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Introduction and background
• What is multi-task compression?
• History and applications

Part 1 – Theory
• Review of information theory: mutual information, data processing inequality, RD function
• Bounds on feature compressibility
• Bit allocation in multi-task coding

Part 2 – Current practice
• Multi-task image coding
• Multi-task video coding
• Privacy

Part 3 – Standardization
• JPEG AI
• MPEG-VCM (Video Coding for Machines) 

OVERVIEW
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Introduction and background
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WHAT IS MULTI-TASK COMPRESSION?
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Why not single-task compression + multi-task post processing / analysis?

Key potential benefits of multi-task compression:

• Reduced complexity: task-specific decoding may be simpler than default task decoding + post-
processing / analysis

• Avoiding input reconstruction: reduce memory requirements, improve privacy

• Lower bitrate for most tasks

WHAT IS MULTI-TASK COMPRESSION?
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Multiple research streams related to multi-task compression

• Scalable coding

o Encode the source image/video to allow multiple decoding options

o Support different quality levels, resolutions, frame rates, …

• Compressed-domain analysis

o Start with conventional or scalable bitstream

o Decode as needed for the task(s) without reconstructing the input

HISTORY
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HISTORY: SCALABLE CODING
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HISTORY: SCALABLE CODING
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Example: JPEG 2000

• Subband/wavelet transform
o More efficient than Laplacian

pyramid
o Supports resolution scalability

• Also supported:
o Quality scalability
o Region-of-Interest (RoI) coding

ISO/IEC IS 15444-X and ITU-T T.8XX, JPEG 2000 image 
coding system
C. Bako, "JPEG 2000 Image Compression," Analog 
Dialogue 38-09, September 2004. 
https://www.analog.com/en/analog-dialogue/articles/jpeg-
2000-image-compression.html
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Example: scalable extension of 
H.264/AVC
• Base layer: lowest resolution / 

quality / frame rate 
• Enhancement layers for higher 

resolutions / qualities / frame 
rates

• Only decode parts of the 
bitstream needed for the 
particular rendering

HISTORY: SCALABLE CODING
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H. Schwarz and M. Wien, "The Scalable Video Coding 
Extension of the H.264/AVC Standard [Standards in a 
Nutshell]," IEEE Signal Processing Magazine, vol. 25, 
no. 2, pp. 135-141, March 2008.
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Example: object-based coding 
in MPEG-4
• Objects encoded into VOPs
• Can be combined into a 

composite scene
• Multiple versions of the scene 

can be decoded from the same 
bitstream

HISTORY: SCALABLE CODING

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – INTRODUCTION
IEEE ICIP 2022 TUTORIAL

ISO/IEC JTC 1/SC29/WG11, ISO/IEC 14496 – Coding 
of audio-visual objects
Z. N. Li, M. S. Drew, and J. Liu, Fundamentals of 
Multimedia, 3rd Ed., Springer, 2021.

11.4 MPEG-4 385

11.4 MPEG-4

11.4.1 Overview of MPEG-4

MPEG-1 and 2 employ frame-based coding techniques, in which each rectangular
video frame is divided into macroblocks and then blocks for compression. This is
also known as block-based coding. Their main concern is the high compression
ratio and satisfactory quality of video under such compression techniques. MPEG-4
has a very different emphasis [8]. Besides compression, it pays great attention to
user interactivity. This allows a larger number of users to create and communicate
their multimedia presentations and applications on new infrastructures, such as the
Internet, the World Wide Web (WWW), and mobile/wireless networks. MPEG-4
departs from its predecessors in adopting a new object-based coding approach—
media objects are now entities for MPEG-4 coding. Media objects (also known as
audio and visual objects) can be either natural or synthetic; that is to say, they may
be captured by a video camera or created by computer programs.

Object-based coding not only has the potential of offering higher compression
ratio but is also beneficial for digital video composition, manipulation, indexing,
and retrieval. Figure 11.11 illustrates how MPEG-4 videos can be composed and
manipulated by simple operations such as insertion/deletion, translation/rotation,
scaling, and so on, on the visual objects.

MPEG-4 (version 1) was finalized in October 1998 and became an international
standard in early 1999, referred to as ISO/IEC 14496 [9]. An improved version (ver-
sion 2) was finalized in December 1999 and acquired International Standard status in
2000. Similar to the previousMPEG standards, its first five parts are Systems, Video,

Manipulation

VOP 3

VOP 2

VOP 1

VOP

Encoder Decoder
Content−based

Scene Segmentation

Fig. 11.11 Composition and manipulation of MPEG-4 videos (VOP = Video Object Plane)
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Summary

• Scalable coding is a form of multi-task coding

• However, tasks considered so far are related to rendering – resolution, frame rate, quality, 
compositing

• No analysis tasks

o Object-based coding relies on external analysis to tell it what the objects are

HISTORY: SCALABLE CODING
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What is “compressed domain”?

HISTORY: COMPRESSED-DOMAIN ANALYSIS
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Prediction / Transform Q Entropy coding

Inv. Pred. / Transform IQ Entropy decoding

Compressed 
domain

Compressed 
domain?

Compressed 
domain?
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“True” compressed-domain analysis

• Analyze compressed bitstream without entropy decoding

• Difficult - very few papers on this topic

o Compressed bitstream looks like iid binary noise

• Possible to do some inference if auxiliary information is available, or if the bitstream has some 
special structure
o Example: saliency estimation in H.264/AVC bitstreams

HISTORY: COMPRESSED-DOMAIN ANALYSIS
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S. H. Khatoonabadi, N. Vasconcelos, I. V. Bajić and Y. Shan, "How many bits does it take for a stimulus to be salient?" CVPR 2015, pp. 5501-5510
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Transform-domain analysis

• Much easier – relationship between pixel and transform domain tractable

• Many papers on this topic, earliest dating back to 1970’s!

HISTORY: COMPRESSED-DOMAIN ANALYSIS
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E. L. Hall, L. J. Rouge and R. Y. Wong, "Hierarchical search for image matching," Proc. IEEE Conference on Decision and 
Control including the 15th Symposium on Adaptive Processes, 1976, pp. 791-796
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Transform-domain image analysis

• Feature extraction (e.g., SIFT)

• Indexing, search and retrieval

• Image classification

• Object detection

• Face detection

• …

HISTORY: COMPRESSED-DOMAIN ANALYSIS
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S.-F. Chang, "Compressed-domain techniques for image/video indexing and 
manipulation," Proc. ICIP, 1995, pp. 314-317
D. G. Lowe, “Distinctive image features from scale-Invariant keypoints,” Int. Journal of 
Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004
K. M. Au, N. F. Law, and W. C. Siu, “Unified feature analysis in JPEG and JPEG 
2000-compressed domains,” Patt. Recog., vol. 40, no. 7, pp. 2049–2062, Jul. 2007
S. R. Alvar, H. Choi and I. V. Bajic, "Can you find a face in a HEVC bitstream?," Proc. 
ICASSP, 2018, pp. 1288-1292
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Transform-domain video analysis

• Global motion estimation
• Object/motion segmentation
• Object tracking
• Action recognition
• Vehicle counting
• …

HISTORY: COMPRESSED-DOMAIN ANALYSIS
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R. V. Babu, M. Tom, and P. Wadekar, “A survey on compressed domain video analysis techniques,” Multimed. Tools Appl., vol. 75, no. 2, pp. 1043–
1078, Jan. 2016.
A. Smolic, M. Hoeynck and J.-R. Ohm, "Low-complexity global motion estimation from P-frame motion vectors for MPEG-7 applications," Proc. ICIP, 
2000, pp. 271-274
V. Mezaris, I. Kompatsiaris, N. V. Boulgouris and M. G. Strintzis, "Real-time compressed-domain spatiotemporal segmentation and ontologies for 
video indexing and retrieval," IEEE Trans. Circ. Syst. Video Technol., vol. 14, no. 5, pp. 606-621, May 2004
S. H. Khatoonabadi and I. V. Bajic, "Video object tracking in the compressed domain using spatio-temporal Markov random fields," IEEE Trans. 
Image Processing, vol. 22, no. 1, pp. 300-313, Jan. 2013.
C. Yeo, P. Ahammad, K. Ramchandran and S. S. Sastry, "High-speed action recognition and localization in compressed domain videos," IEEE 
Trans. Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1006-1015, Aug. 2008.
X. Liu, Z. Wang, J. Feng and H. Xi, "Highway vehicle counting in compressed domain," IEEE CVPR, 2016, pp. 3016-3024
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Summary

• Little work on “true” compressed-domain (entropy-coded data) analysis

• A lot of work on transform-domain analysis

o Traditional computer vision

o Although those transforms are not necessarily the ones used in conventional codecs

o “Compressed vision” 

o Using elements / features found in compressed bitstreams: transform coefficients, 
prediction modes, motion vectors, …

HISTORY: COMPRESSED-DOMAIN ANALYSIS
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Traffic monitoring & management

• Cameras (and other sensors) along 
roads and intersections

• Counting vehicles, pedestrians, etc.

