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OVERVIEW

Introduction and background
* What is multi-task compression?
« History and applications

Part 1 — Theory
* Review of information theory: mutual information, data processing inequality, RD function
* Bounds on feature compressibility
 Bit allocation in multi-task coding

Part 2 — Current practice
« Multi-task image coding
* Multi-task video coding
* Privacy

Part 3 — Standardization
- JPEG Al
« MPEG-VCM (Video Coding for Machines)
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Introduction and background

MULTI-TASK IMAGE AND VIDEO COMPRESSION SEU Jtimedia laboratory

IEEE ICIP 2022 TUTORIAL ENGAGING THE WORLD



WHAT IS MULTI-TASK COMPRESSION?

Default task: reconstruct input
at the same resolution, bit-
depth, etc.
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WHAT IS MULTI-TASK COMPRESSION?

Why not single-task compression + multi-task post processing / analysis?

Encode B e Decode

\ 4

Key potential benefits of multi-task compression:

* Reduced complexity: task-specific decoding may be simpler than default task decoding + post-
processing / analysis

* Avoiding input reconstruction: reduce memory requirements, improve privacy

 Lower bitrate for most tasks
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HISTORY

Multiple research streams related to multi-task compression

« Scalable coding
o Encode the source image/video to allow multiple decoding options
o Support different quality levels, resolutions, frame rates, ...

« Compressed-domain analysis
o Start with conventional or scalable bitstream

o Decode as needed for the task(s) without reconstructing the input
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HISTORY: SCALABLE CODING

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31, NO. 4, APRIL 1983

The Laplacian Pyramid as a Compact Image Code

PETER J. BURT, MEMBER, 1EEE, AND EDWARD H. ADELSON
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HISTORY: SCALABLE CODING

ORIGINALTILETO: PRECINCT 0 OF HL1

HL2
: . , HL1
Susanps WL | M2 | M2l i o
Example: JPEG 2000 HL2, HHz, L2 L e
« Subband/wavelet transform CHd i

o More efficient than Laplacian
pyramid

o Supports resolution scalability

8%
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WAVELET COEFFICIENT DATA IS ARRANGED INTO
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o Quality scalability
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HISTORY: SCALABLE CODING
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Example: scalable extension of
H.264/AVC

Base layer: lowest resolution /
quality / frame rate

Enhancement layers for higher
resolutions / qualities / frame
rates

Only decode parts of the
bitstream needed for the

particular rendering
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HISTORY: SCALABLE CODING

Encoder Decoder

Content—based

Scene Segmentation Example: object-based coding

VOP 1 Manipulation in MPEG-4
. " «  Objects encoded into VOPs
. 1 S g
w VOP 2 « Can be combined into a
‘ composite scene
« Multiple versions of the scene
VOP 3 can be decoded from the same
0 " bitstream

VOP

S
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HISTORY: SCALABLE CODING

Summary

« Scalable coding is a form of multi-task coding

« However, tasks considered so far are related to rendering — resolution, frame rate, quality,
compositing

* No analysis tasks

o Object-based coding relies on external analysis to tell it what the objects are
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HISTORY: COMPRESSED-DOMAIN ANALYSIS

What is “compressed domain”?

Prediction / Transform » Q > Entropy coding

Inv. Pred. / Transform 1« 1Q Entropy decoding [«
Compressed Compressed Compressed
domain? domain? domain
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HISTORY: COMPRESSED-DOMAIN ANALYSIS

“True” compressed-domain analysis

* Analyze compressed bitstream without entropy decoding
« Difficult - very few papers on this topic
o Compressed bitstream looks like iid binary noise

« Possible to do some inference if auxiliary information is available, or if the bitstream has some
special structure

o Example: saliency estimation in H.264/AVC bitstreams

Human Map OBDL-MRF PMES MAM PIM-ZEN PIM-MCS MCSDM MSM-SM

PNSP-CS AWS

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

MULTI-TASK IMAGE AND VIDEO COMPRESSION — INTRODUCTION
IEEE ICIP 2022 TUTORIAL



HISTORY: COMPRESSED-DOMAIN ANALYSIS

Transform-domain analysis

* Much easier — relationship between pixel and transform domain tractable

« Many papers on this topic, earliest dating back to 1970’s!

HIERARCHIAL SEARCH FOR IMAGE MATCHING

E. L. Hall

Dept. of Electrical Engineering
University of Tennessee
Knoxville, Tennessee

R. Y. Wong

Dept. of Computer Science
University of Southern California
Los Angeles, California

Lt. J. Rouge

U. S. Air Force Space and Missile
Systems Organization

E1 Segundo, California
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HISTORY: COMPRESSED-DOMAIN ANALYSIS

PUS channel BN channel ‘I

Transform-domain image analysis

» Feature extraction (e.g., SIFT)
* Indexing, search and retrieval
* Image classification

* Object detection

* Face detection
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HISTORY: COMPRESSED-DOMAIN ANALYSIS

Transform-domain video analysis

* Global motion estimation

* Object/motion segmentation

» Object tracking
 Action recognition
* Vehicle counting
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HISTORY: COMPRESSED-DOMAIN ANALYSIS

Summary

 Little work on “true” compressed-domain (entropy-coded data) analysis
* A lot of work on transform-domain analysis
o Traditional computer vision
o Although those transforms are not necessarily the ones used in conventional codecs
o “Compressed vision”

o Using elements / features found in compressed bitstreams: transform coefficients,
prediction modes, motion vectors, ...
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APPLICATIONS

Traffic monitoring & management

- Cameras (and other sensors) along
roads and intersections

- Counting vehicles, pedestrians, etc.

- Estimating their speed, traffic intensity,
detecting violations and emergencies

+ Help manage traffic

« Tasks:

o Object detection
o Object tracking
o Human viewing (occasionally)
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APPLICATIONS
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Autonomous driving

Cameras (and other sensors) mounted on the
vehicle to help understand and navigate its
surroundings

Detecting vehicles, bikes, pedestrians, traffic lights
and signs, speed bumps, etc.

Lots of data, high energy usage:
Estimated ~ 2 kWh for on-board processing of
sensor data (2.5 kWh in cities) — may want to offload

Tasks:

o Object detection and tracking
o QObject motion prediction
o Human viewing (occasionally)
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APPLICATIONS

(Edge-cloud) collaborative intelligence

- Covers the spectrum between cloud-only and edge-only
extremes

- Part of “intelligence” at the edge, other part at the cloud
- Features sent to the cloud, task(s) completed there

- Able to address privacy concerns

- Able to scale to available resources

« Tasks:
Cloud

dog %
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o Human viewing
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EXISTING STANDARDS

Compact Descriptors for Visual Search (CDVS) [1]
« For image-related vision tasks, especially search and retrieval

 Handcrafted features: SIFT and Fisher Vectors

Compact Descriptors for Video Analysis (CDVA) [2]
« For video-related vision tasks, especially search and retrieval
« Also considered learnt features

« MPEG-VCM (Video Coding for Machines) is a related, broader standardization effort
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LOOKING TO THE FUTURE

State-of-the-art performance on most vision tasks is currently achieved by Deep Neural Networks
(DNNs)

