
apply no padding along the time axis, while we adopt a symmetric
padding for what concerns the frequency axis, in order to avoid spu-
rious artefacts. All convolutional layers have kernel size (3 ⇥ 3),
and are followed by Batch Normalization and a ReLU activation.
The output of the convolutional blocks is averaged along the time
axis and is then flattened before being fed into a fully connected
layer with 64 neurons, followed by Batch normalization and ReLU.
Finally the output Mt is obtained through a fully connected layer
with F neurons, followed by a sigmoid activation.

3.2. Training Procedure

During the training phase, the beamspace-transformed mixture Ỹ is
computed along with the ground truth IRM mask M. Then for a
STFT frame t the corresponding Tctx frames are extracted. Finally,
the estimated mask M̂t is used in the loss computation at frame t as
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Fig. 1. Setup of the system. The ULA is composed by I microphone
with distance d. The SOI is placed in a predefined region in front of
the array (shown in filled grey), thus ✓b̄ = 90

�. Other interferers are
present in the room (outside the SOI region and the one with gray
lines) along with diffuse noise components.
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then compute, for each STFT frame t, the beamspace Ỹ of the signal
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Xj̄ , built by stacking together the STFTs of the signal emitted by
speaker j̄, acquired by the I microphones.

In order for the network to be both lightweight and able to op-
erate in real-time we output the Mt 2 R1⇥F mask relative to one
STFT frame t at a time, using as input Tctx frames of Y. More for-
mally, the function U(·) modeled by the proposed network can be
written as
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has stride (1, 1), the second one has an asymmetric stride (1, 2) in
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apply no padding along the time axis, while we adopt a symmetric
padding for what concerns the frequency axis, in order to avoid spu-
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and are followed by Batch Normalization and a ReLU activation.
The output of the convolutional blocks is averaged along the time
axis and is then flattened before being fed into a fully connected
layer with 64 neurons, followed by Batch normalization and ReLU.
Finally the output Mt is obtained through a fully connected layer
with F neurons, followed by a sigmoid activation.

3.2. Training Procedure

During the training phase, the beamspace-transformed mixture Ỹ is
computed along with the ground truth IRM mask M. Then for a
STFT frame t the corresponding Tctx frames are extracted. Finally,
the estimated mask M̂t is used in the loss computation at frame t as

L(t) = 1

F

FX

f=1

(Mt,f � M̂t,f )
2, (5)

where the batch index is omitted for simplicity.

4. RESULTS

In this Section, we present results obtained with real recordings in or-
der to show the speech separation capabilities of the proposed model
and we compare them with the Neural Beamspace-Domain Filter
(NBDF) 1 method proposed in [16] and with the beamformer used

1https://github.com/lucacoma/NeuralBeamspaceDomainFilter
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Fig. 1. Setup of the system. The ULA is composed by I microphone
with distance d. The SOI is placed in a predefined region in front of
the array (shown in filled grey), thus ✓b̄ = 90

�. Other interferers are
present in the room (outside the SOI region and the one with gray
lines) along with diffuse noise components.

Transform (STFT) representation of the signal acquired by the ith

microphone can be written as:

yi[t, f ] =
JX

j=1

hj,i[t, f ]sj [t, f ] + �i[t, f ] + vi[t, f ]

=

JX

j=1

xj,i[t, f ] + �i[t, f ] + vi[t, f ],

(1)

where t = 1, . . . , T and f = 1, . . . , F are the STFT time and fre-
quency indexes, respectively, yi is the signal acquired at microphone
i, hj,i is the acoustic transfer function from source j to the ith sen-
sor, sj is the signal emitted by the jth speaker, while �i and vi are
the diffuse and additive noise components, respectively, measured at
microphone i and xj,i is the reverberant speech emitted by speaker
j and measured at microphone i. The overall setup of the system
is depicted in Fig. 1. Notice that the SOI is placed in a region of
interest in front of the array. Therefore the DOA of the SOI is ap-
proximately known in advanced as ✓b̄ = 90

�. Moreover, multiple
interfering talkers are present in the reverberant environment along
with diffuse noise components.

