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Abstract— The Electric Network Frequency 

(ENF) is the supply frequency of power 

distribution networks which can be captured 

by multimedia signals recorded near 

electrical activities. It normally fluctuates 

slightly over time from its nominal value, 

which is usually of 50 Hz/60 Hz. The ENF 

remain consistent across the entire power 

grid. This has led to the emergence of 

multiple forensic application like estimating 

the recording location and validating the time 

of recording. In this report we examine an 

ENF based Machine Learning system which 

infers the power grid in which the multimedia 

signal was recorded. We worked on different 

features which serve as signature for power 

grid. Then we used those in a multiclass 

machine learning implementation which is 

able to identify the grid of the recorded 

signal.  

 

Keywords— Electric Network Frequency, grid, 

forensics, estimation, machine learning. 

I. INTRODUCTION  

The supply frequency of the power distribution 

network i.e. ENF has a nominal value of 60/50 

Hz. The instantaneous frequency fluctuates 

about the nominal value due to the load control 

mechanisms and the changes in the load 

demands within the power grid. The fluctuations 

of the ENF although random, are unique within a 

particular electrical network [1]. The tendency of 

these variations, at a particular time, are almost 

same throughout the same grid. These variations 

of the ENF over time is defined as the ENF 

signal.  

 

The detection of tampered and forged 

audio/video recording is of immense importance 

for media forensics. Prior to the increased use of 

digital recorder, forensic audio/video analysis 

relied on different techniques for analog 

recorders. But for digital recordings, altercations 

can be made very easily without leaving behind 

any trails, because digital recorders produce a 

recording by converting sound variations to a 

series of numbers [2] making authentication of 

these recordings a lot more difficult. As a result 

the use of ENF signals to identify tampered or 

modified audio recordings was proposed by 

Grigoras in ‘Electric Network Frequency (ENF) 

Criterion’ [3], [4], [5]. 

 

The ENF signal is presently being used in 

multimedia forensics applications, as it gets 

embedded in the multimedia recordings made in 

the vicinity of electrical activity. The audio 

recordings can pick up the signals due to the 

mechanical or acoustic hums or electromagnetic 

interferences from the power lines. The clean 

power recordings can be extracted using an 

audio recorder connected directly to the power 

mains via a step-down transformer [14]. 

Applying a Band-Pass Filter around the nominal 

frequency and employing a frequency estimation 

algorithm, the dominant frequency surrounding 

the nominal frequency can be estimated frame-

by-frame, thus forming the ENF signal.  

 

 Analysis based on ENF signals can also 

approximate the time of recording of audio and 

video files or detect tampering or modification in 

those files [5], [7], as ENF fluctuations extracted 

from clean power signal is same as the 

embedded ENF variations found in multimedia 

recordings [5], [6]. These applications generally 

require prior information of the grid of origin or 

simultaneous power references to identify the 

grid of origin. Moreover they are also 

computationally inefficient as a large archive of 

power reference is required for them to be of 

use. To overcome this problem a Machine 

Learning approach was proposed in [12]. 

The ENF signals from a particular grid although 

random, vary from those of other grids in their 

nature and manner of variations. Statistical 
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features extracted from the ENF signals of 

different grids can be used to develop a Machine 

Learning system that can identify the grid of 

origin, and therefore the region of recordings. 

 

We were provided with power and audio 

recordings from nine different grids around the 

world, which includes both ‘Noise-Free’ power 

recordings and ‘noisy’ audio recordings. Using 

statistical features derived from the ENF signals, 

we tried to differentiate the region of recording 

of the media signals based on a Machine 

Learning approach. 

 

The ENF signals picked up in these recordings 

can be readily extracted directly from the 

Electric mains using a step down transformer 

and a simple voltage divider circuit.  

 

II. ENF EXTRACTION 

In this section we describe the database of Power 

and Audio recordings provided to us. 

Subsequently, we discuss the procedure and 

methodology adopted to extract the ENF signal 

from the recordings. We end this section by 

analyzing the similarities and dissimilarities 

between the extracted ENF signals, and 

discussing the statistical features that might be 

used as discerning features for the classification 

of the ENF signals. 