- Even on the default task — input reconstruction — DNN-based coding provides state-of-the-art
performance for image compression (though not yet for video)

= DNNs provide a good unified framework for multi-task compression
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Questions?
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REVIEW OF RELEVANT INFORMATION THEORY

Entropy

MULTI-TASK IMAGE AND VIDEO COMPRESSION - PART 1: THEORY

Let X be a discrete random variable taking on values x in some sample space X
The entropy of X (in bits) is defined as

HOO = = ) p(X =) - logap(X = )
xeX

Entropy is a measure of uncertainty (randomness)
Entropy is the limit of lossless compressibility
Examples:
o Fair coin: X = {Heads, Tails}, p(X = Heads) = p(X = Tails) = 1/2, H(X) =1 bit
o Fairdie: X ={1,2,3,4,5,6}, p(X=1)=--=p(X =6) =1/6, H(X) =log,6 = 2.58 bits
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REVIEW OF RELEVANT INFORMATION THEORY

Mutual information
 Let X and Y be discrete random variables taking on values in sample spaces X and Y

« The mutual information (Ml) between X and Y (in bits) is defined as

p((X,Y) = (x,y))
pX=x)-p(Y =y)

I(X;Y) = 2 p((X,Y) = (x,y)) - log;
(X,Y)EXXY
« Ml is a measure of statistical dependence (linear or nonlinear) between X and Y
Ml is the amount of information that X carries about Y, and vice versa
Examples:
o X andY independent & I(X;Y) =0

o I(X;X) = H(X) : mutual information between X and itself is its own entropy
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REVIEW OF RELEVANT INFORMATION THEORY

Markov chain

« A sequence of random variables X — Y — Z is a Markov chain if Z is conditionally independent
of X, givenY

[ always

p(x,y,z) =px) -pllx) - pzly, x)
=px) - plylx) - p(zly)

if Markov chain

« IfZisafunctionofY,ie., Z = f(Y),thenX —- Y — Z is a Markov chain

o Since Z is computed from Y, it does not depend on X (when Y is given)
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REVIEW OF RELEVANT INFORMATION THEORY

Data processing inequality (DPI)
e IfX —-Y — ZisaMarkov chain, then

1(X;Y)=21(X;2)

* Downstream variable (Z) has no more information about input (X) than an upstream variable (Y)

 Extended version of DPI:if X - Y — Z — W is a Markov chain, then

1(Y;2) = 1(X; W)
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS

* Y; = output of the i-th layer in a feedforward neural network

(input) X Yy Y, Ys Y, T (output)

s X—>Y, > Y, > Y3 —> Y, — T is a Markov chain

o SoisanychanX - Y, - Y; »Tfori<j
o True for dense layers, convolutional layers, pooling layers, etc.
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS

«  What about skip connections?

(input) X Yy Y, Ys Y, T (output)

X —> U, > TUY, — Y is not a Markov chain
o Y; depends on both Y, and Y,, not just Y,
o However, X — Y; — Y5 is a Markov chain

o Markovity still holds “across” skip connections, but not “under” them
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LOSSLESS FEATURE COMPRESSIBILITY

Claim: In a non-generative feedforward neural network, in terms of lossless compression,
intermediate features are at least as compressible as the network’s input.

Proof (sketch):

« LetY ={Y;:1<1i<L}be a setof some intermediate layer outputs (features)

* Decompose mutual information between input X and Y as

I(X;Y) = H{Y) — H(YX)
= H(Y) b\‘\‘ 0, because Y is a function of X

* Note that X —» X — U is a Markov chain and apply DPI

HX)=1(X;X) 2 I1(X;Y) = H(Y)

 So, H(Y) isno larger than H(X) = features Y at least as compressible (losslessly) as input X
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LOSSLESS FEATURE COMPRESSIBILITY

+ Intermediate features being more compressible than the input is good news!
« But lossless compressibility is very limiting

o Lossy compression gives much higher compression ratios
o Practical image and video codecs mostly lossy

o Can we extend this result to lossy compression?
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REVIEW OF RELEVANT INFORMATION THEORY

Rate-distortion function

- Let X be a random variable and X be its “quantized” version according to some conditional
probability distribution p(X | x)

« Letd(x, x) be a distortion metric — how much x differs from x

« For a given distortion level D, define set Py (D) of conditional distributions as
Px(D) = {p(v? | x) : Z p(x)-pE|x)-d(®,x) < D}
X,X

E[d(X, X)]
« Rate-distortion (RD) function for X is given by

R,(D) = min 1(X: X
x(D) p(aﬂx)wx(n)( )

Ry (D) is the minimum rate (in bits) at which you can encode X without incurring distortion > D

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

MULTI-TASK IMAGE AND VIDEO COMPRESSION - PART 1: THEORY
IEEE ICIP 2022 TUTORIAL




LOSSY FEATURE COMPRESSIBILITY

* In order to use RD theory in our case, we need some modifications

f

St
<
vﬂ4—

When we compress input X, we care about what happens to the output T
Px(D) = {p@®1x) :E[d(fX),f(X))] <D}
- Similarly, when we compress features Y, we care about what happens to the output T

Py(D) = {p(j} |y) E[d(h(yA)» h(y))] = D}
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LOSSY FEATURE COMPRESSIBILITY

«  We can now define the RD function for the input

R.(D) = min 1(X: X
(D)= e By o))

and the RD function for the features

Ry(D)= _min I(Y;T)

p(¥|y) € Py(D)

* In both cases, distortion is measured at the output of the network

« Distortion metric can be any metric appropriate for the network’s task, e.g.
o Mean Squared Error for regression tasks
o Cross-entropy or accuracy for classification tasks
o ...
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LOSSY FEATURE COMPRESSIBILITY

Claim: In a non-generative feedforward neural network, in terms of lossy compression,
intermediate features are at least as compressible as the network’s input.

Ry(D) < Rx(D)
Proof (sketch):
- Let D be given and let p*(X | x) be optimal for input compression (achieves Ry (D))

« Draw inputs X ~ p(x) and process each input x in two ways as follows

g
> Y

X — > 3 > 5/'
p*(X | x) g

 For each x, obtain y and y

« Define q(¥| y) by pairing up y and y
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LOSSY FEATURE COMPRESSIBILITY

Proof (sketch, continued):
« Show q(J| y) € Py(D), i.e., satisfies distortion constraint for D

o Easy to show because q(j| y) is derived from p* (X | x) € Ry (D), which satisfies distortion
constraint for D

Apply DPI to Markov chain ¥ — X — X — Y to show
(Y;7) < 1X5:X)
- When p*(% | x) is used to generate X, the above inequality becomes
1(Y;Y) < Ry(D)
* So we have found one distribution (5| y) € Py(D) that achieves I(Y; J) below Ry (D). Therefore

R., (D) = min I(YU:T) < R,(D
y(D) p 1 o) (Y;Y) x(D)
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DEEPER MEANS MORE COMPRESSIBLE

Claim: In a non-generative feedforward neural network, deeper layers are more compressible.