3. PROPOSED METHOD

In this section we describe the proposed lightweight speech separa-
tion and enhancement technique. Given that in the proposed method,
we consider the DOA of the SOI to be approximately known a-priori,
we exploit this information by applying to the mixture STFT the
beamspace transform [17], which is based on a plane-wave decom-
position of the signal in B directions ✓b, b = 1, . . . , B [20]. More
specifically, the beamspace transform used in the proposed method
is based on the application of a superdirective beamformer [19].

Let us define Y 2 CT⇥F⇥I as the 3D tensor created by stacking
together the STFTs of the signals acquired by the I microphones. If
we define W 2 CI⇥B as the beamspace transform matrix, we can
then compute, for each STFT frame t, the beamspace Ỹ of the signal
acquired by the microphones

Ỹt = YtW. (2)

Given the desired speaker j̄, whose DOA from the region of interest
corresponds to the beamspace channel b̄, the desired output of the

network then consists of the Ideal Ratio Mask (IRM) [18] M 2
RT⇥F . The mask is computed by considering as the target signal the
one that corresponds to direction ✓b̄ of the beamspace of the matrix
Xj̄ , built by stacking together the STFTs of the signal emitted by
speaker j̄, acquired by the I microphones.

In order for the network to be both lightweight and able to op-
erate in real-time we output the Mt 2 R1⇥F mask relative to one
STFT frame t at a time, using as input Tctx frames of Y. More for-
mally, the function U(·) modeled by the proposed network can be
written as

M̂t = U(Ỹt�Tctx/2:t+Tctx/2), (3)

where M̂t is an estimate of the ground truth IRM mask Mt at frame
t. Finally, an estimate X̂j̄,t of the desired signal Xj̄,t at frame t can
be simply obtained through

X̂j̄,t = M̂t � Ỹb̄,t, (4)

where � denotes the Hadamard product and Ỹb̄,t corresponds to
channel b̄ of the beamspace of the acquired signals pointing at ✓b̄ =

90
� at frame t. The network pipeline is depicted in Fig. 2.

3.1. Network Architecture

The proposed network architecture is defined as follows. We first
compute the Power Spectral Density of Ỹ and then convert it into a
64-bands log-mel spectrogram representation, before feeding it into
three convolutional blocks, each consisting of two convolutional lay-
ers. The three blocks compute the following number of feature maps:
i) 16, ii) 32, iii) 64. While the first convolutional layer in each block
has stride (1, 1), the second one has an asymmetric stride (1, 2) in
order to compress the representation along the frequency axis. We
apply no padding along the time axis, while we adopt a symmetric
padding for what concerns the frequency axis, in order to avoid spu-
rious artefacts. All convolutional layers have kernel size (3 ⇥ 3),
and are followed by Batch Normalization and a ReLU activation.
The output of the convolutional blocks is averaged along the time
axis and is then flattened before being fed into a fully connected
layer with 64 neurons, followed by Batch normalization and ReLU.
Finally the output Mt is obtained through a fully connected layer
with F neurons, followed by a sigmoid activation.

3.2. Training Procedure

During the training phase, the beamspace-transformed mixture Ỹ is
computed along with the ground truth IRM mask M. Then for a
STFT frame t the corresponding Tctx frames are extracted. Finally,
the estimated mask M̂t is used in the loss computation at frame t as

L(t) = 1

F

FX

f=1

(Mt,f � M̂t,f )
2, (5)

where the batch index is omitted for simplicity.

4. RESULTS

In this Section, we present results obtained with real recordings in or-
der to show the speech separation capabilities of the proposed model
and we compare them with the Neural Beamspace-Domain Filter
(NBDF) 1 method proposed in [16] and with the beamformer used

1https://github.com/lucacoma/NeuralBeamspaceDomainFilter
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where t = 1, . . . , T and f = 1, . . . , F are the STFT time and fre-
quency indexes, respectively, yi is the signal acquired at microphone
i, hj,i is the acoustic transfer function from source j to the ith sen-
sor, sj is the signal emitted by the jth speaker, while �i and vi are
the diffuse and additive noise components, respectively, measured at
microphone i and xj,i is the reverberant speech emitted by speaker
j and measured at microphone i. The overall setup of the system
is depicted in Fig. 1. Notice that the SOI is placed in a region of
interest in front of the array. Therefore the DOA of the SOI is ap-
proximately known in advanced as ✓b̄ = 90

�. Moreover, multiple
interfering talkers are present in the reverberant environment along
with diffuse noise components.