 

A. Database Description 

Recordings from nine different grids titled as A, 

B, C... to I were provided to us for analysis in 

the IEEE Signal Processing Cup 2016. Among 

them we found the nominal frequencies of grids 

A, C and I to be 60 Hz and the rest of the grids 

to be 50 Hz through Fourier Transform Analysis. 

The nominal frequencies corresponding to each 

grids and their range of variation are provided in 

Table-I. All the grids contained both power and 

audio recordings among which the duration of 

power recordings were of ten to sixty minutes, 

while all the audio recordings were of thirty 

minutes each. The Database consisted of 

variable number of power recordings but same 

number of audio recordings across all grids. For 

each power and audio files, we at first divided 

the main recording into segments of ten minutes 

each. Then, among these segments, we divided 

the signals into non-overlapping frames of 5 

seconds duration. 

 

Table I 
DESCRIPTION OF THE DATABASE 

 
GRID Nominal 

frequency 

(Hz) 

Maximum 

frequency 

Hz 

Minimum 

frequency 

Hz 

Frequency 

Range 

Hz 

A 60 60.032 59.651 0.067 

B 50 50.850 49.142 1.707 

C 60 60.044 59.962 0.082 

D 50 50.057 49.942 0.115 

E 50 50.077 49.925 0.152 

F 50 50.778 49.942 0.134 

G 50 50.142 49.801 0.341 

H 50 50.316 49.716 0.600 

I 60 60.047 59.951 0.095 

 

The Spectrum Combining approach [8] is used 

to estimate the instantaneous ENF frequency for 

a time frame. This approach utilizes the presence 

of the ENF components in the nominal base 

frequency and in multiple harmonic bands to 

arrive at a more precise estimate. We used the 

Spectrum Combining method in conjunction 

with the Short Time Fourier Transform (STFT) 

[9], [11] for estimating the dominant frequency 

component of each time frame, thus generating 

the ENF signal. 

 

B. Spectral Combination and SNR Calculation 

The Spectral Combining procedure suggests 

producing an ENF estimate by combining base 

and multiple harmonic spectral bands, each 

weighted according to its relative strength with 

respect to noise. In this sub-section we will 

recall the method of Spectral Combination, 

along with the derivations and equations from 

[8].  The estimation is made on a frame-by-

frame basis using STFT over time, where the 

deviation 0f of the base ENF from the nominal 

frequency 0f is approximated. For a given STFT 

frame, the observed power spectrum 

component, , ( )BP f  contributed at the harmonic 

band , can be expressed as 

      
, ,( ) ( ) P ( )B nP f A h f f             (1) 

For      0 0[ ( ), ( )],B Bf f f f f     

Where Bf reflects the frequency band of ENF 

presence around the base frequency, A is the 

magnitude of the energy of the frequency 

component surrounding 0f  and ,P ( )n f  

describes the white noise component around the 

same harmonic within the bandwidth. The 



IEEE Signal Processing Cup 2016 

 

3 

 

( )h f  in equation (1) is an impulse-like 

function which achieves its maximum value at 

0 0( )f f f   . Compressing and shifting the 

spectrum components to the base range of 

[ 0 Bf f , 0 Bf f ] and then combining the 

components together, the weighted summation 

can be represented as  

,

1

( ) ( )
L

BS f w P f 






            (2) 

The combining weight w , in equation (2) 

weighs each harmonic spectral bands according 

to their signal-to-noise ratio (SNR). The 

dominant frequency
0 0ENFf f f   , representing 

the ENF estimation of that time frame can then 

be calculated by taking the maximum value in 

the ( )S f  vector. 

 

We computed the combining weights over a ten 

minutes duration of recording and computed it 

again at the start of the next ten minute segment 

to make the weight adaptive to the changing 

strength of the ENF in the bands over time.  For 

example, the combining weight of the first 

harmonic 1w can be represented by ,1 ,1/signal noiseP P . 

We analyzed the given data set and determined 

the range of fluctuations for different grids in 

Table I. 