H(Y;) <H(Y;) and Ry,(D) < Ry, (D) fori>j

—> S—» [—> —»f@

(input) X Yy Y, Ys Y, T (output)

Proof: Follows from previous proofs by replacing X with Y; and Y with Y;
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SUMMARY OF FEATURE COMPRESSIBILITY

Theory shows that intermediate features are at least as compressible as the network’s input
« This is true for any non-generative feedforward network:
o Regardless of what its task is (T can be any task)
o Regardless of how many tasks there are (T can be a composite task)
* However:
o Theory talks about limits; practical codecs might be far from those limits
o Theory shows what is possible, but not how to get there

o ldeal for grant proposals &

« What can we expect from practical (i.e., non-optimal) codecs?
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TOY EXAMPLE OF FEATURE COMPRESSIBILITY

,,,,,,,,,,,,,,,,,,,,,,

A simple convolutional neural network (CNN) for cats vs. dogs classification
« Trained on Kaggle’s cats vs. dogs dataset

« Goal: compare input compression vs. feature compression in terms of resulting classification
accuracy
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TOY EXAMPLE OF FEATURE COMPRESSIBILITY

Compression vs. accuracy

Input -
0.90 A 'l
|
Layer 1 "% i
1
0804 |
g 0.75
< 0.70
Input
0.65 Layer 1
Layer 2
0.60 Layer 3
! Layer 4
Layer 5 0.55 ’ -==- Layer5
10I00 20|00 30b0 40|00 50I00 60'00 70'00
> Average JPEG filesize (Bytes)
File size
Feature compression better than input
Features tiled into an compression starting with layer 3 — why?
image and compressed If we had an optimal encoder, this
using JPEG would already happen at layer 1
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ANOTHER EXAMPLE OF FEATURE COMPRESSIBILITY

Results on YOLOvV2 object detector

Features compressed by BPG (HEVC-Intra)

Part of VOC2007 dataset for testing

Images from VOC2007 and VOC2012 for re-
training to account for quantization

Bit savings of up to 60% at equivalent accuracy
without re-training

Bit savings of 70% with re-training

Splitat  Default weights  Re-trained weights

max_11 —6.09% —45.23%
max_17 —60.30% —70.30%

MULTI-TASK IMAGE AND VIDEO COMPRESSION - PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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DISTILLATION

« Based on the results so far, it seems one needs to move the compression point in order to
achieve gains — this makes encoder more complicated

- But there is another way, via “distillation” — no need to move the compression point

—> S—» [—> —»f@

(input) X Yy Y, Ys Y, T (output)

compress to match

Claim: Under certain conditions, compressing to match (“distill”) deeper layers is better.

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

MULTI-TASK IMAGE AND VIDEO COMPRESSION - PART 1: THEORY
IEEE ICIP 2022 TUTORIAL




CODING FOR MULTIPLE TASKS

Different tasks have different distortion metrics

Need to define task importance

o Need to be careful about scale of different distortion metrics

Need to allocate bits appropriately

One way to bring task distortions to a common scale

accuracy w/o accuracy after
compression compression
|A; — Al . |
D; =——-100 o change in task accuracy
A; due to compression

A; could be mAP, loU, Jaccard index, MSE, PSNR, ...
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CODING FOR MULTIPLE TASKS

« Tractable rate-distortion (RD) model

N
D;(R{, ...,Ry) = y; + Z a; ;2 PR
j=1

where R; is the rate of the j-th coding unit 100

[N Original surface
Fitted surface

80 -

« Benefits of this RD model:
o “Makes sense” — distortion reduces exponentially

60

40 |

Total Distortion

with rates 20 -
o Fits the data: R? > 0.94 in all our tests 0
0
o Tractable — distortion is convex and monotonically 20 ’
decreasing with rate Rykeis 20 L g
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CODING FOR MULTIPLE TASKS

Letw; >0, XV, w; = 1 be the relative importance of task i € {1, ..., T}, so that the total
distortion over all tasks is

T N
D¢(Ry, ..., Ry) = Z w; *Di(Rq,...,Ry) =y + Z ;27 Fiki
i=1 j=1

Then the optimal bit allocation to minimize D,(R;, ..., Ry) subjectto ¥, R; < R, is
* 1 +
R; = ,B_] [logz{(ln Z)ajﬁj} — logz/l]

where [x]*= max(0, x) and A is the Lagrange multiplier.

Proof: Via Karush-Kuhn-Tucker (KKT) conditions.
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CODING FOR MULTIPLE TASKS

In the previous result we relied on task weights w; to convert a multi-objective problem into a
single-objective problem

« But what if task importance is not know in advance?
« General problem is multi-objective optimization:

minimize {D;(Ry, ..., Ry), ..., D7 (R4, ..., Ry)}
subjectto Y7_;R; <R,

« Can be solved numerically

« Because of convexity, it can also be solved analytically in the case of two coding units (N = 2)
and any number of tasks T
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CODING FOR MULTIPLE TASKS

Let (R, R}) be the rates on the line R, + R, = R, that minimize D;(Ry, R;), and let
R = max{R!}, RM™ = min{R}}, RP¥X = 1 — R and RPM™ = 1 — R Then any point
on the line R; + R, = R, between (R™M", RY#X) and (R™®*, R1") is Pareto-optimal, and
there are no Pareto-optimal solutions outside of this line segment.

Proof: Follows from the properties of distortion surfaces.
' Di

(R{nax'REnin)

//83
8%

<2 ‘(};{nin’ Rénax)
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CODING FOR MULTIPLE TASKS

1
1
1
1
' » Model 1
; Deep || Deep > Model 2
N Feature|| Feature
' Encoder||Decoder
, / |Model 3
¥ T T T T T T
%;?f 480 | —R#R,=R ]
L Fig 4 AN
Pareto front 09 Pareto set . Pareto set
i . a0 O minD,
_ (rates that achieve minD,
5 085
g the Pareto front) o N
= o
Q. L
g ool < 420
2 o
?i, = 400
8 o075 RiRyR,
DN * R1+R2 = Rt 380 |
+  Pareto front S
O minD, N
0.7 min D, 1 360 r h N
1.6 162 164 166 168 1.7 172 174 176 1.78 540 560 580 600 620 640
D, (Semantic segmentation) R1 (Kbits)
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Questions?
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Part 2

Current practice
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LATENT SPACE SCALABILITY

The tasks often include input image reconstruction (X) and/or some computer vision (CV)
inference tasks T

- In the discussion so far, it seems that all features supported all tasks; but a better design is
possible

- CV inference can also be obtained from X (common in practice)
- Data processing inequality (DPI) appliedto Y — X — T

I(Y; X) = 1(Y; T)
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LATENT SPACE SCALABILITY

I(Y; X) = I(Y;T)

« Latent space Y contains less
information about CV task T than
about input reconstruction X

« Dedicate a subset of Y to T, all of it
to X

| [ |

 When only T is needed, decode
only a subset of Y

Input
Reconstruction

|
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LATENT SPACE SCALABILITY

End-to-end neural image codec

X—& Encoder — Y = {Yy, ..., Y;|Yi;+1, ..., Yc} — Decoder %—' X

Ya Latent-space
—’
transform

=<

j:‘
— CVback-end —— T

Example 2-layer scalable system:

- End-to-end image codec backbone [2]

- Subset of latent space (Y;) needs to be transformed into the latent space F of the CV back-end
o Need latent-space transform (another neural network)

- CV back-end (for object detection) is YOLOv3 [3] starting at layer 13
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LATENT SPACE SCALABILITY

End-to-end neural image codec

X—& Encoder — Y = {Yy, ..., Y;|Yi;+1, ..., Yc} — Decoder %—' X

Ya Latent-space
—’
transform

=<

j:‘
— CVback-end —— T

Loss function:
L=R+A-[MSE(X,X) +y - MSE(F, 7))

D

R is the rate estimate [2]

Distortion D composed of input reconstruction MSE(X, X) and CV feature reconstruction MSE(F, F)

Since MSE(F, F) depends only on Y, (and not on Y\Y,), CV-relevant information is steered to Y,
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LATENT SPACE SCALABILITY

2-layer system: object detection + input reconstruction

. : : D e g e ——
- Object detection experimentsonthe 77 __1%mAPloss | _ et ___
COCO dataset 53
_51
- Performance much better than S -
. . . . a 49 ==+ QOriginal Performance (55.85%)
compressing input directly: < L Heve
, . 47 —— WC
o 37 —48% bit savings compared to . —e— Minnen et al.
state-of-the-art image codecs ~#- Cheng et al.
43 /,’{)" —#— Proposed Two-layer Network
o 2.8 —4.5% more accurate 0.1 02 03 04 05 06 07 08 09 1.0 1.1
detection at the same bit rate bpp
o Reason: not all pixel details are Two-layer Network
needed for ObjeCt deteCtion Benchmarks BD-Bitrate BD-mAP

|
|
|
VVC -39.8 2.79

HEVC 479 4.55
Minnen et al. —41.3 3.26
Cheng et al. -37.4 2.89
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LATENT SPACE SCALABILITY

Three tasks

I(Y;X) = (Y Ty) = 1(Y; Ty)
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LATENT SPACE SCALABILITY

End-to-end neural image codec

X—& Encoder — UY = {[Yl, v, YiYis1, |-, Yo} — Decoder %—' X

Y ~ Latent-space
- transform 1

Fy
— CV back-end 1 —— T,

Y

Latent-space

F,
transform 2 CV back-end 2 > T,

Example 3-layer scalable system
- End-to-end image codec backbone [2]
- (CV task 1: object detection using Detectron [3] Faster RCNN

- (CV task 2: instance segmentation using Detectron [3] Mask RCNN
o Object detection c semantic segmentation = Y, c Y,
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LATENT SPACE SCALABILITY

3-layer system: (a) object detection, (b) segmentation

s —————————————

1% m_AF’ Ioss_

2% mMAP loss

- Detection and segmentation experiments on COCO

« Again, Performance much better than compressing
input directly:

—=—- Orginal Performance (40.2%) |
—— HEVC

=»— VVC

—8— Minnen et al.

—i— Cheng et al.

o 71 —78% bit savings compared to state-of-the-art | —— Proposed Three-layer Network
image codecs 0.05 0.15 0.25 0.35 045 055 0.65 0.75

bpp

(a)

o 2.3 —3.5% more accurate detection at the same
bit rate = e ———

___________ 2% mMAP loss

| Three-layer Network 34
| Object Detection | Segmentation ey ——- Orginal Performance (37.2%) |
g —— HEVC
Benchmarks | BD-Bitrate BD-mAP | BD-Bitrate BD-mAP 30 —— WC
) —8— Minnen et al.
VVC -73.2 2.33 -71.2 2.34 -8 Cheng et al.
HEVC -73.2 3.05 —74.7 2.96 @ —k— Proposed Three-layer Network/
Minnen e al. -18.7 3.73 =71.2 3.38 005 015 025 035 045 055 065 0.75
Cheng et al. -76.6 3.62 -75.4 3.49 bpp

(b)
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LATENT SPACE SCALABILITY

'—k— Proposed Two-layer |
37| —e— Proposed Three-layer
—@®— Minnen etal [7]
—— Cheng et al. 3]

35 wC

=»— HEVC

—— JPEG

29

27" 91 02 03 04 05 06 07

bpp

Results on the Kodak dataset

*  Proposed scalable codec comparable to state-of-the-art on

input reconstruction

10 — 20% degradation by adding a scalability layer (2 — 3), in

0.98

0.96

MS-SSIM

©
(o]
e

0.92

0.90

line with earlier work on scalable video coding
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== Proposed Two-layer

—8— Proposed Three-layer

—®— Minnenetal [2]

—— Cheng et al. 3]
wWC

—»— HEVC

—— |PEG

0.7 08 0.9

Proposed methods

Benchmarks ‘ Two-layer Network ‘ Three-layer Network
BD-Bitrate BD-Bitrate | BD-Bitrate = BD-Bitrate
(PSNR) (MS-SSIM) (PSNR) (MS-SSIM)
10.17 -7.83 30.43 2.14
-14.27 -26.15 1.38 -17.96
-63.99 -63.99 -57.25 -57.84
-3.58 -7.83 14.02 2.06
4.49 -1.90 24.24 9.55
18.84 11.95

SF
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OTHER HUMAN-MACHINE IMAGE CODING SYSTEMS

Imagery
effect control

« Scalable face image coding [1]

Bitstream

o Base: facial landmark keypoints f

o Enhancement: color and texture info —| E =

. Input image .. . o
o Uses generative face decoder Encoder m Pt

Key reference pixel selection

« Semantic-to-signal-scalable coding [2]

o Base: deepest feature

o Enhancements: information lost when
going layer to layer

Display Task 1 Task 2 Task k
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OTHER HUMAN-MACHINE IMAGE CODING SYSTEMS

Encgder . Transmission Decoder

->HE—>-—>RE—> . mom  —E

stream 1 & *
X 1 y FLIF FLIF y
B - B+ momao —EN— o —
stream 2
: |
o .-

r 7 X
o
En—ven g mve— I —e— B4
stream 3

© Element-wise subtraction @ Element-wise addition

« Scalable human-machine coding using conventional encoders
o Base: segmentation information
o First enhancement: preview
o Second enhancement: reconstruction residual
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OTHER HUMAN-MACHINE IMAGE CODING SYSTEMS

Front End O

Compressed Stream

Analysis-oriented
Image Compression |
|

Transmission

Feature Domain " CLASS Y
Analysis Network > ‘Handgun’

-

> Ptevigw Image >

K
Analyzable Image >
%_r» Compression Network |
| | Viewable Analysis

Input Image Sub-stream

|
|
|
Analysis Results |
|
|
|

Preview Image

Viewable
Analysis Layer

Vision-oriented
Feature Residual Compression |

| i

' Preview Image

|
"G q—
p

Full Reconstruction

|
— < Preview Image
| E Generation Network 1
|
|
|
|
| Sub-stream

Human-machine coding for loT [1]
o Base: classification + preview

o Enhancement: reconstruction residual
A few other approaches [2, 3]
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Reconstruction Nework