3. PROPOSED METHOD

In this section we describe the proposed lightweight speech separa-
tion and enhancement technique. Given that in the proposed method,
we consider the DOA of the SOI to be approximately known a-priori,
we exploit this information by applying to the mixture STFT the
beamspace transform [17], which is based on a plane-wave decom-
position of the signal in B directions ✓b, b = 1, . . . , B [20]. More
specifically, the beamspace transform used in the proposed method
is based on the application of a superdirective beamformer [19].

Let us define Y 2 CT⇥F⇥I as the 3D tensor created by stacking
together the STFTs of the signals acquired by the I microphones. If
we define W 2 CI⇥B as the beamspace transform matrix, we can
then compute, for each STFT frame t, the beamspace Ỹ of the signal
acquired by the microphones

Ỹt = YtW. (2)

Given the desired speaker j̄, whose DOA from the region of interest
corresponds to the beamspace channel b̄, the desired output of the

network then consists of the Ideal Ratio Mask (IRM) [18] M 2
RT⇥F . The mask is computed by considering as the target signal the
one that corresponds to direction ✓b̄ of the beamspace of the matrix
Xj̄ , built by stacking together the STFTs of the signal emitted by
speaker j̄, acquired by the I microphones.

In order for the network to be both lightweight and able to op-
erate in real-time we output the Mt 2 R1⇥F mask relative to one
STFT frame t at a time, using as input Tctx frames of Y. More for-
mally, the function U(·) modeled by the proposed network can be
written as

M̂t = U(Ỹt�Tctx/2:t+Tctx/2), (3)

where M̂t is an estimate of the ground truth IRM mask Mt at frame
t. Finally, an estimate X̂j̄,t of the desired signal Xj̄,t at frame t can
be simply obtained through

X̂j̄,t = M̂t � Ỹb̄,t, (4)

where � denotes the Hadamard product and Ỹb̄,t corresponds to
channel b̄ of the beamspace of the acquired signals pointing at ✓b̄ =

90
� at frame t. The network pipeline is depicted in Fig. 2.

3.1. Network Architecture

The proposed network architecture is defined as follows. We first
compute the Power Spectral Density of Ỹ and then convert it into a
64-bands log-mel spectrogram representation, before feeding it into
three convolutional blocks, each consisting of two convolutional lay-
ers. The three blocks compute the following number of feature maps:
i) 16, ii) 32, iii) 64. While the first convolutional layer in each block
has stride (1, 1), the second one has an asymmetric stride (1, 2) in
order to compress the representation along the frequency axis. We
apply no padding along the time axis, while we adopt a symmetric
padding for what concerns the frequency axis, in order to avoid spu-
rious artefacts. All convolutional layers have kernel size (3 ⇥ 3),
and are followed by Batch Normalization and a ReLU activation.
The output of the convolutional blocks is averaged along the time
axis and is then flattened before being fed into a fully connected
layer with 64 neurons, followed by Batch normalization and ReLU.
Finally the output Mt is obtained through a fully connected layer
with F neurons, followed by a sigmoid activation.

3.2. Training Procedure

During the training phase, the beamspace-transformed mixture Ỹ is
computed along with the ground truth IRM mask M. Then for a
STFT frame t the corresponding Tctx frames are extracted. Finally,
the estimated mask M̂t is used in the loss computation at frame t as

L(t) = 1

F

FX

f=1

(Mt,f � M̂t,f )
2, (5)

where the batch index is omitted for simplicity.

4. RESULTS

In this Section, we present results obtained with real recordings in or-
der to show the speech separation capabilities of the proposed model
and we compare them with the Neural Beamspace-Domain Filter
(NBDF) 1 method proposed in [16] and with the beamformer used
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DATASET GENERATION
Extensive simulation campaign by sampling with a uniform distribution the operational ranges

RIRs computed with gpuRIR [1]

[1] D. Diaz-Guerra, et al. “gpuRIR: A python library for room impulse response simulation with gpu acceleration,” 
Multimedia Tools and Applications, 2021.

