

Room Impulse Response Reconstruction Based on Spatio-temporal-spectral Features Learned from a Spherical Microphone Array Measurement

Amy Bastine¹, Thushara D. Abhayapala¹, Jihui (Aimee) Zhang^{2,1}

¹Audio & Acoustic Signal Processing Group College of Engineering, Computing and Cybernetics The Australian National University Canberra, Australia ²Signal Processing, Audio and Hearing Group Institute of Sound and Vibration Research (ISVR) University of Southampton Southampton, United Kingdom

2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP) *Special Session*: Data Driven and Machine Learning based Room Acoustic Modeling

Room Impulse Responses (RIRs)

Fundamental representation of a room acoustic system

- Large-scale RIR measurements required to determine room's response to different source-listener configurations
- RIR reconstruction methods
 - $\circ\,$ Enable estimation of listener experience outside the measurement positions
 - Reduce measurement costs

Existing Methods

- Model-based methods: Useful for prediction, but may not accurately emulate the intended room response
 - o Wave-based: Computationally expensive
 - o Geometrical models like Image-Source Method (ISM), Ray Tracing: Limited to high frequencies
 - Hybrid Approaches
- Data-driven methods based on existing measurements generate more authentic RIRs
 - o Machine learning: Requires large amounts of training data
 - o Interpolation: Requires distributed grid of microphone measurements
 - o Extrapolation-based Parametric methods: Minimal measurement and computational cost
 - Spherical Microphone Arrays (SMAs) & Spherical Harmonics-based processing \Rightarrow

Higher-order soundfield information \Rightarrow *Improve reconstruction performance*

Using spatio-temporal-spectral features learned from a SMA measurement

Point Source $\frac{e^{-ik||y-x||}}{4\pi||y-x||}$

1. Parameter estimation using Eigenbeam vMF-based Room Acoustic Analyzer

A. Bastine, T. D. Abhayapala, and J. Zhang, "Time-frequency-dependent directional analysis of room reflections using Eigenbeam processing and von Mises–Fisher clustering," J. Acoust. Soc. Amer., vol. 151, no. 5, pp. 2916–2930, May 2022.

ICASSP 202

2. Synthesis of Reflection Transfer Function

$$\begin{split} \widetilde{H}_{r}(t,k,\mathbf{y}_{o},\mathbf{x}) &= \begin{cases} \text{Early Reflections (superposition of weighted and delayed Green's functions) ; for {t, k} frames where <math>\mathbf{\Pi}_{t,k} \text{ exits} \\ \text{Late Reverberations (Exponential Decay)} ; otherwise \end{cases} \\ &= \begin{cases} \sqrt{\Gamma_{00}(t,k)} \sum_{a=1}^{A(t,k)} A(t,k) \omega_{a}(t,k) \frac{e^{-ik ||\mathbf{z}_{a}(t,k)-\mathbf{x}||}}{4\pi ||\mathbf{z}_{a}(t,k)-\mathbf{x}||} e^{-ikd_{t}} ; \text{for {t, k} frames where } \mathbf{\Pi}_{t,k} \text{ exits} \\ \sqrt{\Gamma_{00}(t,k)} \frac{\widetilde{H}_{r}(t-1,k,\mathbf{y}_{o},\mathbf{x})}{\sqrt{\Gamma_{00}(t-1,k)}} e^{-\delta(k)t_{f}} e^{-ikd_{t}} ; \text{otherwise} \end{cases} \end{split}$$

 $\sqrt{\Gamma_{00}(t,k)}$: Time-frequency-dependent magnitude response of room reflections

 $A(t,k)\omega_a(t,k)$: Directional amplitude scaling

- $z_a(t,k)$: Location of room surface point in the direction of $\mu_a(t,k)$ (Approximate room dimensions known)
- e^{-ikd_t} : Phase-shift to align the response to the corresponding STFT time frame
- d_t : $(t-1)ct_f$ with t_f being the time gap between STFT frames
- $\delta(k)$: Decay rate calculated from $\sqrt{\Gamma_{00}(t,k)}$

$$d_p = \overline{\|\mathbf{y}_o - \mathbf{z}_a(t=1,k)\|} + \overline{\|\mathbf{z}_a(t=1,k) - \mathbf{x}\|}$$
$$\bar{\delta} = \frac{3\ln(10)}{T_{60}}$$