• Estimating their speed, traffic intensity, 
detecting violations and emergencies 

• Help manage traffic

• Tasks:
o Object detection
o Object tracking
o Human viewing (occasionally)

APPLICATIONS
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entrackr.com
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Autonomous driving

• Cameras (and other sensors) mounted on the 
vehicle to help understand and navigate its 
surroundings

• Detecting vehicles, bikes, pedestrians, traffic lights
and signs, speed bumps, etc.

• Lots of data, high energy usage: 
Estimated ~ 2 kWh for on-board processing of
sensor data (2.5 kWh in cities) – may want to offload

• Tasks:
o Object detection and tracking
o Object motion prediction
o Human viewing (occasionally)

APPLICATIONS
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aarp.org

D. Richart, Autonomous Cars’ Big Problem: The energy consumption of edge processing reduces a car’s mileage with up to 30%, May 2019.
https://medium.com/@teraki/energy-consumption-required-by-edge-computing-reduces-a-autonomous-cars-mileage-with-up-to-30-46b6764ea1b7
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(Edge-cloud) collaborative intelligence
• Covers the spectrum between cloud-only and edge-only

extremes
• Part of “intelligence” at the edge, other part at the cloud
• Features sent to the cloud, task(s) completed there
• Able to address privacy concerns
• Able to scale to available resources

• Tasks:
o Any machine vision task
o Human viewing

APPLICATIONS
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Y. Lou et al., "Front-end smart visual sensing and back-end intelligent analysis: A unified 
infrastructure for economizing the visual system of city brain," IEEE JSAC, vol. 37, no. 7, pp. 
1489-1503, July 2019.
I. V. Bajić, W. Lin and Y. Tian, "Collaborative intelligence: Challenges and opportunities," Proc. 
ICASSP, 2021, pp. 8493-8497
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Compact Descriptors for Visual Search (CDVS) [1]

• For image-related vision tasks, especially search and retrieval

• Handcrafted features: SIFT and Fisher Vectors 

Compact Descriptors for Video Analysis (CDVA) [2]

• For video-related vision tasks, especially search and retrieval

• Also considered learnt features

• MPEG-VCM (Video Coding for Machines) is a related, broader standardization effort

EXISTING STANDARDS
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[1] L. -Y. Duan, V. Chandrasekhar, J. Chen, J. Lin, Z. Wang, T. Huang, B. Girod, and W. Gao, "Overview of the MPEG-CDVS standard," IEEE
Trans. Image Processing, vol. 25, no. 1, pp. 179-194, Jan. 2016.

[2] L. -Y. Duan, Y. Lou, Y. Bai, T. Huang, W. Gao, V. Chandrasekhar, J. Lin, S. Wang, and A. C. Kot, "Compact descriptors for video analysis: The
emerging MPEG standard," IEEE MultiMedia, vol. 26, no. 2, pp. 44-54, 1 April-June 2019.

[3] S. Ma, X. Zhang, S. Wang, X. Zhang, C. Jia and S. Wang, "Joint feature and texture coding: Toward smart video representation via front-
end intelligence," IEEE Trans. Circuits and Systems for Video Technology, vol. 29, no. 10, pp. 3095-3105, Oct. 2019.
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• State-of-the-art performance on most vision tasks is currently achieved by Deep Neural Networks 
(DNNs)

• Even on the default task – input reconstruction – DNN-based coding provides state-of-the-art 
performance for image compression (though not yet for video)

⇒ DNNs provide a good unified framework for multi-task compression

LOOKING TO THE FUTURE
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J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational image compression with a scale hyperprior,” ICLR 2018.
Z. Cheng, H. Sun, M. Takeuchi and J. Katto, "Learned image compression with discretized Gaussian mixture likelihoods and attention 
modules," CVPR 2020, pp. 7936-7945
Y. -H. Ho, C. -C. Chan, W. -H. Peng, H. -M. Hang and M. Domański, “ANFIC: Image compression using augmented normalizing flows,” IEEE Open 
Journal of Circuits and Systems, vol. 2, pp. 613-626, 2021.
B. Li, J. Liang and J. Han, "Variable-rate deep image compression with vision transformers," IEEE Access, vol. 10, pp. 50323-50334, 2022.
Z. Guo, Z. Zhang, R. Feng and Z. Chen, "Causal contextual prediction for learned image compression," IEEE Trans. Circuits and Systems for 
Video Technology, vol. 32, no. 4, pp. 2329-2341, April 2022.
F. Brand, K. Fischer, A. Kopte, M. Windsheimer and A. Kaup, “RDONet: Rate-distortion optimized learned image compression with variable 
depth,” CVPRW 2022, pp. 1758-1762
W. Duan, K. Lin, C. Jia, X. Zhang, S. Ma and W. Gao, “End-to-end image compression via attention-guided information-preserving module,” ICME 
2022
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Questions?
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Part 1

Theory
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REVIEW OF RELEVANT INFORMATION THEORY
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Entropy

• Let 𝑋 be a discrete random variable taking on values 𝑥 in some sample space 𝒳

• The entropy of 𝑋 (in bits) is defined as

𝐻 𝑋 = −(
!∈𝒳

𝑝 𝑋 = 𝑥 * log$𝑝 𝑋 = 𝑥

• Entropy is a measure of uncertainty (randomness)

• Entropy is the limit of lossless compressibility

• Examples:

o Fair coin: 𝒳 = {Heads, Tails},   𝑝 𝑋 = Heads = 𝑝 𝑋 = Tails = 1/2,   𝐻 𝑋 = 1 bit

o Fair die: 𝒳 = {1, 2, 3, 4, 5, 6},   𝑝 𝑋 = 1 = ⋯ = 𝑝 𝑋 = 6 = 1/6,   𝐻 𝑋 = log$6 = 2.58 bits

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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REVIEW OF RELEVANT INFORMATION THEORY
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Mutual information

• Let 𝑋 and 𝑌 be discrete random variables taking on values in sample spaces 𝒳 and 𝒴

• The mutual information (MI) between 𝑋 and 𝑌 (in bits) is defined as

𝐼 𝑋; 𝑌 = (
(!,')∈𝒳×𝒴

𝑝 (𝑋, 𝑌) = (𝑥, 𝑦) * log$
𝑝 (𝑋, 𝑌) = (𝑥, 𝑦)
𝑝 𝑋 = 𝑥 * 𝑝 𝑌 = 𝑦

• MI is a measure of statistical dependence (linear or nonlinear) between 𝑋 and 𝑌

• MI is the amount of information that 𝑋 carries about 𝑌, and vice versa 

• Examples:

o 𝑋 and 𝑌 independent  ⟺ 𝐼 𝑋; 𝑌 = 0

o 𝐼 𝑋; 𝑋 = 𝐻(𝑋) :  mutual information between 𝑋 and itself is its own entropy

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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REVIEW OF RELEVANT INFORMATION THEORY
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Markov chain

• A sequence of random variables 𝑋 → 𝑌 → 𝑍 is a Markov chain if 𝑍 is conditionally independent 
of 𝑋, given 𝑌

always

𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 * 𝑝 𝑦 𝑥 * 𝑝 𝑧 𝑦, 𝑥

= 𝑝 𝑥 * 𝑝 𝑦 𝑥 * 𝑝 𝑧 𝑦

if Markov chain

• If 𝑍 is a function of 𝑌, i.e., 𝑍 = 𝑓(𝑌), then 𝑋 → 𝑌 → 𝑍 is a Markov chain

o Since 𝑍 is computed from 𝑌, it does not depend on 𝑋 (when 𝑌 is given)

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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REVIEW OF RELEVANT INFORMATION THEORY
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Data processing inequality (DPI)

• If 𝑋 → 𝑌 → 𝑍 is a Markov chain, then 

𝐼(𝑋; 𝑌) ≥ 𝐼(𝑋; 𝑍)

• Downstream variable (𝑍) has no more information about input (𝑋) than an upstream variable (𝑌)

• Extended version of DPI: if 𝑋 → 𝑌 → 𝑍 →𝑊 is a Markov chain, then

𝐼(𝑌; 𝑍) ≥ 𝐼(𝑋;𝑊)

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
R. W. Yeung, A First Course in Information Theory, Springer, 2006.
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS
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• 𝒴+ =  output of the 𝑖-th layer in a feedforward neural network

(input)     𝑋 𝒴, 𝒴$ 𝒴- 𝒴. 𝑇 (output)

• 𝑋 → 𝒴, → 𝒴$ → 𝒴- → 𝒴. → 𝑇 is a Markov chain

o So is any chain 𝑋 → 𝒴+ → 𝒴/ → 𝑇 for 𝑖 < 𝑗
o True for dense layers, convolutional layers, pooling layers, etc.

N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck principle,” Proc. IEEE Information Theory Workshop (ITW), Mar. 2015.
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS
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• What about skip connections?

(input)     𝑋 𝒴, 𝒴$ 𝒴- 𝒴. 𝑇 (output)

• 𝑋 → 𝒴, → 𝒴$ → 𝒴- is not a Markov chain

o 𝑌- depends on both 𝒴$ and 𝒴,, not just 𝒴$
o However, 𝑋 → 𝒴, → 𝒴- is a Markov chain

o Markovity still holds “across” skip connections, but not “under” them
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Claim: In a non-generative feedforward neural network, in terms of lossless compression, 
intermediate features are at least as compressible as the network’s input.