ULA setup 𝐼 = 3/4, 𝑑 = 20/30mm

Room dimensions 𝐿! ∈ 3, 8 m ; 𝐿" ∈ 3, 8 m ; 𝐿# ∈ [2.6, 4]m

T60 [0.2, 1.4] s

SOI presence 80/20	% of rooms with / without SOI
𝑅 number of interferers from 0 to 4
SIR (loudness simulation) [	−3, 3]	dB

SDR (babble noise) [	−3, 60]	dB

SNR (microphone noise) [	30, 70]	dB

Array Gain (signal dynamic) [	−40, −1]	dB

LibriSpeech dataset 5 sec signals
Total training rooms 𝟐𝟓𝟎, 𝟎𝟎𝟎
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EVALUATION
Evaluation on real recordings in ETSI room 

with different ULA unseen during training:

• Varying number of sensors 𝑰

• Varying inter-sensor distance 𝒅

à 𝐼 = 3/4, 𝑑 = 20/26𝑚𝑚

à 𝐼 = 5, 𝑑 = 52𝑚𝑚

Comparison wrt

• NBDF method [2]

• H𝐘𝟗𝟎° input beamformer steering to the SOI region

[2] W. Liu, et al., “A neural beamspace-domain filter for real-time multi-channel speech enhancement,” Symmetry, 2022



RESULTS

Perceptual intelligibility of the devised solution outperforms both NBDF and HY'(°
• https://polimi-ispl.github.io/beamspace_cnn_speech_separation.github.io/ 

ULA setups I = 4, d = 26mm I = 3, d = 52mm I = 4, d = 52mm Average over test sets
Metrics Proposed NBDF Ỹ90� Proposed NBDF Ỹ90� Proposed NBDF Ỹ90� Proposed NBDF Ỹ90�

SIR 9.46 8.5 1.62 8.5 10.48 0.93 6.47 10.84 0.97 8.31 10.05 1.18
SAR 7.73 2.99 - 9.34 6.05 - 7.58 3.08 - 8.29 4.29 -
SDR 4.15 0.04 1.6 4.63 3.29 0.92 2.28 0.75 0.96 3.79 1.59 1.17

PESQ 1.66 1.19 1.71 1.86 1.39 1.79 1.66 1.24 1.79 1.73 1.27 1.76
ESTOI 0.57 0.44 0.58 0.61 0.52 0.61 0.6 0.44 0.62 0.59 0.46 0.6
Rsoi -5.75 -4.7 - -2.61 -1.77 - -6.81 -3.81 - -4.67 -3.25 -

Rinterf -17.54 -13.47 - -14.31 -14.48 - -15.7 -15.2 - -15.65 -14.32 -

Table 1. Comparison of the average metrics between the proposed method, the NBDF approach and the beamformer Ỹ90� for the different
test sets and for the average results.

Notice that, although the optimal Rsoi corresponds to 0 dB, this con-
dition cannot be practically achieved due to the presence of sensor
noise in Esoi. On the contrary, Rinterf should be as low as possible,
ideally �1 in the optimum working condition, since the network
should completely attenuate all interfering sources and noises.

4.3. Evaluation

The test set was built by measuring RIRs in an acoustically treated
room, according to the standard ETSI ES 202 396-1, with dimen-
sions Lx = 6m, Ly = 4.8m, Lz = 2.6m, and T60 = 0.8 s.
We evaluate the performances on three test sets with different array
configurations. We consider an array configuration with I = 4 and
d = 26mm, seen also during training. Moreover, to assess the sys-
tem robustness we consider two array configurations unseen during
training, with I = 3, I = 4 and d = 52mm. The audio pipeline
is the same as the one used for the training procedure. Therefore,
we compare the results of the proposed method with the NBDF ap-
proach [16] and the beamformer steered to ✓b̄ = 90