 

We observed that, the ENF fluctuations of the 

50Hz grids were comparatively higher than 

those of the 60Hz grids. We measured the ENF 

range of 60Hz and 50Hz grids and chose the 

maximum range belonging to each of the two 

frequency groups. Then we empirically set 

Bf =1Hz, for the 60Hz grids and Bf =3.2Hz for 

the 50Hz grids such that the ENF bandwidth of 

all the grids might fall into our chosen 

bandwidth. The overall band for computing SNR 

would be [59, 61] Hz for 60Hz electrical 

networks and [46.8, 53.2] Hz for 50Hz electrical 

network. Then ,1signalP  is the average Power 

Spectral Density (PSD) within the band [59.95, 

60.05] Hz and [49.14, 50.85] Hz over the chosen 

time duration and ,1noiseP is the average PSD in 

the bands [59, 59.95] Hz and [60.04, 61] Hz, and 

[46.8, 49.14] Hz and [50.85, 53.2] Hz for the 

60Hz and 50 Hz grids respectively over the same 

time duration. For the ease of computation, we 

compressed and shifted the higher harmonic 

spectral bands to the nominal 

,1signalP and ,1noiseP bands and computed their 

weights.  

 

After calculating the weights we perform STFT, 

where within each time-frame we employ the 

Spectral Combination approach just discussed, 

making use of the weights calculated in this sub-

section to find out the frequency estimation for 

each time frame.  

 

C. Filtering of Harmonic Components 

For implementing the Spectral Combining 

approach, we filtered out the harmonic 

components 1, 2,3...Q  , (where Q = 8) using 

a bandpass IIR elliptic filter of the order 40. 

Elliptic filters were chosen empirically to 

provide sharp cutoff frequency and customized 

Stop-Band and Pass-Band ripples. The filtered 

harmonic components were then used as time 

domain recording data for frequency estimation 

utilizing the Spectral Combining approach using 

the STFT method. 

 

D. ENF Estimation of Time Frame by STFT 

The frequency estimation process to be used 

must provide adequate frequency resolution and 

sampling interval. The method we chose to track 

the dynamic behavior of the ENF is based on the 

Short Time Fourier Transform (STFT) [9]. The 

estimation of the peak magnitude was achieved 

using a quadratic interpolation technique with a 

mild zero padding scheme [10]. We summarize 

the technique that we followed, reported in [11] 

along with necessary equations and derivations.  

 

The STFT was implemented by dividing the 

original signal data sequence [ ],  0 1x n n N   , 

into J segments of length M samples: 

[ ] [ ],  0 1mx n x mL n n M           (3) 

Where mx is the
thm  frame of the input signal 

and L is the ‘hop size’ or the number of samples 

advanced between each time frames. Each frame 

is then multiplied by a length M spectral 

analysis weighting window w producing: 

      [ ] [ ]. [ ]m mx n x n w n                                 (4)  

We chose a ‘Hanning Window’ with a window 

size M of 5000 samples. For increasing the 

frequency resolution the data from the 

windowed frame is then extended by zeroes by a 

zero padded windowed frame [ ]mx n .   
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harmonics with 
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harmonic 

components to 
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Figure 1. Program flow chart  
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2(a) 

 
 

2(b) 

Fig 2: ENF signals extracted from 60Hz Grids (a) Grid A. 

(b) Grid C. (c) Grid I. 

 

Each frame is then converted to the frequency domain 

using a length P  FFT to produce the STFT at 

frame m as: 
 

      

21
'

0

1
[ ] [ ]

j knP

P
m m

n

X k x n e
P





                   (5) 

Where is k is the
thk frequency bin.  We set the 

hop size L to 5000 data samples to match the 

window length M  and create a non-overlapping 

STFT scheme. The STFT segmentation process 

is elucidated by the Figure-1. 

 

It is unlikely that, the ENF peak value in any 

frame will fall exactly into a frequency bin of an 

FFT Transform point. By zero padding in the 

time domain, the FFT size is increased which in 

turn makes the FFT bin bandwidth 

/sf p proportionally narrower. The result is a 

more accurate interpolation in the frequency 

domain and a more densely sample spectrum. 