Reconstructed Image
(High Quality)

|
|
|
> High Quality > |
|
|
|

High Quality
Reconstruction Laye
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IMAGE COMPRESSION AND DENOISING

Compressed-domain denoising
* One of the scenarios in the JPEG Al call for proposals
* Provide both the denoised image and noisy image from compressed representation

- Data processing inequality (DPI) appliedto Y — X — X: I(Y;X) = I(Y; X)

« Problem can be solved by latent-space scalability
o Information needed for X is a subset of that needed for X
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SCALABLE LATENT SPACE FOR DENOISING
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LATENT SPACE SCALABILITY FOR DENOISING

Experimental setup 275
«  Six models trained using the Cheng2020 ‘EZ:Z

backbone [2], tested on four other datasets N
« System trained on CLIC dataset with additive 255

Gaussian noise ¢ € {15, 25, 50}

C
« Compared against CBM3D [3] and FFD-Net [4] 205
* In terms of AWGN denoising performance, on 285
large noise, better than CBM3D without 2 o
compression *
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CBSD68 Kodak24
29.5
29 .
28.5 2 /
: & g ——FFDNet-clip
——FFDNet-clip on 287 CBM3D
CBM3D Q —s—Cheng+FFDNet-clip
—+—Cheng+FFDNet-clip 2751 i --8-- JICD-0=50
~~~~~ JICD-0=50 ! JICD-variable o
JICD-variable « 27F &
26.5
1 2 3 0 1 2 3
Bit Per Pixel (BPP) Bit Per Pixel (BPP)
D
McMaster JPEG Al
29.5
=== 29
4 2851 5~
? £ 28) /] ——FFDNet-clip
; ——FFDNet-clip L orsl 8 CBM3D
¢ CBM3D i —+—Cheng+FFDNet-clip
—+—Cheng+FFDNet-clip | 27t 4 --&-=JICD-0=50
-8~ JICD-0=50 JICD-variable o
JICD-variable o 26.5
26
1 2 3 0 1 2 3

Bit Per Pixel (BPP) Bit Per Pixel (BPP)
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LATENT SPACE SCALABILITY FOR DENOISING

» CBSD68 24 Kodak24
33 33
i 32 . //
Unseen noise removal 2o e o A
. . . . 5 31
« Tested on Poissonian-Gaussian noise model [2] & 30 &”30
y . - 29 ——FFDNet-clip ——FFDNet-clip
that wasn’t used in training N e . o
—4—JICD-variable & —=—JICD-variable &
* Noise generator [3] with parameters fitted on the e o8 1 5 2 By o5 1 5 2
SIDD [4] dataset was used bl Bit Per Pixel (8PP)
. . C . D
o Same noise generator was used in JPEG Al 4 Helaste 3 PECA
evaluation 33 %
32 . 2 & _
« Surpasses CBM3D at bitrates around 1 bpp and e g g 52 o
1 31
higher " a0 —FroNerdp : & —FroNetdip
29 —v—gsc%:;liFFDNet-clip 29 |+EE%ZEFFDNet-cIip
——JICD-variable o ——JICD-variable o
280 0.5 1 1.5 2 28O 0.5 1 1.5
Bit Per Pixel (BPP) Bit Per Pixel (BPP)
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LATENT SPACE SCALABILITY FOR DENOISING
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LATENT SPACE SCALABILITY FOR DENOISING

25.5

25

Noisy input reconstruction 248

% 24

- Whole latent space used & 235

23

« Slightly worse than [2] on CBSD68, better on other 225

datasets =

BD-rate results c

Noise Model CBSD68 Kodak24 McMaster JPEG 2:

type Al N

%24.5

Practical variable 5.50% -11.74% -3.97% -13.49% & 5
noise o

23.5

simulator 3
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CBSD68

—+—Cheng
—+—JICD-variable o

0

0.5 1 1.5

Bit Per Pixel (BPP)

McMaster

—+—Cheng
—+—JICD-variable o

0

0.5 1 1.5

Bit Per Pixel (BPP)

SFU
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Kodak24

—+—Cheng
—&—JICD-variable o

0

0.5 1 1.5

Bit Per Pixel (BPP)

JPEG Al

—+—Cheng
—*—JICD-variable o

0

0.5 1 1.5

Bit Per Pixel (BPP)
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LATENT SPACE SCALABILITY FOR DENOISING

Decoded noise histograms - 00002_TE_2144x1424

x10° x10° x10%
. . . . 5 4
Reconstructed noise distribution origina origina 15 original
4! decoded g1 || 3l decoded g2 decoded q3
« Compare distribution of input noise vs. "
. . . . 3
distribution of reconstructed noise 2|
2 ! J
« Example: one image from the JPEG Al | 5
. . . 1+ 1
test set, Gaussian noise with ¢ = 50 . .
(R (O 0
« At low bitrates, only low-variance 100 0 100 100 0 100
reconstructed noise can be supported . . .
12 X10, ' 12 X10, ' 10 x10
* As the bitrate increases, reconstructed ’ original ‘ ’ original ‘ ’ original
10 ¢ decoded q4 10 ¢ decoded g5 8 decoded g6

noise distribution better matches the input
noise distribution

-100 0 100 -100 0 100
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MULTI-TASK IMAGE COMPRESSION

Summary

« Already a number of papers in the literature describing multi-task image compression
« Base task: computer vision
o Usually classification, sometimes object detection and/or segmentation
« Additional tasks: computer or human vision
« Computer vision tasks require fewer bits than input reconstruction
o Practically demonstrated in many cases
o Theoretical justification
o Still a ways to go:

o ImageNet classification requires log, 1000 = 10 bits = 0.0002 bpp for a 224x224 image;
best currently available feature coding systems require > 0.01 bpp to maintain accuracy

ltimedia laboratory
SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD




MULTI-TASK VIDEO COMPRESSION

Reconstructed Reconstructed Reconstructed
Frame Frame Frame

Example of a scalable 2-task H H H H H HH H H H H H H _ Human

video compression system H H H - “ H ,—H - H - H H“ Vision
1
« Base layer: object detection ONN-aided ONN-aided
. Enhancement layer: input LEnh. ; Inter prediction | Inter prediction @_ >
: ayer
reconstruction gase @ e T 1l Machine
_ Layer Vision

* Intra frames coded using the Latent Spa Latent Space Latent Space

scalable human-machine Intra Frame Intra Frame Intra Frame

image codec presented

earlier / \
Human

* Inter frames coded using
DNN-aided HEVC pipeline

.| Decoder

Machine

YOLOvV3
back-end

» LST

)
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MULTI-TASK VIDEO COMPRESSION

~ LST + YOLOv3 back-end
Vi
Decoder structure inifa FIame Latent Frame Reconstruction
i Reconstruction
Bitstream A\ S [r—
A%
Inter Frame Entropy | 5 Inverse
\/ Bitstream Decoder Quantization/Transform ‘
4 g N <
Estimated motion o/ Xt N N
i information ; " L X
O 1 Affine Transformation based > :
= &d Deep Frame Prediction DIEEGH >
o ! Moi
o ! otion }
gL o f compensation sl ) *
Predicted Frame Residue % :
Y Y =X Intra —>
Xt Xt — Xy 5

<
N\

Decoded ,
Picture Buffer [¢ | "-loop filters <

A J
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MULTI-TASK VIDEO COMPRESSION

All Intra (detection [2] & reconstruction) Random Access (reconstruction only)

| HEVC (HM-16.20) \ VVC (VTM-10.0) Benchmark | HEVC (HM-1620) | VVC (VIM-10.0)