Proof (sketch):

• Let 𝒴 = {𝒴+ ∶ 1 ≤ 𝑖 ≤ 𝐿} be a set of some intermediate layer outputs (features)

• Decompose mutual information between input 𝑋 and 𝒴 as

𝐼 𝑋;𝒴 = 𝐻 𝒴 − 𝐻 𝒴 𝑋)

= 𝐻 𝒴

• Note that 𝑋 → 𝑋 → 𝒴 is a Markov chain and apply DPI

𝐻 𝑋 = 𝐼 𝑋; 𝑋 ≥ 𝐼 𝑋;𝒴 = 𝐻 𝒴

• So, 𝐻 𝒴 is no larger than 𝐻 𝑋 ⟹ features 𝒴 at least as compressible (losslessly) as input 𝑋

LOSSLESS FEATURE COMPRESSIBILITY
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0, because 𝒴 is a function of 𝑋

H. Choi and I. V. Bajić, ”Scalable image coding for humans and machines," IEEE Trans. Image Processing, vol. 31, pp. 2739-2754, 2022.
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LOSSLESS FEATURE COMPRESSIBILITY
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• Intermediate features being more compressible than the input is good news! 

• But lossless compressibility is very limiting

o Lossy compression gives much higher compression ratios

o Practical image and video codecs mostly lossy

o Can we extend this result to lossy compression?
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REVIEW OF RELEVANT INFORMATION THEORY
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Rate-distortion function

• Let 𝑋 be a random variable and X𝑋 be its “quantized” version according to some conditional 
probability distribution 𝑝 Y𝑥 𝑥)

• Let 𝑑(Y𝑥, 𝑥) be a distortion metric – how much Y𝑥 differs from 𝑥

• For a given distortion level 𝐷, define set 𝒫0(𝐷) of conditional distributions as

𝒫0(𝐷) = 𝑝 Y𝑥 𝑥) ∶ (
!, 1!
𝑝(𝑥) * 𝑝 Y𝑥 𝑥) * 𝑑(Y𝑥, 𝑥) ≤ 𝐷

𝔼 𝑑( X𝑋, 𝑋)
• Rate-distortion (RD) function for 𝑋 is given by

𝑅0 𝐷 = min
2 1! !) ∈ 𝒫!(4)

𝐼(𝑋; X𝑋)

• 𝑅0 𝐷 is the minimum rate (in bits) at which you can encode 𝑋 without incurring distortion > 𝐷
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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LOSSY FEATURE COMPRESSIBILITY
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• In order to use RD theory in our case, we need some modifications

𝑓

𝑋 𝒴 𝑇
𝑔 ℎ

• When we compress input 𝑋, we care about what happens to the output 𝑇

𝒫0(𝐷) = 𝑝 Y𝑥 𝑥) ∶ 𝔼 𝑑(𝑓( X𝑋), 𝑓(𝑋)) ≤ 𝐷

• Similarly, when we compress features 𝒴, we care about what happens to the output 𝑇

𝒫𝒴(𝐷) = 𝑝 Y𝑦 𝑦) ∶ 𝔼 𝑑(ℎ( X𝒴), ℎ(𝒴)) ≤ 𝐷
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LOSSY FEATURE COMPRESSIBILITY
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• We can now define the RD function for the input

𝑅0 𝐷 = min
2 1! !) ∈ 𝒫!(4)

𝐼(𝑋; X𝑋)

and the RD function for the features

𝑅𝒴 𝐷 = min
2 1' ') ∈ 𝒫𝒴(4)

𝐼(𝒴; X𝒴)

• In both cases, distortion is measured at the output of the network

• Distortion metric can be any metric appropriate for the network’s task, e.g.

o Mean Squared Error for regression tasks

o Cross-entropy or accuracy for classification tasks

o …
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Claim: In a non-generative feedforward neural network, in terms of lossy compression, 
intermediate features are at least as compressible as the network’s input.

𝑅𝒴 𝐷 ≤ 𝑅0 𝐷

Proof (sketch):

• Let 𝐷 be given and let 𝑝∗ Y𝑥 𝑥) be optimal for input compression (achieves 𝑅0 𝐷 )

• Draw inputs 𝑋 ~ 𝑝(𝑥) and process each input 𝑥 in two ways as follows

• For each 𝑥, obtain 𝑦 and d𝑦

• Define 𝑞 d𝑦 𝑦) by pairing up 𝑦 and d𝑦

LOSSY FEATURE COMPRESSIBILITY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL

𝑥 Y𝑥 d𝑦

𝑦

𝑝∗ Y𝑥 𝑥) 𝑔

𝑔

H. Choi and I. V. Bajić, ”Scalable image coding for humans and machines," IEEE Trans. Image Processing, vol. 31, pp. 2739-2754, 2022.
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Proof (sketch, continued):

• Show 𝑞 d𝑦 𝑦) ∈ 𝒫𝒴(𝐷), i.e., satisfies distortion constraint for 𝐷

o Easy to show because 𝑞 d𝑦 𝑦) is derived from 𝑝∗ Y𝑥 𝑥) ∈ 𝑅0 𝐷 , which satisfies distortion 
constraint for 𝐷

• Apply DPI to Markov chain  h𝒴 → X𝑋 → 𝑋 → 𝒴 to show
𝐼 𝒴; h𝒴 ≤ 𝐼(𝑋; X𝑋)

• When 𝑝∗ Y𝑥 𝑥) is used to generate X𝑋, the above inequality becomes
𝐼 𝒴; h𝒴 ≤ 𝑅0 𝐷

• So we have found one distribution 𝑞 d𝑦 𝑦) ∈ 𝒫𝒴(𝐷) that achieves 𝐼 𝒴; h𝒴 below 𝑅0 𝐷 . Therefore

𝑅𝒴 𝐷 = min
2 1' ') ∈ 𝒫𝒴(4)

𝐼(𝒴; X𝒴) ≤ 𝑅0 𝐷

LOSSY FEATURE COMPRESSIBILITY
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H. Choi and I. V. Bajić, ”Scalable image coding for humans and machines," IEEE Trans. Image Processing, vol. 31, pp. 2739-2754, 2022.
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DEEPER MEANS MORE COMPRESSIBLE
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Claim: In a non-generative feedforward neural network, deeper layers are more compressible.

𝐻 𝒴+ ≤ 𝐻 𝒴/ and     𝑅𝒴# 𝐷 ≤ 𝑅𝒴$ 𝐷 for 𝑖 > 𝑗

(input)     𝑋 𝒴, 𝒴$ 𝒴- 𝒴. 𝑇 (output)

Proof: Follows from previous proofs by replacing 𝑋 with 𝒴/ and 𝒴 with 𝒴+
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• Theory shows that intermediate features are at least as compressible as the network’s input

• This is true for any non-generative feedforward network: 

o Regardless of what its task is    (𝑇 can be any task)

o Regardless of how many tasks there are   (𝑇 can be a composite task)

• However:

o Theory talks about limits; practical codecs might be far from those limits

o Theory shows what is possible, but not how to get there

o Ideal for grant proposals 😀

• What can we expect from practical (i.e., non-optimal) codecs?

SUMMARY OF FEATURE COMPRESSIBILITY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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• A simple convolutional neural network (CNN) for cats vs. dogs classification

• Trained on Kaggle’s cats vs. dogs dataset

• Goal: compare input compression vs. feature compression in terms of resulting classification 
accuracy

TOY EXAMPLE OF FEATURE COMPRESSIBILITY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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Figure 1: The CNN model used for cats vs. dogs classification.

Discussion The above theorem is a lossy counterpart to Theorem 1, showing that in the lossy233

case also, layers’ outputs are at least as compressible as the input for any given distortion level.234

What is interesting in this case is that even if the mapping from input X to layers’ outputs T is235

perfectly invertible, T may still be more compressible than X , because it may allow for more efficient236

quantization. This is different from the lossless case where invertibility of the mapping from X to T237

meant than T is no more compressible than X .238

5 Examples239

5.1 A simple cats vs. dogs experiment240

To illustrate practical compression of inputs vs. layer outputs, we constructed a simple Convolutional241

Neural Network (CNN) for cats vs. dogs classification, as shown in Figure 1. The model has seven242

layers. The first five are composed of 2D convolution (3⇥3 filters), batch normalization, Rectified243

Linear Unit (ReLU) activation, and 2⇥2 max pooling. The number of filters is 8 in the first layer, and244

increases by a factor of 2 up to the fifth layer. The last two layers are fully connected, with 512 and245

128 units, respectively, and ReLU activation. The output is a single unit with sigmoid activation. The246

figure shows tensor dimensions at the output of each layer.247

The model was implemented in Keras and trained on the data from Kaggle.3 From the 25,000 labeled248

images provided (12,500 for each class), 22,000 were selected for training (11,000 in each class)249

and the remaining 3,000 were used for testing. Inputs were resized to 128⇥128 and the model was250

trained for 20 epochs using the Adam optimizer with the initial learning rate of 5 · 10�3. The test251

accuracy was 0.9113. There are, of course, more sophisticated and accurate models for this problem;252

our goal here is to illustrate feature compression on a simple model, rather than construct the most253

accurate model for this problem.254

To compress tensors at intermediate layers, the tensor was tiled into an image, rescaled to range255

[0, 255], rounded to the nearest integer, and encoded as a grayscale image using JPEG4 with varying256

quality factors from 2 to 95. This gave a range of qualities and file sizes. The maximum value of257

each tensor, which is needed for scaling to [0, 255] and back, was stored as a 32-bit (4 Byte) value258

and included in the file size. For comparison, 128⇥128 input images were also encoded using JPEG.259

The left part of Figure 2 shows an example of an input image encoded at various JPEG qualities (top)260

and the corresponding tiled tensors from layers 1-5 also encoded at various JPEG qualities.261

The compression vs. accuracy curves for the input and layers 1-5 are shown in the right part of262

Figure 2. With input compression, baseline accuracy can be reached with average JPEG file size of263

3https://www.kaggle.com/c/dogs-vs-cats
4https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html

7
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TOY EXAMPLE OF FEATURE COMPRESSIBILITY
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Input

Layer 1

…

Layer 5

File size

Features tiled into an 
image and compressed 
using JPEG

Feature compression better than input 
compression starting with layer 3 – why?