Conversely, for attaining reasonable accuracy, 

the zero padding factor has to be quite large 

resulting in a high FFT size. To maintain a 

balance between computational efficiency and 

accuracy we used a zero padding factor b  of 8. 

 

We performed the STFT on all the Q  harmonic 

channels simultaneously to find the dominant  

 
2(c) 

 

frequency surrounding each harmonics. While 

estimating the frequency deviation 0f , we first 

compressed and shifted the spectral components 

of the higher harmonics to the nominal base 

range [
0 Bf f ,

0 Bf f ] and combined the 

components together according to equation (2) 

to get ( )S f , which denotes the weighted 

summation of the harmonic spectral 

components. The combining weights kw as 

calculated in Section-II B, were used to weigh 

the spectral components. The ENF frequency 

estimation 
0 0ENFf f f   was thus obtained by 

searching for the maximum in ( )S f . For 

obtaining a high accuracy, we resorted to a 

quadratic interpolation scheme in a conjunction 

with a low zero padding as discussed by Abe & 

Smith [9]. Using the left and right adjacent bins 

the spectral bandwidth, we employ the quadratic 

model  

     
1

.
2 2

v
 

  




 
                                    (7) 

Where  

     
10 120log | ( ) |mX k                           (8) 

     
1020log | ( ) |mX k                             (9) 

     
10 120log | ( ) |mX k                          (10) 

to gain a finer estimate of the ENF frequency for 

a particular time frame. Employing the same 

approach, we estimated the ENF frequency for 

subsequent time frames of a data segment of 10 

minutes. Thus generating an ENF signal segment 

of length 120S  samples. 

 

E. Comparison of  ENF Signals From 

Different Grids 

We differentiate here the statistical differences 

between the ENF signals extracted from 

different grids. These differences help us to 

adopt a set of features for our Machine Learning  
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3(a) 

 
3(b) 

 
3(c) 

 

system. In our database three grids have a 

nominal frequency of 60Hz and six grids have a 

nominal frequency of 50Hz as mentioned in 

Table-I. The ENF signals extracted from the 

power signals can be seen in the Figures 1 and 2. 

The first difference that is evident is the mean of 

the ENF signals, which can be easily identified 

depending on how close their average is to the 

50Hz or 60Hz mark. Even among the grids with 

the same nominal frequency, other 

distinguishable features can also be observed. 

For example the mean of grid B remains well 

above 50Hz for most of its duration, while those 

of grid F remains close to the 50Hz mark. 

 

Besides differing in their means, the ENF signals 

also demonstrate uniqueness in the pattern of 

their variations. Scrutinizing the 60Hz grids, 

titled A, C and I, we found that, they are quite 

similar in their variations as evident from Figure 

1. 

 
3(d) 

 
3(e) 

 
3(f) 

Fig 3: ENF signals extracted from 50Hz Grids. (a) Grid B. 

(b) Grid D. (c) Grid E. (d) Grid F. (e) Grid G. (f) Grid H. 

 

This suggests a better control mechanisms in 

these grids. Among these three, only grid ‘I’ 

showcases a small difference in its fluctuations, 

which tends to be a bit slower than those of grids 

‘A’ and ‘C’. 

 

Besides differing in their means, the ENF signals 

also demonstrate uniqueness in the pattern of 

their variations. Scrutinizing the 60Hz grids, 

titled A, C and I, we found that, they are quite 

similar in their variations as evident from Figure 

1. This suggests a better control mechanisms in 

these grids. Among these three, only grid ‘I’ 

showcases a small difference in its fluctuations,  

which tends to be a bit slower than those of grids 

‘A’ and ‘C’. In case of the 50Hz grids more 

notable differences can be observed. The ENF 

signals of Grid B, for example, demonstrates the 

most abrupt changes among all the grids as 
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apparent from Figure 2. This suggests high load 

variations and poor control mechanism present 

in the grid. 

Similarly, in our analysis, the ENF signals of 

grids G and H also display more fluctuations 

than the ENF variations of Grids D, E and F, but 

these are still not as sharp as those of grid B.  

Even among the D, E and F grids, some 

discerning characteristics can be seen. The F  

grid, for instance exhibits a more controlled 

variation, whereas grid D appears to drift more 

before returning to its base frequency range.  