Benchmark ‘ Machine Vision Human Vision ‘ Machine Vision Human Vision BD-rate BD-rate BD-rate BD-rate
| | BD-rate- | BD-rate- Class Sequence (PSNR)  (MS-SSIM) | (PSNR)  (MS-SSIM)
Class ‘ Sequence ‘ mAP PSNR  MS-SSIM | mAP PSNR  MS-SSIM PeopleOnStreet | -1.27% -12.15% 20.82% 9.41%
A Traffic 21.88% 8.90% 48.65% 33.31%

PeopleOnStreet -37.17% 8.55%  -22.93% -29.52% 3647%  -6.34%

A Traffic 33.82% 16.80%  -20.72% 61.09% 44.38%  -4.09% \ Average | 10.30% -1.63% | 34.74% 21.36%
Average -1.68% 1267%  -21.83% 15.78% 40.42%  -521% BQTerrace 21.70% 3.32% 55.15% 32.94%

BoT 3% o8t 1833% 2 26% —— v BasketballDrive | 5.85% 2.02% 42.65% 31.89%

errace =170 O3l =855 70 L0 70 D270 0370 Cact 16.54% -1.89% 49.58% 27.42%
BasketballDrive -49.91% 2457%  -13.63% -47.16% 64.10%  9.47% B acus ¢ o o o
Kimono 0.50% -9.96% 29.06% 14.88%

B Cactus -30.68% 2079%  -19.18% -46.64% 55.70%  2.28% ParkScene 14.13% 0.86% 39.48% 23.98%

Kimono -75.00% 137%  -15.72% -70.98% 2491%  0.74% : : . :

ParkScene -35.81% 14.63%  -16.45% -20.30% 40.05%  -0.63% \ Average | 11.74% -1.94% | 43.18% 26.22%
Average -35.01% 18.24%  -16.66% -37.47% 51.62%  3.94% BQMall 3.14% -9.64% 40.89% 22.20%

BQMall -51.04% 1.07%  -20.80% -51.96% 3180%  0.95% c B?jketbs"‘”D“” }g-g;ga '3'322” ig'g%o 33323’
BasketballDrill -37.45% 0.62%  -22.76% -46.88% 46.70%  5.09% Rar‘YHcene 423 q" s ,; 3704 (7" PN ,;

C PartyScene -8.01% 15.60%  -12.54% -12.25% 43.87% 5.33% aceHorses ol g o intad
RaceHorses 27.07% 8.49% -11.43% -36.60% 38.90% 8.37% ‘ Average ‘ 7.82% -3.939% ‘ 44.67% 33.18%

| Average | -17.36% 6.44% -16.88% | -36.92% 40.32% 4.94% BQSquare 7.38% .9.499, 50.49% 19.02%
BQSquare -6.51% 739%  -2510% -15.38% 32.52%  -10.52% BasketballPass | -2.86% -9.68% 36.77% 23.01%
BasketballPass -57.82% 2.33%  -16.14% -55.58% 29.18% 6.82% D BlowingBubbles | 4.18% -6.94% 39.37% 21.03%

D | BlowingBubbles -15.49% 1.08%  -15.26% -2.86% 30.57%  5.72% RaceHorses -2.71% -4.75% 38.38% 31.18%
RaceHorses 21.69% 415%  -11.10% -22.45% 27.46% 11.82% ‘ Average | 1.50% 171% | 41.25% 23.56%

\ Average | -1453% 050%  -1690% |  -24.07% 2993%  3.46% FourPeople 152%  -1151% | 4547% 13.16%
Johnny 116.35% 787%  -19.50% 86.62% 4754%  7.45% E Johnny 17.84% -2.49% 62.58% 32.28%

E KristenAndSara -39.08% 748%  -29.17% -8.03% 4240%  -8.88% KristenAndSara | 14.26%  -16.50% | 53.67% 11.36%
| Average |  38.64% 621%  -2490% |  39.29% 41.19%  -2.60% \ Average | 1454%  -1017% | 53.90% 18.94%
Avg. (A - D) | -2040% 9.62%  -17.47% |  -26.65% 4133%  2.86% Avg. (A - D) | 7.77% 3.97% | 41.94% 26.72%
Avg. (A - E) | -1345% 9.05%  -1871% |  -18.89% 4131%  1.95% Avg. (A - E) | 8.90% -5.00% | 43.93% 25.42%
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MULTI-TASK VIDEO COMPRESSION

Break even point

| HEVC (HM-16.20) 10
Benchmark | Machine Vision Human Vision
| BD-rate- 5
Class | = Sequence ) = Ap PSNR  MS-SSIM
Avg. (A - D) | -20.40% 9.62%  -17.47% OF==~~~"7=77==7777-°
Avg. (A - E) | (-13.45% 9.05% ) -18.71%
-5
(1 - th) . 08655 —|- th y 10905 S 1 -10 Bit savings
frac. time frac. time Break-even point
machine vision human vision -15 20 40 60 80 100

th X 100(%)
PSNR MS-SSIM PSNR MS-SSIM
59.8% 100% 31.4% 90.7%
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MULTI-TASK VIDEO COMPRESSION

Original
Frames

[iL‘t—l 3 il?t]

Decoded Frames
Buffer

]

Tt—1

HMFVC

Machine Served

Encoder Bitstream Decoder
J  LSR R LSR N — | , LSR (TR Visual
"' Extraction ” Encoder SN E LT EE Decoder Analysis
2]
Iy
\ 4
L Frame Elt LSR Frame ¢ Decoded Frames
”! Prediction Decoder Prediction Buffer
| Dt ¢
bt '
Tt Tt «|  Residual )I 5 5 I N Residual \/‘ V\ - Current
% ” Encoder Signal Bitsteam Decoder Tt % if?t' Decoded Frame

Zr

« Base layer: action recognition or object detection
- Enhancement: input reconstruction

MULTI-TASK IMAGE AND VIDEO COMPRESSION — PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

S

ltimedia laboratory

SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

FU

«f

..................... )

Human Served




Questions?
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LATENT-SPACE MOTION

What is shown in the image?

Observation:

 Input motion seems to be
preserved in the latent space

« Why?

One feature tensor channel
from add 3 layer of ResNet-34
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LATENT-SPACE MOTION

Understanding latent-space motion

: : : : Model
« Consider motion in the input space between two front-end
consecutive frames >
« Map each frame to the latent space via the model front—
end
A
- What is the relationship between the corresponding Motion L
feature tensors? U
Model
front-end
>
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LATENT-SPACE MOTION

* A popular motion model in computer vision is “optical flow”:

Model
dl N dl N ol _ 0 front-end
ox X T oy T T >
o I —image intensity; t —time A
o (v, v,) — optical flow Vition 9
v
 If this model describes motion in the input space, what it its Model
equivalent in the latent space? front-end
>
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LATENT-SPACE MOTION

Common operations in convolutional networks:

1. Convolution

2. Nonlinear activation
3. Batch normalization
4. Pooling

o Max pooling

o Mean pooling

o Learnt pooling (strided convolution)

« Examine the effect of each of these on the optical flow PDE
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LATENT-SPACE MOTION

- When input image I is convolved with kernel f, the resulting flow equation is
d d d
a(f*f)ux +@(f*1)uy +a(f*1) =0

where (uy,u,) is the flow field after convolution

- Convolution and differentiation commute:

(61 N 0l N 61) 0
| — o — ] =
F*\gx¥ Tyt

same flow equation as in input space = solution to input flow is one solution to output flow
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LATENT-SPACE MOTION

- When input image I passes through nonlinear activation a(+), the resulting flow equation is

do(l) +60(I) +60(1)_
ax T Ty T T T

where (uy,u,) is the flow field after nonlinear activation

« Using the chain rule of differentiation:

| (61 +61 +61 _ 0
o' \grtxt 5y 6t>_

same flow equation as in input space = solution to input flow is one solution to output flow
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LATENT-SPACE MOTION

Summary

MULTI-TASK IMAGE AND VIDEO COMPRESSION — PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

Optical flow of the input remains one (approximate)
solution to the optical flow after common operations
(convolution, nonlinear activation, pooling, etc.)