Experimental Analysis

- Room of size $3.54 \times 4.06 \times 2.7$ m and $T_{60} = 0.329$ s
- Source located at the spherical coordinate $y_o = (1,90^\circ, 40^\circ)$

- Parameters estimated from RIRs recorded by an EM32 Eigenmike (32-element rigid SMA with radius R = 0.042 m)
 - Maximum number of dominant reflection directions (A(t,k)) set to 5
 - Total of 7448 reflection sources $z_a(t, k)$ identified from all STFT frames
- Performance compared with measured RIRs and conventional Image Source Method (ISM)
 - $\,\circ\,$ ISM-based RIRs generated with maximum image order (Number of image sources in the order of 10^5)

Experimental Analysis

ICASSP 2023

RIRs and corresponding spectrograms for a source located at $y_o = (1,90^\circ, 40^\circ)$ and receiver at $x = (0.042, 69^\circ, 0^\circ)$

NMSE (ISM, Measured)_{0.4 s} = -5 dBNMSE (Reconstructed, Measured)_{0.4 s} = -17 dB

Paper ID: 4315

Experimental Analysis

Energy Decay Curves (EDC) of RIRs obtained using normalized Schroeder integration method for a source located at $y_o = (1,90^\circ, 40^\circ)$ and receiver at $x = (0.042, 69^\circ, 0^\circ)$.

Features of early and late reflections preserved in the reconstructed RIRs

Mean and Standard Deviation (STD) of objective room acoustic parameters calculated for the 32 receiver positions of EM32. $e_{I,M}$ and $e_{R,M}$ represent deviation errors of the mean parameter values of ISM-based and Reconstructed RIRs from the measured RIR, respectively.

	Parameters	Measured			ISM			Reconstructed		
		Mean	STD	JND	Mean	STD	$e_{I,M}$	Mean	STD	$e_{R,M}$
Early Decay Time	EDT (s)	0.24	0.007	5% = 0.012	0.14	0.001	0.1	0.23	0.0016	0.01
Clarity	C_{80} (dB)	15.36	0.63	1	17.18	0.38	1.79	16.42	0.22	1.06
Reverberation Time	T_{30} (s)	0.20	0.012	5% = 0.01	0.15	0.0025	0.05	0.20	0.001	0.0
Gravity Time	T_s (ms)	20.69	1.86	10	19.01	1.02	1.89	20.08	0.57	0.61

Reconstructed RIR preserves the perceptual characteristics \leftarrow Deviations $(e_{R,M})$ are within the Just Noticeable Difference (JND) limits

Current Work

Testing for different rooms

- + Room of size $6.5 \times 8.3 \times 2.9$ m and $T_{60} = 1.12$ s
- $y_o = (1,90^\circ, 0^\circ)$
- Reconstructed for a receiver at $x = (0.042, 69^{\circ}, 0^{\circ})$
 - Maximum A(t, k) set to 10
 - Total of 18129 reflection sources $\mathbf{z}_a(t,k)$

Deremeters	Ν	Aeasured	Reconstructed		
Parameters	Value	JND	Value	$e_{R,M}$	
EDT (s)	0.36	5% = 0.018	0.35	0.01	
C ₈₀ (dB)	12.57	1	12.23	0.34	
T ₃₀ (s)	0.47	5% = 0.0235	0.47	0.0	
T_S (ms)	16.17	10	17.56	1.39	

- + Room of size $5.75 \times 7.87 \times 2.91$ m and $T_{60} = 1.2 \; s$
- $y_o = (1.8, 88^\circ, 56^\circ)$
- Reconstructed for a receiver at x = (1.29, 87°, 0°)
 Maximum A(t, k) set to 5
 - \circ Total of 9465 reflection sources $\mathbf{z}_a(t,k)$