III. LOCATION CLASSIFICATION SYSTEM 

Exploiting the unique fluctuations of the ENF 

signals, a multiclass classification system can be 

devised to identify the grid of origin of the 

media recordings. In this section we discuss our 

implementation of the Machine Learning system 

based on the work in [11].  We start by 

discussing the feature extractor part of the 

Learning system and explain the features used 

for our System. 

 

We also explore some additional new features 

from the ones described in [11], which have the 

potential to aid the Learning System. The second 

element of our classification system is a 

multiclass classifier based on the MATLAB’s 

Error-Correcting Output Code (ECOC) 

multiclass model for Support Vector Machines 

(SVM). We then discuss the methodology used 

to train the system and conclude this section by 

examining the results obtained. 

  

A. Feature Extraction & Analysis 

From the empirical differences in the variations 

of the ENF signals discussed in Section II-E, we 

can extract meaningful statistical features for our 

classification system. We took a set of ENF 

signal segments 
'[ ]s n s  of fixed size 

120S  samples among the power Grids of our 

dataset. Each of the ENF signal segments was 

extracted from an ENF-containing record of ten 

minutes long, as mentioned in section II. In our 

data-set the number of grids with 50Hz ENF was 

six and with 60Hz ENF was three. Basing on the 

system proposed in [11], we adopted the mean 

and the variance of the ENF segment as well as 

its dynamic range. Moreover, we applied a 

wavelet signal analysis to study the ENF signal 

segments at more than one time-frequency 

resolutions. 

 

TABLE III: 
USED FEATURE COMPONENTS 

 
1 Mean of ENF segment 

2 Log(variance) of ENF segment 

3 Log(range) of ENF segment 

4 Log (variance) of approximation after  

F-level packet wavelet analysis (F=3) 

5-34 Log(variance) of F level of detail signals 

computed through F-level packet wavelet 

analysis (F=3) 

34-37 AR(4) model parameters 

38 Log( [ ]e n ) after AR modeling 

39-42 Polynomial(4) Model Parameters 

43-44 Skewness and Log(Kurtosis) of ENF signal. 

45-46 Log(co-efficient) of Linear Regression   

47-55 Normalized Amplitude of the Q  Harmonic 

components. 

 

We applied a F level wavelet decomposition 

where each level provides an approximation to 

the original signal and the variations at the 

respective level of resolution [13]. We calculated 

the variances of the high- pass band of each 

decomposition level (the details) and also the 

variance of the lowest time-frequency band (the 

approximation) as candidate features. The 

features collected from wavelet based analysis 

help to capture the fine differences of the ENF 

signals of distinct electrical networks. 

 

To compliment these features, we also collected 

a set of features obtained from an auto regressive 

statistical modeling of the ENF signal. We make 

use of the model described in [14]. An ENF 

segment [ ]s n would be modeled as: 

    
1

[ ] [ ] [ ] [ ]
p

i

s n a i s n i e n


               (11) 

Where [ ]a i is the
thi coefficient of the AR model, 

[ ]e n  is a white noise with mean zero and p is 

AR order. We select a fourth order AR model.  

For use in the Classification System, five 

features from this AR modeling: the four 

parameters of the AR model
1 2 3 4, , ,  and a a a a , 

and [ ]e n  are selected. The AR parameters  
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(a) 

 

 

 

indicate the linear relationship of the samples of 

[ ]x n  and the [ ]e n  describes how well the signal 

fits an auto-regressive model. 

 

To focus on the orders of magnitude and to 

increase the chances of separation between final 

feature values, we used the log operator on the 

mean and variance values. Moreover, the 

features extracted from similar grids form 

clusters, as evident from Figure 4. 

 

Exploring some additional features to aid our 

Machine Learning System, we utilized the 

Fourier Transform profile of the recorded 

signals. We observe that the magnitude of the 

harmonic components of the power recordings 

differ from one grid to another in their 

magnitudes. To utilize this property we fit a 

polynomial model over the normalized 

magnitudes of the harmonic components and use 

the coefficients and the constant term of the 

fitted polynomial as features. We also utilized 

the normalized magnitude of the harmonic 

components as potential features.  