If we had an optimal encoder, this 
would already happen at layer 1



43

Results on YOLOv2 object detector

• Features compressed by BPG (HEVC-Intra)

• Part of VOC2007 dataset for testing

• Images from VOC2007 and VOC2012 for re-
training to account for quantization

• Bit savings of up to 60% at equivalent accuracy 
without re-training

• Bit savings of 70% with re-training

ANOTHER EXAMPLE OF FEATURE COMPRESSIBILITY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL

H. Choi and I. V. Bajić, “Deep feature compression for collaborative object detection,” Proc. IEEE ICIP, Oct. 2018.

Fig. 4. mAP vs. KBPI for lossless deep feature compression

We first test the impact of lossless compression (after the
Q-layer) on accuracy. As is common with multi-class object
detectors [18], we use mean Average Precision (mAP) as a
measure of accuracy, and look at its variation with 8-bit, 10-
bit and 12-bit quantization in the Q-layer. The compression
of feature data is quantified using average Kbits per image
(KBPI). Fig. 4 presents mAP versus KBPI for various split
points in the network. Vertical bars show the standard devia-
tion of mAP at a given average KBPI, while horizontal bars
show the standard deviation of KBPI for the corresponding
average mAP. The red square indicates the operating point
achieved by the cloud-only approach, without network split-
ting and uploading the input JPEG images to the cloud.

As seen in the figure, when the split point is close to the in-
put (e.g. max 3, conv 6 or conv 10 layers), the data volume is
too large, and even with lossless compression of feature data,
it is more efficient to simply upload input images to the cloud.
But as we move down the network, it becomes more advanta-
geous to upload feature data. Meanwhile, the mAP does not
change much - scores around 0.7465-0.7475 are achieved for
all the cases. Hence, lossless compression of deep features
(following 8-, 10-, or 12-bit quantization) has only a minor
influence on accuracy, but also provides limited (if any) bit
savings for data transfer to the cloud.

Lossy compression offers significant bit savings, but care
must be taken to minimize the loss of accuracy. In order
to evaluate the impact of lossy compression, we show mAP
vs. KBPI curves in Fig. 5. The green curve corresponds
to compressing the input image, as the default cloud-only
approach. The blue curves correspond to splitting the net-
work at the output of max 11 layer, and red curves correspond
to the split after the max 17 layer. In each case, the solid
line corresponds to using default YOLO9000 weights while
the dashed line corresponds to using the weights obtained
by compression-augmented training, starting from the pre-
trained weight, “Darknet19 448x448”, for ImageNet classi-
fication [19] and following the training procedure in [20]. As

Fig. 5. mAP vs. KBPI for lossy deep feature compression

seen in the figure, lossy compression can provide significant
bit savings over the cloud-only approach, while compression-
augmented training further extends the range of useful com-
pression levels for a given mAP.

To quantify the differences between various cases, we
adopt a Bjontegaard Delta (BD) approach [21]. Specifi-
cally, we use the BD calculation to compute BD-KBPI-mAP,
which indicates the average difference in KBPI at the same
mAP. The results are shown in Table 1, where the default
case against which the comparison is made is the cloud-only
approach. As shown in the table, compressing features at
the output of max 11 (max 17) while using default weights
would give an average saving of 6% (60%) at the same mAP
compared to cloud-only approach. Meanwhile, the weights
obtained through compression-augmented training would
provide an additional bit saving of 39% (10%), for the total
of up to 45% (70%) bit savings.

5. CONCLUSIONS

We studied deep feature compression for collaborative object
detection between the mobile and the cloud. We examined
the impact of compression on detection accuracy and showed
that lossless compression of 8-bit (or higher) quantized data
does not have much impact on the accuracy. Lossy compres-
sion provides higher bit savings, but also affects the accuracy.
To compensate for this, we proposed compression-augmented
training, which is able to extend the range of useful compres-
sion levels for a desired accuracy.

Table 1. BD-KBPI-mAP of lossy feature compression vs.
cloud-only approach

Split at Default weights Re-trained weights
max 11 �6.09% �45.23%
max 17 �60.30% �70.30%
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geous to upload feature data. Meanwhile, the mAP does not
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all the cases. Hence, lossless compression of deep features
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seen in the figure, lossy compression can provide significant
bit savings over the cloud-only approach, while compression-
augmented training further extends the range of useful com-
pression levels for a given mAP.

To quantify the differences between various cases, we
adopt a Bjontegaard Delta (BD) approach [21]. Specifi-
cally, we use the BD calculation to compute BD-KBPI-mAP,
which indicates the average difference in KBPI at the same
mAP. The results are shown in Table 1, where the default
case against which the comparison is made is the cloud-only
approach. As shown in the table, compressing features at
the output of max 11 (max 17) while using default weights
would give an average saving of 6% (60%) at the same mAP
compared to cloud-only approach. Meanwhile, the weights
obtained through compression-augmented training would
provide an additional bit saving of 39% (10%), for the total
of up to 45% (70%) bit savings.

5. CONCLUSIONS

We studied deep feature compression for collaborative object
detection between the mobile and the cloud. We examined
the impact of compression on detection accuracy and showed
that lossless compression of 8-bit (or higher) quantized data
does not have much impact on the accuracy. Lossy compres-
sion provides higher bit savings, but also affects the accuracy.
To compensate for this, we proposed compression-augmented
training, which is able to extend the range of useful compres-
sion levels for a desired accuracy.

Table 1. BD-KBPI-mAP of lossy feature compression vs.
cloud-only approach

Split at Default weights Re-trained weights
max 11 �6.09% �45.23%
max 17 �60.30% �70.30%
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• Based on the results so far, it seems one needs to move the compression point in order to 
achieve gains – this makes encoder more complicated

• But there is another way, via “distillation” – no need to move the compression point

(input)     𝑋 𝒴, 𝒴$ 𝒴- 𝒴. 𝑇 (output)

compress to match

Claim: Under certain conditions, compressing to match (“distill”) deeper layers is better.

DISTILLATION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL

A. Harell, A. de Andrade, and I. V. Bajić, ”Rate-distortion in image coding for machines," PCS 2022. arXiv:2209.11694
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• Different tasks have different distortion metrics

• Need to define task importance

o Need to be careful about scale of different distortion metrics 

• Need to allocate bits appropriately

• One way to bring task distortions to a common scale

𝐷+ =
𝐴+ − 𝐴+
𝐴+

* 100

• 𝐴+ could be mAP, IoU, Jaccard index, MSE, PSNR, …

CODING FOR MULTIPLE TASKS

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL

% change in task accuracy 
due to compression

accuracy w/o 
compression

accuracy after 
compression

S. R. Alvar and I. V. Bajić, “Pareto-optimal bit allocation for collaborative intelligence,” IEEE Trans. Image Processing, vol. 30, Feb. 2021. 
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CODING FOR MULTIPLE TASKS
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S. R. Alvar and I. V. Bajić, “Pareto-optimal bit allocation for collaborative intelligence,” IEEE Trans. Image Processing, vol. 30, Feb. 2021. 

• Tractable rate-distortion (RD) model

where 𝑅/ is the rate of the 𝑗-th coding unit

• Benefits of this RD model:
o “Makes sense” – distortion reduces exponentially 

with rates
o Fits the data: R2 > 0.94 in all our tests
o Tractable – distortion is convex and monotonically 

decreasing with rate

3

(a)

(b)

(c)

(d)

Figure 1: CI systems: (a) single-stream single-task; (b) single-
stream multi-task; (c) multi-stream single-task; (d) multi-
stream multi-task.

other cases, a measure that decreases with accuracy is used,
for example Root Mean Squared Error (RMSE) for disparity
estimation [34]. These accuracy measures also have differ-
ent scales, making their comparison difficult. It is therefore
important to define task distortion that would map all these
measures to a set of more comparable values and ensure
uniform behavior (either increasing or decreasing) as the
accuracy degrades. Below we define one such task distortion.