Devementere	Ν	leasured	Reconstructed		
Parameters	Value	JND	Value	$e_{R,M}$	
EDT (s)	0.35	5% = 0.0175	0.38	0.03	
C ₈₀ (dB)	13.55	1	13.36	0.19	
T ₃₀ (s)	0.33	5% = 0.0165	0.32	0.01	
T_S (ms)	16.34	10	17.53	1.19	

Conclusion

- Reconstructed RIRs successfully preserved the temporal and spectral behaviors of the measured RIRs
 - Achieved with single SMA measurement and few parameters per time-frequency frame
 - Dominant directions of reflections and their relative weights
 - Reflection magnitude response
 - $\circ\;$ Limitation: Approximate dimensions of the room should be known

- Future Works:
 - \circ Incorporating angular spread (κ_a) of reflections from room surfaces
 - $\circ~$ Develop the method to facilitate listener translations
 - Perceptual evaluation

Thank you for your attention ! Questions?

Appendix II Parameter estimation using Eigenbeam vMF-based Room Acoustic Analyzer

Angular reflection power $P_r(t,k,\hat{z}) = \sum_{\nu=0}^{V} \sum_{u=-\nu}^{\nu} \Gamma_{\nu u}(t,k) Y_{\nu u}(\hat{z})$ by fitting 3D vo $F(x; \Pi_{t,k}) = \sum_{a=1}^{A(t,k)} \Gamma_{v a}(x,k) Y_{v a}(\hat{z})$

Estimation of directional parameters $\boldsymbol{\mu}_{a}(t,k)$ and $\boldsymbol{\omega}_{a}(t,k)$ by fitting 3D von Mises-Fisher (vMF) Mixture Model $F(X; \boldsymbol{\Pi}_{t,k}) = \sum_{a=1}^{A(t,k)} \boldsymbol{\omega}_{a}(t,k) \frac{\sqrt{\kappa_{a}(t,k)}}{(2\pi)^{\frac{3}{2}} I_{(\frac{1}{2})}^{(\kappa_{a}(t,k))}} e^{(\kappa_{a}(t,k)\boldsymbol{\mu}_{a}(t,k)^{T} \mathbf{X})_{[m]}}$

Angular reflection power $P_r(t, k, \hat{\mathbf{z}}) = \sum_{\nu=0}^{V} \sum_{u=-\nu}^{\nu} \Gamma_{\nu u}(t, k) Y_{\nu u}(\hat{\mathbf{z}})$ Transform $P_r(t, k, \hat{z})$ into a distribution on a unit sphere Statistical frequency of unit vectors in \hat{z} direction $\propto |P_r(t, k, \hat{z})|$ Estimation of **directional parameters** $\Pi_{k,t}$ by fitting 3D vMF Mixture Model F($\mathfrak{X}; \Pi_{t,k}$) using

Expectation- Maximization (EM) algorithm integrated with Bayesian Minimum Message Length (MML)-based clustering

$$\mathbf{F}(\boldsymbol{\mathfrak{X}};\boldsymbol{\Pi}_{t,k}) = \sum_{a=1}^{A(t,k)} \omega_a(t,k) \frac{\sqrt{\kappa_a(t,k)}}{(2\pi)^{\binom{3}{2}} I_{(\frac{1}{2})}(\kappa_a(t,k))}} \exp(\kappa_a(t,k)\boldsymbol{\mu}_a(t,k)^T \boldsymbol{\mathfrak{X}})$$

- \mathfrak{X} : Set of uniformly sampled points on the surface of a unit sphere
- $\mu_a(t,k)$: Mean Direction Vector \Rightarrow *Dominant Reflection Directions* of $\{t,k\}^{th}$ bin
- $\omega_a(t,k)$: Convex mixing coefficients \Rightarrow *Relative strength of each* μ_a *direction*
- A(t,k) : Number of vMF components \Rightarrow *Number of dominant reflection directions*
- $\kappa_a(t,k)$: Non-negative Concentration Parameter \Rightarrow *Dispersion of reflected power from* μ_a
- $\Pi_{t,k} : \{\mu_1, \cdots, \mu_A; \omega_1, \cdots, \omega_A; \kappa_1, \cdots, \kappa_A\} \Rightarrow Detectable only for \{t, k\} bins with anisotropic (early) reflections$