 

Furthermore, we added two more probabilistic 

features: skewness and kurtosis of the ENF 

variations. Skewness is a measure of the 

asymmetry of the probability distribution of real-

valued random variable about its mean. 

Kurtosis is a measure of whether the data are 

peaked or flat relative to a normal distribution. 

Moreover, we also applied a linear regression 

model on the extracted ENF signal and used its 

co-efficients as features. The features used are 

summarized in Table-III.  

 
(b) 

 

 

 

B. Normalization of Features 

For use in the Machine Learning System the 

computed values of the features should be 

normalized in a linear scale. The range of 

normalization used in our work is [-100,100], 

where the 
thc feature value in an example of the 

training dataset is normalized with respect to all 

the other feature values in the position k of the N 

training examples.  While training the 

Classification System we stored the 

normalization parameters, and later used them to 

normalize the Practice and Testing Data 

provided for analysis in the competition. 
 

We resorted to a similar technique as the one 

reported in [11]. Equations(13)-(15) stated 

below describes the process of normalization for 

features 1,2,...,16c  . 

     
1 ,

1 1
( [c])

i

M

c i

j i l jj

f
M N


 

                     (13) 

    
'[c] [c]i i cf f                                     (14) 

     

'
''

'

[c]
[c] 100

max | [c] |

i
i

i i

f
f

f
                  (15) 

Here M represents the number of classes, where 

each class was composed of 
jN examples, with 

1,2,...j M and
1

M

jj
N N


 . The label and 

feature vector of an example i  is denoted by 

il and if , respectively, for 1,2,...i N , and 

output the final normalized result
''

if . 

 

Figure 4. Selected normalized feature values of Training data. (a) Features 1,10 and 11 (b) Features 2,4 and 14. 
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C. Multiclass SVM Classifier 

In our implementation of the multiclass Support 

Vector Machine (SVM) to build the location 

classifier we used the MATLAB’s ECOC model. 

The ECOC model reduces the problem of three 

or more classes to a set of binary classifiers. 

ECOC classification requires a coding design, 

which determines the classes that the binary 

learners train on, and a decoding scheme, which 

determines how the results (predictions) of the 

binary classifiers are aggregated. For example, 

in case of a three class system, with a ‘one-

versus-one’ coding design, a decoding scheme, 

and SVM learners, the ECOC model follows the 

next steps to build the classification model.  

 

Learner 1, in Table IV, trains on examples from 

Class 1 and Class 2, and treats Class 1 as the 

positive class and Class 2 as the negative class. 

The rest of the learners are trained in a similar 

fashion. Let   be the coding design matrix with 

elements,
lm and ls  be the predicted 

classification score for the positive class of 

learner l. 

      1

1

| | ( )

arg min

| |

L

l l l

l

L

l

l

m g m s

m

 





 







        (16) 

 

So for a total of M classes, the system trains 

2

M C  binary classifiers; each binary classifier is 

trained on one of the 2

M C possible pairs of 

classes, learning to differentiate between the 

respective two classes. For testing an example, 

the MATLAB ECOC implementation also 

provides M probability (confidence) values, 

where the
thj probability value gives the 

probability that the testing example belongs to 

the
thj class. The data that was provided to us 

were also imbalanced: we have more power 

recordings from some grids versus others, which 

can create over-fitting or biased problems when 

testing the system. For this reason we used the 

weighted multiclass ECOC model which 

automatically adjusts for the imbalance in the 

data. In our implementation, we used an eleventh 

order Gaussian Kernel for our SVM.   