Consider a DNN model with k � 1 tasks. Let Ai be
the the model’s average performance on the i-th task, on a
given dataset, without tensor compression. We define the task-
specific distortion as the fraction of the performance drop
relative to the case where no compression is applied to the
feature tensors. Let Ai be the average performance with tensor
compression on the same dataset. Then the distortion for task
i is defined as

Di =
|Ai �Ai|

Ai
⇥ 100. (1)

Note that Di = 0 if the accuracy with compression (Ai)
matches the accuracy without compression (Ai), and increases
as Ai starts to deviate from Ai. Di can be interpreted as a
percentage drop in performance due to feature compression.

C. Distortion-rate model
Let R = (R1, R2, ..., RN ) be the vector of bit rates for the

N tensors to be compressed in a multi-stream CI system. We

Figure 2: distortion-rate surface obtained by encoding two
deep feature tensors (green) and the fitted surface (gray). R1

and R2 are the average bit rates (Kbits/tensor) of the two
tensors in a split DenseNet [11] used for image classification.

model the dependence of task distortion on these rates using
monotonically-decreasing convex surfaces given by:

Di(R) = Di(R1, ..., RN ) ⇡ �i +
NX

j=1

↵i,j2
��i,jRj , (2)

where �i, ↵i,j > 0 and �i,j > 0 are surface parameters. In our
experiments, we used non-linear least squares method based
on Levenberg-Marquardt algorithm [35] to fit the surface (2)
to the measured distortion-rate points.

There are several reasons for using such a distortion-rate
model. First, the model is quite accurate in approximating
measured distortion-rate points. As an example, Fig. 2 shows
a fitted surface for a single-task model (DenseNet [11]),
with two tensors to be coded (hence, two rates). As seen
in the figure, the agreement between the original points and
the fitted surface is quite good. This is further confirmed
quantitatively using the coefficient of multiple determination
R2 [36], which, for the surface in Fig. 2, was R2 = 0.98. Note
that 0  R2  1, so R2 = 0.98 is quite high. In addition, the
residuals (the differences between the actual points and the
fitted surface) were clustered around zero, with mean residual
being 2.4⇥ 10�10. This, together with the high value of R2,
indicates that the model in (2) is an excellent approximation to
the measured distortion-rate points. Indeed, in all test cases in
our experiments we were obtaining R2 > 0.94, with residuals
centered around zero.

Another reason for selecting the model in (2) is the fact that
theoretical distortion-rate functions [37] for commonly-used
source models, such as Gaussian source with squared-error
distortion and Laplacian source with absolute-error distortion,
have this form, where distortion decays exponentially with
increasing rate. And finally, the fact that distortion-rate sur-
faces in (2) are convex and monotonically decreasing allows us
to obtain closed-form solutions for single-task and scalarized

𝐷+ 𝑅,, … , 𝑅6 ≈ 𝛾+ +(
/7,

6

𝛼+,/289#,$:$

MULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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Claim: Let 𝑤+ ≥ 0, ∑+7,6 𝑤/ = 1 be the relative importance of task 𝑖 ∈ {1, … , 𝑇}, so that the total
distortion over all tasks is 

Then the optimal bit allocation to minimize 𝐷; 𝑅,, … , 𝑅6 subject to ∑/7,6 𝑅/ ≤ 𝑅; is

where [𝑥]<= max(0, 𝑥) and 𝜆 is the Lagrange multiplier.

Proof:  Via Karush-Kuhn-Tucker (KKT) conditions.

𝑅/∗ =
1
𝛽/

log$ (ln 2)𝛼/𝛽/ − log$𝜆
<

𝐷; 𝑅,, … , 𝑅6 =(
+7,

=

𝑤+ * 𝐷+ 𝑅,, … , 𝑅6 ≈ 𝛾 +(
/7,

6

𝛼+289$:$

MULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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• In the previous result we relied on task weights 𝑤+ to convert a multi-objective problem into a 
single-objective problem 

• But what if task importance is not know in advance?
• General problem is multi-objective optimization:

minimize 𝐷, 𝑅,, … , 𝑅6 , … , 𝐷= 𝑅,, … , 𝑅6

subject to   ∑/7,6 𝑅/ ≤ 𝑅;

• Can be solved numerically
• Because of convexity, it can also be solved analytically in the case of two coding units (𝑁 = 2) 

and any number of tasks 𝑇

MULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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Claim: Let 𝑅,+ , 𝑅$+ be the rates on the line 𝑅, + 𝑅$ = 𝑅; that minimize 𝐷+ 𝑅,, 𝑅$ , and let 
𝑅,>?@ = max{𝑅,+ }, 𝑅,>AB = min{𝑅,+ }, 𝑅$>?@ = 1 − 𝑅,>AB, and 𝑅$>AB = 1 − 𝑅,>?@. Then any point 
on the line 𝑅, + 𝑅$ = 𝑅; between 𝑅,>AB, 𝑅$>?@ and 𝑅,>?@, 𝑅$>AB is Pareto-optimal, and 
there are no Pareto-optimal solutions outside of this line segment.

Proof:    Follows from the properties of distortion surfaces.

MULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 1: THEORY
IEEE ICIP 2022 TUTORIAL
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Pareto front Pareto set
(rates that achieve
the Pareto front)

8

(a)

(b)

(c)

Figure 5: DNN models used in the experiments: (a) ©2017 IEEE. DenseNet [11]; the dashed line indicates where the model
is split. (b) ©2017 IEEE. Illustration of tensors in a simple dense block of DenseNet. (c) ©2020 IEEE. The 2-stream, 3-task
DNN from [15]. For clarity, feature tensors are shown, rather than layers.

Figure 6: An example of the tiled quantized deep feature tensor
(enhanced for better visualization).

{50, 100, 150} Kbits. We randomly selected 20 balanced
classes from the validation set. In each class, 20% of the data
is randomly chosen to obtain distortion-rate surface (Fig. 2)
parameters, and the remaining 80% of the data is used for
testing. Distortion (1) is derived from the Top-1 accuracy.
With reference to Section VI-A, the distortion-rate surface
in Fig. 2 is obtained by setting Rmin

t = 50, Rmax
t = 150,

and sampling rates in 0.5Rmin
t  R1 + R2  1.5Rmax

t , i.e.,
25  R1 + R2  225. Note that the first tensor has 4 times

as many elements as the second tensor (Table V), so it can be
expected that its rate will be (roughly) 4 times as large, i.e.,
R1 = 4 ·R2. Plugging this back into the above inequality, we
obtain that the ranges where R1 and R2 should be sampled
are 20  R1  180 and 5  R2  45. For the proposed bit
allocation method, we fitted the surface model (2) and then
used (15) to allocate bits.

Fig. 7 shows the fitted distortion-rate surface from Fig. 2,
along with the intersections of this surface with three rate
constraint planes R1 +R2 = Rt. The red dashed curve corre-
sponds to Rt = 50 Kbits, the blue dashed curve corresponds
to Rt = 100 Kbits and the yellow dashed curve corresponds to
Rt = 150 Kibts. Notice that the red curve is in a highly sloped
part of the surface, blue curve in the medium-slope part, and
yellow curve in a relatively flat part. The difference between
optimal and sub-optimal bit allocations are most obvious in the
highly sloped part (lowest Rt), since the impact on distortion
is higher here than in the flatter parts of the surface. As we
move towards the flatter parts of the surface, the difference
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Table IV: Rates allocated to each tensor, task-specific accuracies and total distortion for Rt=1000 Kbits. Higher numbers (")
are better for mIoU and PSNR; lower numbers (#) are better for RMSE.

Rt = 1000
No

compression
Method

1
Method

2
Method

3
Ours

( 13 ,
1
3 ,

1
3 )

Ours
(0.5, 0.48, 0.02)

Ours
(1, 0, 0)

Ours
(0, 1, 0)

Ours
(0, 0, 1)

Task 1 - mIoU (%) " 63.02 61.91 62.16 61.75 62.15 62.20 62.22 62.09 44.23
Task 2 - RMSE (px) # 7.80 7.85 7.87 8.07 7.91 7.85 7.86 7.85 16.43
Task 3 - PSNR (dB) " 39.97 19.98 21.61 22.79 22.16 20.87 21.06 20.34 24.20

R1 - 500.00 666.67 801.16 723.28 601.23 616.72 548.70 986.11
R2 - 500.00 333.33 198.84 276.72 398.77 383.28 451.30 13.89

Rt = 1000 Method 1 Method 2 Method 3 Ours

Dt with ( 13 ,
1
3 ,

1
3 ) 17.46 16.03 16.10 15.75

Dt with (0.5, 0.48, 0.02) 2.20 2.01 3.48 1.91

This intuitively shows why the Pareto-optimal solutions for
our problem satisfy R1 + R2 = Rt, and is a consequence of
the monotonicity of the distortion surfaces. The green points
represent the Pareto front, and are obtained by computing
distortions for the 1000 numerically sampled Pareto-optimal
solutions in Fig. 8(a). The diamonds in Fig. 8(b) correspond
to the diamonds in Fig. 8(a), and represent distortion minima
of the two tasks. For every point on the Pareto front, reducing
one task distortion increases the other distortion, and this can
clearly be seen in Fig. 8(b).