Pooling with a spatial scale change causes a
corresponding scale change in the optical flow

o For example, 2x2 pooling scales the flow field by a
factor of 14

This is why input motion is approximately preserved in
the latent space

This also justifies using techniques originally developed
for input-space motion (optical flow, block-based motion
estimation/compensation) for feature-domain coding
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Questions?
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PRIVACY

In many multi-task systems, we code latent-
space features Input reconstruction from YOLOv2

» Are features privacy-preserving?

* Need precise definition of privacy

- Strategies for privacy

CNN Forward

o Adding noise to features ]

Computation
o Information-theoretic privacy )
o Resilience to model inversion attack J/é
Not compression Data processing inequality at work: o
endy I(X;Y1) 2 1(X;Y,) 2 1(X; Y3)
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PRIVACY FAN

“Privacy fan” — a post-hoc information-theoretic privacy model for multi-task compression

 Start with a pre-trained model

T
* Y, ..., Y. - features /
Y1
« Ty, ..., Ty-tasks / 15
- X > Y,
* Some task outputs reveal private :
information (e.g. input reconstruction), '
some not Yo \
« Let P be the set of “private” tasks Ty

« Goal: identify a set of features B that carry minimum
information about private tasks, while providing sufficient
information about non-private ones
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PRIVACY FAN

* Privacy fan formulation
mBinZZI(Yi;Tj), such that zzI(Yi;Tj) > R
LEB jEP LEB j&P
« Solution: define a Lagrangian £; for each feature Y;:
L= ) 10T = ) 1)
JEP J&P
where § > 0 is the Lagrange multiplier controlling the privacy-accuracy trade-off

O B:{Yi:Li<0}

« Special case, practically important: set B is limited to C’ features: |B| < ('
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SCALABLE PRIVACY

Model 1

' ' Model 2

:Deep Feature:
: Compression:

/2 / Model 3
« Lagrangians:
L = 1Y;T) — B-UY;T) +1(Y;TL)]
Input reconstruction (private) Segmentation and depth est. (non-private)

« Obtain set B by solving the privacy fan — call these “base” features
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SCALABLE PRIVACY

Sort according
to Lagrangian

| [ J—vz Base: light
B _;2 compression
Enhancement:
stronger
compression

« Encode “base” features at high quality, other (“enhancement”) features at lower quality,
depending on the application
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SCALABLE PRIVACY

Varying the rate of enhancement layer

64 [
797 ~70¢
2
63.8 60
&
— * — 550 |
X 636 7857 3
~ | © L
5 w ® 40
o > e
£ 634 iz 230}
L (@)}
7.8 S 0ol
63.2 o
. . ) s 10}
K" * * N
63 ' ' ‘ ' ‘ ' 7.75 : ' ' ‘ ‘ - 99 ‘ ' ' ' '
120 140 160 180 200 220 240 120 140 160 180 200 220 240 1600 1800 2000 2200 2400 2600 2800
Kbytes Kbytes Kbytes
Semantic segmentation Depth estimation Character recognition

MULTI-TASK IMAGE AND VIDEO COMPRESSION — PART 2: PRACTICE 1 ltimedlalaboratory

IEEE ICIP 2022 TUTORIAL SFU ENGAGING THE WORLD




SCALABLE PRIVACY

Varying the rate of enhancement layer

« Segmentation and depth estimation accuracy approximately the same in all cases

« Character recognition accuracy increases with increasing enhancement rate
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RESISTANCE AGAINST MODEL INVERSION ATTACK

YOLO - front-end

Autoencoder
e ( 1
& |« & <8 | < 8=
< < © o o ) X < | =« X o Object Detection
Input ——> % — g;, - % > 2> 2 > 8 P E — % - E 2 —> YOLO - back-end—> annotations
(24
£ £ o 2 2 aq £ z o z
o 5 5 © S| 8|8 S| 8|5
o) [© L O o) Lx o o o o
pE AD
RecNet
S —
sl |lsl|ls] |7 N g ) )
- N - - © - ) <
! Clipping W “ = o > < -3 S ;
0111011100 Tiled Image 3 p > I b % SLochebl>LSsL e Reconstructed
* = o = ™ > 8 > > Input
Quantization > o > o e 7 £ S
c 0 S > 9 P 9 o
o i} o = O £ o @
o (4 o — [}] [¢] a
A - Q ~—

« Another approach to privacy: train autoencoder to make it more difficult to recover input image

from encoded features (model inversion attack)
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RESISTANCE AGAINST MODEL INVERSION ATTACK

 Reconstruction loss
Lree = [|X = Z||, + 8- (52 = (X = D), + lIs, * x = R)||,)

 Autoencoder’s loss

Lpg = Lobj — W= Lpec

« Adversarial training — alternate between:

o Train decoder using L,.. (autoencoder frozen) — encourage decoder to be as good as it can
on recovering input image, especially edges

o Train autoencoder using L, (decoder frozen) — penalize encoder if decoder does a good
job (reverse sign of L,...)
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RESISTANCE AGAINST MODEL INVERSION ATTACK

front-end Autoencoder

C3 (192, 4)

— —
~ ~
© )
) ©
N3 [2)
NS =
> >
c c
=] =]
o o

ResBlock (128)
Conv (64, 3,1)
ResBlock (128)

Showing images recovered._from
YOLOv5’s own features and

autoencoder’s bottleneck features @

Details harder to distinguish in the
images recovered from bottleneck
features
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RESISTANCE AGAINST MODEL INVERSION ATTACK

COCO0-2017 COCO0-2017
65 65
60 g 60
55 55
o 50 7 50
® ®
o 45 e 45
S £
40 a=fe= Anchor 40
35 @=Proposed 35 «fe=Anchor
= = W/0 compression =@=Proposed
30 30
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 14.5 15.5 16.5 17.5 18.5 19.5
Bits-per-pixel PSNR (dB)
Lower bit rate at the same accuracy (BD-rate = —31.3%) Lower reconstruction PSNR at the same accuracy (BD-PSNR = —0.76dB)

* Anchor: YOLOVS5 features compressed using VVC
* Proposed: AE bottleneck features compressed using VVC
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Questions?
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Part 3

Standardization
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STANDARDIZATION

- Standards are important
o Ensure interoperability

o Give developers confidence that their products will have a large market
* There are several standardization activities related to multi-task compression

«  We will briefly describe two:
o JPEG Al (Joint Photographic Experts Group — Artificial Intelligence)
o MPEG-VCM (Motion Pictures Experts Group — Video Coding for Machines)
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JPEG Al

* Scope

“The scope of the JPEG Al is the creation of a learning-based image coding standard offering
a single-stream, compact compressed domain representation, targeting both human
visualization, with significant compression efficiency improvement over image coding