 

D. Systems Trained 

The data at our disposal was of two types; Clean 

ENF signals extracted directly from electrical 

mains, and noisy ENF signals extracted from the 

audio recordings. The power recordings 

generally had ENF segments with high Signal to 

Noise Ratio (SNR), while those extracted from  

the audio recordings were quite noisy. For this 

reason, we opted to train the Machine Learning  

Systems with two different sets of training data 

to predict the audio and power recordings. The 

system trained to predict new power recordings 

was trained with ENF signals extracted from 

those power recordings only. On the other hand, 

as the number of audio files provided for 

training the system was less in comparison to the 

 
 

TABLE IV:  
ONE-VERSUS-ONE CODING DESIGN 

  

 Learner 1 Learner 2 Learner 3 

Class 1 1 1 0 

Class 2 -1 0 1 

Class 3 0 -1 -1 

 

power files, so we decided to train the Learning 

System for classifying audio files on both the 

Power and the Audio training recordings. This 

ensured that we had sufficient feature points to 

predict future data while not compromising on 

the accuracy of our system.  

For testing the Practice and Test recordings, 

provided in the competition for classification, we 

separated the Audio and Power recordings for 

testing them on the two separate Systems. We 

achieved this by noting the presence of dominant 

frequency in the even harmonics of the audio 

recordings and the odd harmonics in the power 

recordings. It is also possible to separate the 

Audio and Power Files on basis of their SNR, 

but we chose not to pursue this procedure 

because of its computational inefficiency. 

 

E. Results and Discussion 

In this sub-section we present the results 

obtained from our analysis and justify the 

methods employed. In the previous section we 

discussed our approach of developing separate 

classification systems for audio and power 

recordings.  

  

For the classification system trained only on 

power recording we achieved an accuracy of  
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90.01% with 5 fold Cross-Validation scheme. 

For this calculation, we used the MATLAB’s 

Machine Learning and Statistics Toolbox 

functions. The cross validation scheme selects a 

number of folds (or divisions) to partition the 

data into. Each fold is held out in turn for 

testing. We then trained a model for each fold 

using all the data outside of that fold. We tested 

each model performance using the data inside 

the fold, then calculated the average test error 

over all folds. This method gives a good estimate 

of predictive accuracy of the final model trained 

with all the data present in the whole training 

dataset. Table V lists the confusion matrix thus 

generated. 

 

On the other hand for the classification system 

trained on both the power and audio recordings, 

using the same cross validation scheme we 

achieved an accuracy of 84.25%. We passed all 

the practice data through the multiclass learner 

developed using the above mentioned two 

models and identified the grid of origin of the 50 

practice data provided for our analysis as 

follows: 

 

AHCFF,EGCND,AFBDC,INNAE,FBBAD,C

GNGB,DDCHE,EAIHI,EHECF,FNNEC. 
  
Using the feedback system of the IEEESP Cup 

webpage, our model predicted accurately 88% of 

the practice data.  

  

 

 

 

 

 

 

 

 

 

A Similar multiclass classification system was 

applied to the 100 testing data provided for the 

first part of the IEEE Signal Processing Cup. 

The Predicted Grid Label for the testing dataset 

is listed below: 

 

NDDCE,NHDAF,IEGBG,BDNEH,GNHHG,

HFGAI,DNFHN,IECBE,ENNBE,NGEAG,II

NNG,HAENC,CCFDG,CEIGI,ENCEE,BEB

HA,GNNCG,AABAH,CNDBA,GBFBB 

 

F. Explanation of Developed Program 

For developing the ENF extraction and 

Classification program, we used MATLAB 

R2015a. We used a combination of scripts and 

functions in our software.  There are four main 

components in our program: The Gatherer, the 

Splitter, the Processor and the Classifier. The 

gatherer script collects the data from each power 

and audio recordings one by one and sends the 

recordings to the Splitter. In this portion of the 

program, a whole audio file is split into ten 

minute segments of data and sent into the 

‘Processor’ section of the program where the 

main ENF extraction algorithm is implemented. 

In the Processor, the Q harmonic bands of the 

recorded signal is filtered out for Spectral 

Combination and STFT as described in Section-

II-B & D. Thus the ENF signal is generated as a 

MATLAB vector, and from this ENF signal the 

features described in Section-III-A are extracted.  

 

The next part of our program is the Machine 

Learning system where the Multiclass SVM is 

implemented. The extracted features from the 

ENF signals of all the training data are 

normalized and a classification system is trained.  