3) Pareto set for a 3 ⇥ 2 system: Here we again use the
model in Fig. 5c, but the split point is moved to just before the
stack layer (output of layer 74) where there are three tensors
to be transferred. We keep Tasks 1 and 2 from the previous
section, thereby creating a 3 ⇥ 2 CI system. Following the
procedure described before Theorem 4, we find rate extrema
for the total rate constraint of Rt = 1000 Kbits. Theorem 4
then states that the Pareto set is bounded by a polygonal region
obtained as the intersection of the rate constraint plane and
rate extrema cube. This region is shown in Fig. 9 as orange
points. The green points show 1000 samples from the Pareto
set obtained numerically, as in the previous section. As shown
in the figure, the Pareto set is fully contained in the orange
region, as predicted by Theorem 4. On the other hand, this is
not the tightest possible bound on the Pareto set; tightening
this bound is a topic for future research.

Table V: Dimensions of the input image and deep feature
tensors for the single-task (DenseNet) model.

Height⇥Width⇥Channels
Input image 224 ⇥ 224 ⇥ 3

Tensor 1 (layer 15) 28 ⇥ 28 ⇥128
Tensor 2 (layer 17) 28⇥28⇥32

Table VI: Dimensions of the input image and deep feature
tensors for the multi-task model.

Height⇥Width⇥Channels
Input image 256 ⇥ 512 ⇥ 3

Tensor 1 (layer 36) 32 ⇥ 64 ⇥ 256
Tensor 2 (layer 61) 16 ⇥ 32 ⇥ 512

(a)

(b)

Figure 8: 2 ⇥ 2 CI system: (a) Pareto set (green) in the rate
plane; (b) Pareto front (green) in the distortion plane.

VII. CONCLUSION

In this paper we studied the bit allocation problem for multi-
stream multi-task CI systems. A convex approximation to the
distortion-rate surface was proposed, which led to the closed-
form solution for bit allocation in single-task systems and
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clearly be seen in Fig. 8(b).

3) Pareto set for a 3 ⇥ 2 system: Here we again use the
model in Fig. 5c, but the split point is moved to just before the
stack layer (output of layer 74) where there are three tensors
to be transferred. We keep Tasks 1 and 2 from the previous
section, thereby creating a 3 ⇥ 2 CI system. Following the
procedure described before Theorem 4, we find rate extrema
for the total rate constraint of Rt = 1000 Kbits. Theorem 4
then states that the Pareto set is bounded by a polygonal region
obtained as the intersection of the rate constraint plane and
rate extrema cube. This region is shown in Fig. 9 as orange
points. The green points show 1000 samples from the Pareto
set obtained numerically, as in the previous section. As shown
in the figure, the Pareto set is fully contained in the orange
region, as predicted by Theorem 4. On the other hand, this is
not the tightest possible bound on the Pareto set; tightening
this bound is a topic for future research.

Table V: Dimensions of the input image and deep feature
tensors for the single-task (DenseNet) model.
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Input image 224 ⇥ 224 ⇥ 3

Tensor 1 (layer 15) 28 ⇥ 28 ⇥128
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Table VI: Dimensions of the input image and deep feature
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Input image 256 ⇥ 512 ⇥ 3
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VII. CONCLUSION

In this paper we studied the bit allocation problem for multi-
stream multi-task CI systems. A convex approximation to the
distortion-rate surface was proposed, which led to the closed-
form solution for bit allocation in single-task systems and
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• The tasks often include input image reconstruction ( X𝑋) and/or some computer vision (CV) 
inference tasks 𝑇

• In the discussion so far, it seems that all features supported all tasks; but a better design is 
possible

• CV inference can also be obtained from X𝑋 (common in practice)
• Data processing inequality (DPI) applied to  𝒴 → X𝑋 → 𝑇:

𝐼(𝒴; X𝑋) ≥ 𝐼(𝒴; 𝑇)

𝑋 𝒴
X𝑋

𝑇

𝑇

Input image Latent 
representation

Reconstructed
image

CV task

CV task
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𝐼(𝒴; X𝑋) ≥ 𝐼(𝒴; 𝑇)

• Latent space 𝒴 contains less 
information about CV task 𝑇 than 
about input reconstruction X𝑋

• Dedicate a subset of 𝒴 to 𝑇, all of it 
to X𝑋

• When only 𝑇 is needed, decode 
only a subset of 𝒴
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Scalable Image Coding for Humans and Machines
Hyomin Choi, Member, IEEE, and Ivan V. Bajić, Senior Member, IEEE

Abstract—At present, and increasingly so in the future, much
of the captured visual content will not be seen by humans.
Instead, it will be used for automated machine vision analytics
and may require occasional human viewing. Examples of such
applications include traffic monitoring, visual surveillance, au-
tonomous navigation, and industrial machine vision. To address
such requirements, we develop an end-to-end learned image codec
whose latent space is designed to support scalability from simpler
to more complicated tasks. The simplest task is assigned to a
subset of the latent space (the base layer), while more complicated
tasks make use of additional subsets of the latent space, i.e.,
both the base and enhancement layer(s). For the experiments, we
establish a 2-layer and a 3-layer model, each of which offers input
reconstruction for human vision, plus machine vision task(s),
and compare them with relevant benchmarks. The experiments
show that our scalable codecs offer 37%–80% bitrate savings on
machine vision tasks compared to best alternatives, while being
comparable to state-of-the-art image codecs in terms of input
reconstruction.

Index Terms—Image compression, deep neural network, multi-
task network, scalable coding, latent-space scalability

I. INTRODUCTION

ADVANCES in artificial intelligence (AI) are having a
major impact on both image/video coding and computer

vision. New research areas are emerging at their intersection,
where the goal is to develop compression systems to support
both human and machine vision [1]. Related standardization
activities – Video Coding for Machines (VCM) [2] and JPEG-
AI [3] – have recently been initiated.

Traditionally, input compression for human vision and
feature compression for machine vision have been ap-
proached separately or sequentially, through paradigms such as
compress-then-analyze or analyze-then-compress [1]. Exam-
ples of the former include traditional computer vision, where
it is common to train and test vision models on JPEG images,
as well as compressed-domain analytics such as [4]–[11],
where analysis is performed on conventionally-compressed
bitstreams without full decoding or input reconstruction. Ex-
amples of the latter include Compact Descriptors for Visual
Search (CDVS) [12], where machine vision-relevant features
such as SIFT [13] are first extracted from the input, then
compressed. In this case, however, reconstructing the input
image would require significant additional bitrate.

Recent deep neural network (DNN)-based image coding
methods [14]–[16] offer competitive rate-distortion (RD) per-
formance against traditional codecs, and their perceptual
performanceis even more impressive [17], [18]. DNN-based
codecs map the input image into a latent space, which is then
quantized and arithmetically coded [19]. Meanwhile, DNN

H. Choi and I. V. Bajić are with the School of Engineering Science, Simon
Fraser University, Burnaby, BC, V5A 1S6, Canada. E-mail: chyomin@sfu.ca,
ibajic@ensc.sfu.ca

Fig. 1. An example of latent-space scalability: channels of a feature tensor
(left) and the tasks they support (right).

computer vision models for classification [20], [21], object
detection [22]–[24], and segmentation [25] pass the input
image through a sequence of latent spaces while performing
analysis. What is interesting about these latent spaces is that
they are at least as compressible as the input, which we prove
in the Appendix. Hence, combining image compression and
DNN-based analysis is theoretically justified.

Another important trend has been the development of
DNN models that support multiple tasks, including input
reconstruction, using compressible representations [26]–[30].
In these methods, however, the entire latent space must be
reconstructed to support any of the tasks. The most recent
proposals [31]–[33] focus on multi-task scalability. For in-
stance, [31] presented a scalable framework to support facial
landmark reconstruction as the base task and input reconstruc-
tion as the enhancement task. However, both tasks rely on
generative [34] decoding, which makes it hard to guarantee
reconstruction fidelity. Liu et al. [32] present scalable image
compression supporting coarse-to-fine classification as well as
input reconstruction as the enhancement task. However, in this
approach, multiple latent spaces are compressed, leading to
inefficiency. The approach proposed in this paper compresses
a single latent space, and still achieves scalability among
multiple tasks, as illustrated in Fig. 1.