�, denoted as
Ỹ90� . Notice that Ỹ90� corresponds to comparing the solution with
the beamformer used for computing the input beamspace filter. In
Table 1 we report the average metrics obtained by applying the pro-
posed method and the baselines to the three different datasets. In
general, the proposed approach is able to extract the SOI speech in
all the test sets, hence proving that the network is independent from
the array configuration used to record the acoustic scene. By inspect-
ing Table 1, we can notice that the proposed method outperforms
the beamformer Ỹ90� when applied to all the test sets. In particular,
when using the proposed method, the SIR and SDR increase of more
than 5.5 dB and 1.3 dB, respectively, and in average by 7.13 dB and
2.62 dB, with respect to Ỹ90� . SAR values for Ỹ90� have not been
reported, since they tend to infinity. In fact the beamspace processing
applied to the mixture and the desired target is the same, so no addi-
tional artifacts are added. When applied to the test sets unseen during
training, NBDF reaches higher SIR than the proposed method, with
an increment limited to 1.98 dB and 4.37 dB for the datasets with
I = 3 and I = 4, respectively. However, this comes at the cost
of more distortions in the estimates, that reduce the SAR value by
4 dB and the SDR value by 2.2 dB, on average. In Fig. 3 we report
the average SDR as a function of the number of interferers R. It is
worth noticing that SDR incorporates both SIR and SAR [26]. As
expected, the performances of all methods decrease as the number
of interferers increases. However, the SDR of the proposed method
is steadily above NBDF and Ỹ90� . Inspecting the PESQ and ESTOI
values in Table 1 we can notice similar results for all the three ap-
proaches and for the different test sets. In general both PESQ and
ESTOI present moderate results due to the fact that we tested on real
data, while the networks have been trained on simulations. Notice
that, Ỹ90� reaches the best PESQ results due to the limited filter-
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Fig. 3. Average SDR as function of the number of interferers R.

ing process responsible of signal distortions. However, the general
perceptual intelligibility of the devised solution outperforms both
NBDF and the input beamformer Ỹ90� . Indeed, although the use
of the beamspace is similar to [16], the network architectures are
very different in terms of layers and overall dimensions. In fact the
proposed method has less than 30 times the number of parameters
used in NBDF. Thus, we obtain better generalization results using
an extremely more lightweight model, which is a highly sought after
characteristic for the application of such models to real-world hard-
ware devices. As far as the scenarios when only the SOI is active,
results show that the system is able to let unfiltered the SOI signal
with no distortion while attenuating the background noises. As a
matter of fact, we achieve an average Rsoi = �4.67 dB for the three
test sets. On the other hand, when only interferers are present in
the rooms, the network correctly suppresses the energy when filter-
ing the recordings, obtaining an estimate close to a signal consisting
of silence. For these cases, we achieved a mean Rinterf grater than
�14.31 dB for all the test sets. Notice that Rsoi and Rinterf cannot
be computed for Ỹ90� since their values are used as reference in the
definition (6).

5. CONCLUSIONS

In this paper we proposed a lightweight CNN architecture for speech
separation and enhancement of a main talker placed in a region of in-
terest in noisy and reverberant environments. The system is able to
work in real time and is independent from the geometry of the array,
in terms of number of microphones and inter-sensor distance, thanks
to the adoption of the beamspace representation of the sound field.
To prove the effectiveness of the proposed method, we present re-
sults where the network is trained on simulated data generated with
different array configurations and tested on real data. We compared
the proposed approach with respect to the beamformer used to com-
pute the input beamspace and with a recently proposed approach
based on the beamspace domain. Results show the superiority of the
devised approach and its ability to generalize to different setups.

ULA setups I = 4, d = 26mm I = 3, d = 52mm I = 4, d = 52mm Average over test sets
Metrics Proposed NBDF Ỹ90� Proposed NBDF Ỹ90� Proposed NBDF Ỹ90� Proposed NBDF Ỹ90�
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Table 1. Comparison of the average metrics between the proposed method, the NBDF approach and the beamformer Ỹ90� for the different
test sets and for the average results.

Notice that, although the optimal Rsoi corresponds to 0 dB, this con-
dition cannot be practically achieved due to the presence of sensor
noise in Esoi. On the contrary, Rinterf should be as low as possible,
ideally �1 in the optimum working condition, since the network
should completely attenuate all interfering sources and noises.
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The test set was built by measuring RIRs in an acoustically treated
room, according to the standard ETSI ES 202 396-1, with dimen-
sions Lx = 6m, Ly = 4.8m, Lz = 2.6m, and T60 = 0.8 s.
We evaluate the performances on three test sets with different array
configurations. We consider an array configuration with I = 4 and
d = 26mm, seen also during training. Moreover, to assess the sys-
tem robustness we consider two array configurations unseen during
training, with I = 3, I = 4 and d = 52mm. The audio pipeline
is the same as the one used for the training procedure. Therefore,
we compare the results of the proposed method with the NBDF ap-
proach [16] and the beamformer steered to ✓b̄ = 90

