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Introduction

e Most neural network architectures are build for real-valued signals
e However: In many applications complex-valued signals occur

e Complex-valued building blocks have been investigated for CNNs and RNNs, but
not yet for the transformer architecture [1], commonly used in signal processing

We contribute:
e Derivation of a complex-valued attention mechanism
e |[ntroduction of a complex-valued layer normalization

e Arrangement of a full complex-valued transformer architecture
with the prior building blocks

C Attention

Defining the softmax of a vector X of length n we can formulate the scaled dot-
product attention:

softmax(X) = a(X) = zf’eXZi);)<x.)’ Att(Q,K, V) =0 (%) % (1)

Properies of the attention mechanism
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Let Q,K € R" and Z its Dot-Product. Then core properties of Z are:

e 7>0,iff QZK < 90°
e Z is rationally invariant

e 7/ scales with the length of Q, K

® /is symmetric

C Attention:
To preserve aforementioned desired properties (proofs in paper), we define

_ [ RQ, K)o
CAtt(A,B)—a( i )v (2)

We also test these alternative formulations, even though not satisfying all desired
properties:
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Additionally, we test QK" instead of (Q, K) ¢».

AAtt(A,B) =0 ( ) sgn((Q,K))V
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Left: The transformer architecture [1], in red: Building blocks derived in our paper
Right: C attention mechanism

Results

Music dataset [2], 330 pieces divided into 39438 samples, 64 timesteps each.

Classification: Sequence generation:

* 128 classes e Predict last 21 time steps from first 43
e Multiclass classification timesteps sequentially

e Encoder only e Full transformer architecture

C Layer normalization

1. Input distribution to be normalized.
2. Separate normalization of & and J — rotated eliptical output distribution.
3. Normalization with C variance — eliptical output distribution.

4. (Proposed) Normalization with covariance matrix — circular output distribution,
uncorrelated real and imaginary parts:

RCLNO))Y _ oo (ROX = E(X))
(J(CLN(X))) = Cove* (X) ( ) €)
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Conclusi
Contributions:

e Derivation of a C attention mechanism using the C dot product
e |[ntroduction of a C layer normalization producing uncorrelated outputs

e Testing the full complex-valued transformer architecture with those building
blocks

Results:

e On-par results compared to the real-valued transformer on a real world music
dataset

e I[mproved robustness to overfitting
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