This paper is an extension of our recent preliminary
work [33], which presented a 2-layer model based on the
YOLOv3 [24] backbone to support object detection and input
reconstruction. In [33], the enhancement portion of the latent
space did not need to be reconstructed, but it still needed to
be entropy decoded. Those initial ideas are extended in the
present paper in the following ways:

• We extend the 2-task model from [33] so that base and
enhancement layers are now in separate bitstreams, and
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Example 2-layer scalable system:
• End-to-end image codec backbone [2]
• Subset of latent space (𝒴,) needs to be transformed into the latent space ℱ of the CV back-end 

o Need latent-space transform (another neural network)
• CV back-end (for object detection) is YOLOv3 [3] starting at layer 13

𝑋 𝒴 = {𝑌,, … , 𝑌+ , 𝑌+<,, … , 𝑌C} X𝑋

𝑇

Input image Reconstructed
image

CV task

Encoder Decoder

End-to-end neural image codec

CV back-endLatent-space 
transform

ℱ𝒴,
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• Loss function:
ℒ = 𝑅 + 𝜆 * MSE 𝑋, X𝑋 + 𝛾 * MSE ℱ, Xℱ

• 𝑅 is the rate estimate [2]
• Distortion 𝐷 composed of input reconstruction MSE 𝑋, X𝑋 and CV feature reconstruction MSE ℱ, Xℱ
• Since MSE ℱ, Xℱ depends only on 𝒴, (and not on 𝒴\𝒴,), CV-relevant information is steered to 𝒴,

𝐷

𝑋 𝒴 = {𝑌,, … , 𝑌+ , 𝑌+<,, … , 𝑌C} X𝑋

𝑇

Input image Reconstructed
image

CV task

Encoder Decoder

End-to-end neural image codec

CV back-endLatent-space 
transform

ℱ𝒴,
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• Object detection experiments on the 
COCO dataset

• Performance much better than 
compressing input directly:

o 37 – 48% bit savings compared to 
state-of-the-art image codecs

o 2.8 – 4.5% more accurate 
detection at the same bit rate

o Reason: not all pixel details are 
needed for object detection
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TABLE I
� VALUES FOR TRAINING MODELS

Model Index 1 2 3 4 5 6

� 0.0018 0.0035 0.0067 0.013 0.025 0.0483

and 3-layer networks are trained on the same datasets using a
two-stage training strategy described below.

A. Training setup
Our multi-task networks are trained in two stages. In the

first stage, the networks are trained on CLIC [17] and JPEG-
AI [43] datasets. Randomly cropped patches with size of
256 ⇥ 256 from both datasets are used as input. We also
set the mini-batch size to 16. Adam optimizer with a fixed
learning rate of 10�4 is used for 400 epochs on a GeForce RTX
2080 GPU with 11 GB RAM. Then, we change the dataset
to VIMEO-90K [44] to continue the training for another 300-
400 epochs in the second stage. Likewise, randomly cropped
patches are drawn from the dataset, but this time the learning
rate decreases with polynomial decay for every 10 epochs. Six
values of �, shown in Table I, are used in (4) to produce six
versions of the trained networks, as in [45]. Specifics of the
2- and 3-layer networks are given below.

Two-layer network: A LST in the base layer maps the base
features to the convolution output of layer 13 of YOLOv3,
eF (13)
1 2 R2N⇥2M⇥256. To match the resolution of the target

feature tensor, the LST scaling factors rk, k 2 {1, 2, 3, 4},
are set to 2, 1, 1, and 1, respectively. The processing at layer
13 of YOLOv3 includes a convolutional layer followed by
batch normalization and Leaky ReLU activation, as shown
in Fig 9(a). Since the pre-trained weights of YOLOv3 [24]
represent prior knowledge obtained over the training data, we
keep and re-use them for the batch normalization followed by
an activation function at layer 13, so the last layer of the LST
simply adopts a linear activation. The estimate of the layer
13 convolution output, produced by our LST, is then used as
input to the batch normalization with the learned weights at
layer 13. To account for this, the distortion equation is slightly
modified from (6), to

D = MSE(X, bX) + � · MSE
⇣
F

(13)
1 , V

(13)( eF (13)
1 , ⇢

⇤)
⌘
,

(10)

where � = 0.006 and V
(13) includes batch normalization

followed by Leaky ReLU activation, with pre-trained weights
⇢
⇤ from [24].
Three-layer network: LSTs in the base and the first

enhancement layer individually estimate intermediate tensors
of Faster R-CNN [46] for object detection and Mask R-
CNN [25] for segmentation, respectively. Fig. 9(b) presents the
ResNet-50 [20] based Feature Pyramid Network (FPN) [35]
used as a backbone network for both R-CNN networks. In
particular, the LSTs estimate the outputs of layer 4 in the FPN,
eF (4)
j 2 R4N⇥4M⇥256, where j 2 {1, 2}. Hence, to generate

the correct size of the feature tensors from the sub-latents
eY1 and { bY1,

bY2}, both LSTs have the same configuration

TABLE II
SUMMARIZED PERFORMANCE OF VISION TASKS AGAINST VARIOUS

BENCHMARKS WITH BD METRICS

Two-layer Network Three-layer Network

Object Detection Segmentation

Benchmarks BD-Bitrate BD-mAP BD-Bitrate BD-mAP BD-Bitrate BD-mAP

VVC –39.8 2.79 –73.2 2.33 –71.2 2.34
HEVC –47.9 4.55 –73.2 3.05 –74.7 2.96

Minnen et al. [15] –41.3 3.26 –78.7 3.73 –77.2 3.38
Cheng et al. [16] –37.4 2.89 –76.6 3.62 –75.4 3.49

of scaling factors: r1 = r2 = 2 and r3 = r4 = 1. The
activation at layer 4 in the FPN is ReLU, so we use the
same function for the last activation layer for both LSTs. For
distortion computation, the MSE is measured at various points
P2–P6 in the FPN, which are shown in Fig. 9(b). To account
for this, the distortion equation (6) is slightly modified to

D = MSE(X, bX)

+ � · 1
5
·

2X

j=1

6X

l=2

MSE(Plj , V back-end,Pl
FPN,j ( eF (4)

j , ⇢
⇤
j ))

(11)

where � = 0.0015 and V
back-end,Pl

FPN,j represents the portion of
the FPN back-end up to Pl, with pre-trained weights ⇢

⇤
j [47],

using eF (4)
j as input.

B. Evaluation on machine vision tasks

Our multi-task networks are evaluated on relevant datasets
associated with targeted tasks, in terms of task accuracy vs.
bitrate. The benchmarks consist of conventional codecs, such
as HEVC [39] and VVC [48] with quantization parameters
QP 2 {22, 25, 28, ..., 40}, as well as DNN-based image
codecs [15], [16], applied to input images. Then decoded
images are used as input to the pre-trained computer vision
model2 to examine task accuracy.

Two-layer network: Our two-layer network supports object
detection in the base layer using the YOLOv3 [24] back-
end. We first evaluate the object detection performance on
the COCO2014 validation set [49], which includes about 5K
images. Since most vision networks resize the input to a
specific resolution before processing, we also resize input
images to 512 ⇥ 512 using bilinear interpolation without
letterboxing, in order to generate (via LST) a feature tensor
eF (13)
1 2 R64⇥64⇥256 that can be directly fed into the YOLOv3

back-end. The same resizing is done with benchmark image
codecs.

Fig. 10 presents a comparison of our object detection
performance against various benchmarks in terms of bitrate
vs. mean Average Precision (mAP), where bpp is computed by
dividing total number of coded bits (base and side bitstreams)
by the number of input pixels. The mAP uses the Intersection
of Union (IoU) threshold of 0.5. In the figure, the black dashed
line shows the default mAP performance of 55.85% when
using test images as input to YOLOv3 [24] with pre-trained
weights. Our object detection achieves the best rate-accuracy

2The same model whose back-end is used in our multi-task network.
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(a) (b)
Fig. 9. Part of network architectures for targeted vision tasks: (a) YOLOv3 [24] and (b) Feature Pyramid Network used for Faster [46] and Mask [25] R-CNN

Fig. 10. Two-layer network’s object detection performance compared with
benchmarks

performance, with mAP loss of about 1% at 0.74 bpp, where
most benchmarks suffer a mAP loss of about 2%. Moreover, at
0.56 bpp, our method operates within a 2% mAP loss margin,
whereas most benchmarks have lost about 4% mAP at this
point. Cheng et al. [16] shows the best performance among
the benchmarks, but there is still significant gap between it
and our proposed method.

Table II (first three columns) summarizes object detection
vs. bitrate results using extended versions of BD metrics [50].
For the BD-mAP metric, positive numbers represent an av-
erage increase of mAP at the same bitrate. For BD-Bitrate,
negative numbers indicate average bit savings at the same
accuracy. Our method shows a noticeable bit savings and
increased accuracy compared to all benchmarks. For example,
against HEVC, we achieve BD-Bitrate savings of –47.9%, and
BD-mAP gain of 4.55%. Against Cheng et al. [16], we achieve
BD-Bitrate savings of –37.4%, and BD-mAP gain of 2.89%.