Testing 

Classes 

No. of 

Examples 

A B C D E F G H I 

A 36 82.72         

B 38  99.38        

C 41   82.67       

D 42    83.62      

E 40     97.62     

F 30      95.21    

G 42       88.62   

H 41        98.88  

I 42         83.46 

TABLE V:  
CONFUSSION MATRIX 
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IV. HARDWARE IMPLEMENTATION 

A circuit was built to collect the power 

recordings from the Bangladeshi power grid for  

 
Figure 5. ENF variation of collected signal through our 

sensing hardware. 

 

analyzing the ENF variations present.  The setup 

was built with least cost possible while not 

compromising the efficiency and accuracy. After 

completing the circuit, more than ten hours of 

reference power recordings were collected at 

different times of the day in different days of the 

week. With the help of a voltage divider, 6V was 

converted into 200mv (p-p). We avoided the use 

of passive circuit elements while building the 

setup, so that unnecessary frequency fluctuation 

can be avoided. This setup was connected with 

the sound card of a Computer. Thus the 

originally transmitted electrical signal was 

recorded with an audio recorder software for 

ENF extraction using our developed program. 

 

A. Methodology 

To obtain the power data of the grid, 220 V was 

stepped down to 6 V with a transformer. Then, 

to bring the voltage level down to the low 

acceptable range of the sound card of the 

computer, we resorted to a simple voltage 

divider circuit. The 6 V transformer output was 

converted into 200 mV (p-p), and connected to 

the soundcard of a computer. Bearing in mind 

the change of load conditions at different times 

of the day, we collected power recordings during 

mornings, afternoon, midnight and early 

mornings of different days of the week. 

 

 

 

 

B. Components Used 

 One 220V-6V step-down transformer 

 Resistors of value 100kΩ & 10kΩ 

 One 3.5mm headphone jack 

 Jumpers 

 Sound Card of a laptop 

 

C. Schematic Diagram 

 
 

Figure. 6 

 

D. Analysis of Recorded ENF Signal                                                                                      

 

We collected more than ten hours of power 

recordings from the Electric mains from Gazipur 

District of Bangladesh. After extracting the ENF 

signals from the power recordings using our 

program, we noticed some similarities and 

dissimilarities of the signal from the ENF signals 

of the power recordings of Grids provided to us. 

We immediately notice the high dynamic range 

of the ENF signal collected from Bangladesh in 

Figure 7. The ENF signal fluctuated from around 

49.5Hz to over 51Hz for most of its duration. 

Among the ENF signals of provided grids, only 

grid B shows some form of similarity with the 

ENF variations from our collected recordings. 

The dynamic range of Grid B is also quite large, 

but Grid B exhibits abrupt and sharp changes in 

its ENF variations whereas the Bangladeshi Grid 

displays consistently high variations. This might 

be because of the poor control mechanism and 

high load variation in the National Grid of 
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Bangladesh, which is becoming increasingly 

obsolete.  
 

To further observe the difference of the collected 

ENF signals with those from the provided 

training data we trained our classification system 

with the both the collected power recordings and 

the training ones. The resulting confusion matrix 

presents how well our classification system was 

able to predict the Bangladeshi grid from its 

extracted ENF signals.        
                                                    

V. CONCLUSIONS 

In this work, we described and implemented a 

Machine Learning System to identify the Grids 

of origin of an ENF signal and explored some 

statistical features that might aid the Machine 

Learning system’s ability to identify the grids of 

origin. We presented our implementation of an 

ENF extraction Algorithm and also discussed a 

Classification system best able to predict Power 

and Audio recordings. The ENF signals of 

different grids exhibit different statistical 

characteristics. Usually this happens due to the 

size and the quality of the control mechanisms of 

the grid along with the load variations present in 

that Electric Network. We have presented a 

discussion on the similarities and dissimilarities 

between the ENF signals of different grids 

provided in the training dataset in this paper. 

Moreover, we presented our predictions on the 

‘Practice’ and ‘Testing’ datasets provided for the 

IEEE Signal Processing Cup 2016. On the 

Practice Datasets, we achieved an accuracy of 

88%, using our program. 

In addition we have also explored some new 

features that we believe might enhance the 

capabilities of the Machine Learning system to 

identify the region-of-recordings further. 
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