standards in common use at equivalent subjective quality, and effective performance for
image processing and computer vision tasks, with the goal of supporting a royalty-free
baseline.” [JPEG Al White Paper, 2021]

 Difference from earlier image coding standards

o Learning-based

o Support for image processing and computer vision tasks (besides default input
reconstruction)
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JPEG Al

« Use cases
o Cloud storage
o Visual surveillance
o Autonomous vehicles and devices
o Image collection storage and management
o Live monitoring of visual data
o Media distribution

o Television broadcast distribution and editing
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JPEG Al

JPEG Al coding framework

Image Processed
task

JPEG Al Learning-based Core Engine ]
atent
?\"\ representation
Latent [ N EEEE
representation ! )
! o Standard
Input e Entro L Entro Standard
P » Transform uantization: by I W — by : » decoded
Image | encoding - decoding reconstruction .
' N Image
,: h Latent
K ) representation
T N EEEE

Computer
vision task

Class, object,
semantic map,
etc.
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JPEG Al

« Examples of image processing tasks
o Super-resolution
o Denoising
o Low-light enhancement, exposure compensation, color correction
o Inpainting
« Examples of computer vision tasks
o Image classification
o Object/face detection, recognition, identification
o Semantic segmentation

o Event detection, action recognition
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JPEG Al

CfP results: average BD-rate over several quality metrics

BD-rate performance CPU dec. time

TEAMID

12K HEVC VVC 12K HEVC VVC
TEAM12 -39.3% | -13.2% -3.1% 601 606 484
TEAM13 -31.5% -2.1% 10.6% 21 21 16
TEAM14 -57.2% | -39.6% -32.3% 39 39 31
TEAM15 -6.7% 33.6% 51.2% 25 25 19
TEAM16 -47.7% -26.6% -17.9% 44 44 34
TEAM17 -21.5% 15.4% 32.0% 98 98 75
TEAM19 -34.2% -4.4% 8.6% 21 21 16
TEAM21 -33.4% 1.6% 13.8% 153 153 118
TEAM?22 -32.6% -4.9% 7.2% 136 136 105
TEAM24 -56.5% -37.4% -29.9% 44 44 34
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JPEG Al

« Timeline
o dJanuary 2022 — Final Call for Proposals
o February 2022 — Proposal registration
o April 2022 — Proposal submission
o October 2022 — Verification Model under Consideration (VMuC)
O
o October 2023 — Draft standard
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April 2024 — Final standard
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MPEG-VCM

* Scope

“MPEG-VCM aims to define a bitstream for compressing video or feature extracted from
video that is efficient in terms of bitrate/size and can be used by a network of machines
after decompression to perform multiple tasks without significantly degrading task
performance. The decoded video or feature can be used for machine consumption or
hybrid machine and human consumption.

The differences between VCM and video coding with deep learning are:

1. VCM is used for machine consumption or hybrid machine and human consumption, while
current video coding aims for human consumption;

2. VCM technologies could be but is not required to be based on deep learning

3. VCM can achieve analysis efficiency, computational offloading and privacy protection as
well as compression efficiency, while traditional video coding pursues mainly on
compression efficiency.” [VCM m57648 , 2021]
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MPEG-VCM

« Use cases

O

O

MULTI-TASK IMAGE AND VIDEO COMPRESSION — PART 3: STANDARDIZATION
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Surveillance

Intelligent transportation
Smart city

Intelligent industry
Intelligent content
Consumer electronics
Smart retalil

Smart agriculture

Autonomous vehicles / UAV
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MPEG-VCM

« Examples of image processing tasks
o Image/video enhancement

o Stereo/Multiview processing

« Examples of computer vision tasks
o Object detection, segmentation, masking, tracking, measurement
o Event search, detection, prediction
o Anomaly detection
o Crowd density estimation

o Pose estimation and tracking
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MPEG-VCM

Machine vision tasks and datasets for evaluation

W ET IR ER Network Architecture Evaluation Dataset Evaluation Metric

OpenlmageVé
Faster R-CNN with ResNeXt-101 TVD
backbone FLIR
SFU-HW-object-v1

. Mask R-CNN with ResNeXt-101 OpenimageV6 MmAP@0.5
Instance Segmentation
backbone TVD
. . TVD
Object Tracking JDE-1088x608 HiEve 10% MOTA

mAP@0.5
Object Detection
MAP@([0.5:0.95]
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MPEG-VCM

« Track 1 — Feature extraction and compression
o Focus on machine vision
o Call for Evidence (CfE): July 2022
o Response to CfE: October 2022

« Track 2 — Image and video compression
o Both human and machine vision
o Call for Proposals (CfP): April 2022
o Response to CfP: October 2022
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MPEG-VCM

Coding pipelines under consideration

Video f Bitstream i i Machine Analysis
Video Encoder : Video Decoder |90 y lrgere?tce
(Part1) (Part2) esults

y
v

A 4

Video| Machine Feature F . Bitstream - Feature | Feature Machine Inf
——>»| Analysis > eature »| Video Encoder »| Video Decoder o Fedlure inverse »  Analysis nierence
(Par¥1) Conversion Conversion (Part2) Results
Video Machine Bitstream Ma(hir!e
> Analysis ALl »| Feature Encoder |— »| Feature Decoder pesture »  Analysis "g:;ﬁ?éeA
(Part1) (Part2)
Y v
¥ Bitstream : Video
»| Video Encoder »| Video Decoder >
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SUMMARY

« Multi-task compression is not new
o But there are exciting new developments and techniques

o Some requirements are new (e.g., lower bitrate for machine vision)

« What we have learned:
o Features produced by neural networks are more compressible than the input

o Learning-based techniques are good at distinguishing what is relevant for machine vision
vs. other information

o Unified framework for compression and analysis
o Privacy is an open challenge

o More work is needed on precise definitions and quantification of privacy in the context
of multi-task compression

o Related standardization activities: JPEG Al and MPEG-VCM
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Thank you!
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Questions?
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