�, denoted as
Ỹ90� . Notice that Ỹ90� corresponds to comparing the solution with
the beamformer used for computing the input beamspace filter. In
Table 1 we report the average metrics obtained by applying the pro-
posed method and the baselines to the three different datasets. In
general, the proposed approach is able to extract the SOI speech in
all the test sets, hence proving that the network is independent from
the array configuration used to record the acoustic scene. By inspect-
ing Table 1, we can notice that the proposed method outperforms
the beamformer Ỹ90� when applied to all the test sets. In particular,
when using the proposed method, the SIR and SDR increase of more
than 5.5 dB and 1.3 dB, respectively, and in average by 7.13 dB and
2.62 dB, with respect to Ỹ90� . SAR values for Ỹ90� have not been
reported, since they tend to infinity. In fact the beamspace processing
applied to the mixture and the desired target is the same, so no addi-
tional artifacts are added. When applied to the test sets unseen during
training, NBDF reaches higher SIR than the proposed method, with
an increment limited to 1.98 dB and 4.37 dB for the datasets with
I = 3 and I = 4, respectively. However, this comes at the cost
of more distortions in the estimates, that reduce the SAR value by
4 dB and the SDR value by 2.2 dB, on average. In Fig. 3 we report
the average SDR as a function of the number of interferers R. It is
worth noticing that SDR incorporates both SIR and SAR [26]. As
expected, the performances of all methods decrease as the number
of interferers increases. However, the SDR of the proposed method
is steadily above NBDF and Ỹ90� . Inspecting the PESQ and ESTOI
values in Table 1 we can notice similar results for all the three ap-
proaches and for the different test sets. In general both PESQ and
ESTOI present moderate results due to the fact that we tested on real
data, while the networks have been trained on simulations. Notice
that, Ỹ90� reaches the best PESQ results due to the limited filter-

1 2 3 4
0

1

2

3

4

R

S
D
R

[d
B

]

Proposed NBDF Ỹ90�
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ing process responsible of signal distortions. However, the general
perceptual intelligibility of the devised solution outperforms both
NBDF and the input beamformer Ỹ90� . Indeed, although the use
of the beamspace is similar to [16], the network architectures are
very different in terms of layers and overall dimensions. In fact the
proposed method has less than 30 times the number of parameters
used in NBDF. Thus, we obtain better generalization results using
an extremely more lightweight model, which is a highly sought after
characteristic for the application of such models to real-world hard-
ware devices. As far as the scenarios when only the SOI is active,
results show that the system is able to let unfiltered the SOI signal
with no distortion while attenuating the background noises. As a
matter of fact, we achieve an average Rsoi = �4.67 dB for the three
test sets. On the other hand, when only interferers are present in
the rooms, the network correctly suppresses the energy when filter-
ing the recordings, obtaining an estimate close to a signal consisting
of silence. For these cases, we achieved a mean Rinterf grater than
�14.31 dB for all the test sets. Notice that Rsoi and Rinterf cannot
be computed for Ỹ90� since their values are used as reference in the
definition (6).

5. CONCLUSIONS

In this paper we proposed a lightweight CNN architecture for speech
separation and enhancement of a main talker placed in a region of in-
terest in noisy and reverberant environments. The system is able to
work in real time and is independent from the geometry of the array,
in terms of number of microphones and inter-sensor distance, thanks
to the adoption of the beamspace representation of the sound field.
To prove the effectiveness of the proposed method, we present re-
sults where the network is trained on simulated data generated with
different array configurations and tested on real data. We compared
the proposed approach with respect to the beamformer used to com-
pute the input beamspace and with a recently proposed approach
based on the beamspace domain. Results show the superiority of the
devised approach and its ability to generalize to different setups.

COMPARISON NBDF Proposed 
solution

# parameters 4,006,236 120,000

MACS/frame 198.5 millions 1.06 millions



CONCLUSION
✅ SOI speech extraction and enhancement in noisy and reverberant environments

✅ Lightweight CNN architecture for real-time computation

✅ Robust system wrt setup generalization:

• number of speakers and microphones

• inter-sensor spacing

• reverberation time of the room

• noise components of the array and the environment

q Generalization wrt different array geometries
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