Three-layer network: The three-layer network supports
object detection in the base layer and object segmentation
in the first enhancement layer. The corresponding back-ends
use ResNet-50-based Faster [46] and Mask [25] R-CNN,
respectively. To assess the performance of both tasks, we use
the COCO2017 [49] validation set, which provides labelled

(a)

(b)

Fig. 11. Performance of (a) object detection and (b) segmentation with three-
layer multi-task network

ground truth for both bounding boxes and segmentation maps.
Faster R-CNN and Mask R-CNN have a constraint on the
input resolution that the shorter edge must be less than or
equal to 800 pixels according to given default configuration.
Hence, we resize the test images to meet the constraint using
bilinear interpolation prior to the experiment, then use the
resized images as input to our three-layer network. As a result,

2-layer system: object detection + input reconstruction



58

Three tasks

𝑋 𝒴 X𝑋 𝑇$ 𝑇,

𝐼(𝒴; X𝑋) ≥ 𝐼(𝒴; 𝑇$) ≥ 𝐼(𝒴; 𝑇,)

LATENT SPACE SCALABILITY

multimedia laboratory

𝑋 𝒴
X𝑋

𝑇$Input image Latent 
representation

Reconstructed
image

Instance segmentation

MULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

𝑇, Object detection

H. Choi and I. V. Bajić, “Scalable image coding for humans and machines,” IEEE Trans. Image Processing, pp. 2739-2754, Mar. 2022.



59

LATENT SPACE SCALABILITY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

[1] H. Choi and I. V. Bajić, “Scalable image coding for humans and machines,” IEEE Trans. Image Processing, pp. 2739-2754, Mar. 2022.
[2] Z. Cheng et al., “Learned image compression with discretized gaussian mixture likelihoods and attention modules,” Proc. IEEE CVPR, 2020.
[3] R. Girshick et al., “Detectron,” https://github.com/facebookresearch/detectron, 2018.

Example 3-layer scalable system
• End-to-end image codec backbone [2]
• CV task 1: object detection using Detectron [3] Faster RCNN
• CV task 2: instance segmentation using Detectron [3] Mask RCNN 

o Object detection ⊂ semantic segmentation   ⟹ 𝒴, ⊂ 𝒴$

𝑋 𝒴 = {𝑌,, … , 𝑌+ , 𝑌+<,, … , 𝑌C} X𝑋
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image
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Encoder Decoder
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CV back-end 1Latent-space 
transform 1
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• Detection and segmentation experiments on COCO

• Again, Performance much better than compressing 
input directly:

o 71 – 78% bit savings compared to state-of-the-art 
image codecs

o 2.3 – 3.5% more accurate detection at the same 
bit rate
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Fig. 9. Part of network architectures for targeted vision tasks: (a) YOLOv3 [24] and (b) Feature Pyramid Network used for Faster [46] and Mask [25] R-CNN

Fig. 10. Two-layer network’s object detection performance compared with
benchmarks

performance, with mAP loss of about 1% at 0.74 bpp, where
most benchmarks suffer a mAP loss of about 2%. Moreover, at
0.56 bpp, our method operates within a 2% mAP loss margin,
whereas most benchmarks have lost about 4% mAP at this
point. Cheng et al. [16] shows the best performance among
the benchmarks, but there is still significant gap between it
and our proposed method.

Table II (first three columns) summarizes object detection
vs. bitrate results using extended versions of BD metrics [50].
For the BD-mAP metric, positive numbers represent an av-
erage increase of mAP at the same bitrate. For BD-Bitrate,
negative numbers indicate average bit savings at the same
accuracy. Our method shows a noticeable bit savings and
increased accuracy compared to all benchmarks. For example,
against HEVC, we achieve BD-Bitrate savings of –47.9%, and
BD-mAP gain of 4.55%. Against Cheng et al. [16], we achieve
BD-Bitrate savings of –37.4%, and BD-mAP gain of 2.89%.

Three-layer network: The three-layer network supports
object detection in the base layer and object segmentation
in the first enhancement layer. The corresponding back-ends
use ResNet-50-based Faster [46] and Mask [25] R-CNN,
respectively. To assess the performance of both tasks, we use
the COCO2017 [49] validation set, which provides labelled

(a)

(b)

Fig. 11. Performance of (a) object detection and (b) segmentation with three-
layer multi-task network

ground truth for both bounding boxes and segmentation maps.
Faster R-CNN and Mask R-CNN have a constraint on the
input resolution that the shorter edge must be less than or
equal to 800 pixels according to given default configuration.
Hence, we resize the test images to meet the constraint using
bilinear interpolation prior to the experiment, then use the
resized images as input to our three-layer network. As a result,

3-layer system: (a) object detection, (b) segmentation
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TABLE I
� VALUES FOR TRAINING MODELS

Model Index 1 2 3 4 5 6

� 0.0018 0.0035 0.0067 0.013 0.025 0.0483

and 3-layer networks are trained on the same datasets using a
two-stage training strategy described below.

A. Training setup
Our multi-task networks are trained in two stages. In the

first stage, the networks are trained on CLIC [17] and JPEG-
AI [43] datasets. Randomly cropped patches with size of
256 ⇥ 256 from both datasets are used as input. We also
set the mini-batch size to 16. Adam optimizer with a fixed
learning rate of 10�4 is used for 400 epochs on a GeForce RTX
2080 GPU with 11 GB RAM. Then, we change the dataset
to VIMEO-90K [44] to continue the training for another 300-
400 epochs in the second stage. Likewise, randomly cropped
patches are drawn from the dataset, but this time the learning
rate decreases with polynomial decay for every 10 epochs. Six
values of �, shown in Table I, are used in (4) to produce six
versions of the trained networks, as in [45]. Specifics of the
2- and 3-layer networks are given below.

Two-layer network: A LST in the base layer maps the base
features to the convolution output of layer 13 of YOLOv3,
eF (13)
1 2 R2N⇥2M⇥256. To match the resolution of the target

feature tensor, the LST scaling factors rk, k 2 {1, 2, 3, 4},
are set to 2, 1, 1, and 1, respectively. The processing at layer
13 of YOLOv3 includes a convolutional layer followed by
batch normalization and Leaky ReLU activation, as shown
in Fig 9(a). Since the pre-trained weights of YOLOv3 [24]
represent prior knowledge obtained over the training data, we
keep and re-use them for the batch normalization followed by
an activation function at layer 13, so the last layer of the LST
simply adopts a linear activation. The estimate of the layer
13 convolution output, produced by our LST, is then used as
input to the batch normalization with the learned weights at
layer 13. To account for this, the distortion equation is slightly
modified from (6), to

D = MSE(X, bX) + � · MSE
⇣
F

(13)
1 , V

(13)( eF (13)
1 , ⇢

⇤)
⌘
,

(10)

where � = 0.006 and V
(13) includes batch normalization

followed by Leaky ReLU activation, with pre-trained weights
⇢
⇤ from [24].
Three-layer network: LSTs in the base and the first

enhancement layer individually estimate intermediate tensors
of Faster R-CNN [46] for object detection and Mask R-
CNN [25] for segmentation, respectively. Fig. 9(b) presents the
ResNet-50 [20] based Feature Pyramid Network (FPN) [35]
used as a backbone network for both R-CNN networks. In
particular, the LSTs estimate the outputs of layer 4 in the FPN,
eF (4)
j 2 R4N⇥4M⇥256, where j 2 {1, 2}. Hence, to generate

the correct size of the feature tensors from the sub-latents
eY1 and { bY1,

bY2}, both LSTs have the same configuration

TABLE II
SUMMARIZED PERFORMANCE OF VISION TASKS AGAINST VARIOUS

BENCHMARKS WITH BD METRICS

Two-layer Network Three-layer Network

Object Detection Segmentation

Benchmarks BD-Bitrate BD-mAP BD-Bitrate BD-mAP BD-Bitrate BD-mAP

VVC –39.8 2.79 –73.2 2.33 –71.2 2.34
HEVC –47.9 4.55 –73.2 3.05 –74.7 2.96

Minnen et al. [15] –41.3 3.26 –78.7 3.73 –77.2 3.38
Cheng et al. [16] –37.4 2.89 –76.6 3.62 –75.4 3.49

of scaling factors: r1 = r2 = 2 and r3 = r4 = 1. The
activation at layer 4 in the FPN is ReLU, so we use the
same function for the last activation layer for both LSTs. For
distortion computation, the MSE is measured at various points
P2–P6 in the FPN, which are shown in Fig. 9(b). To account
for this, the distortion equation (6) is slightly modified to

D = MSE(X, bX)

+ � · 1
5
·

2X

j=1

6X

l=2

MSE(Plj , V back-end,Pl
FPN,j ( eF (4)

j , ⇢
⇤
j ))

(11)

where � = 0.0015 and V
back-end,Pl

FPN,j represents the portion of
the FPN back-end up to Pl, with pre-trained weights ⇢

⇤
j [47],

using eF (4)
j as input.

B. Evaluation on machine vision tasks

Our multi-task networks are evaluated on relevant datasets
associated with targeted tasks, in terms of task accuracy vs.
bitrate. The benchmarks consist of conventional codecs, such
as HEVC [39] and VVC [48] with quantization parameters
QP 2 {22, 25, 28, ..., 40}, as well as DNN-based image
codecs [15], [16], applied to input images. Then decoded
images are used as input to the pre-trained computer vision
model2 to examine task accuracy.

Two-layer network: Our two-layer network supports object
detection in the base layer using the YOLOv3 [24] back-
end. We first evaluate the object detection performance on
the COCO2014 validation set [49], which includes about 5K
images. Since most vision networks resize the input to a
specific resolution before processing, we also resize input
images to 512 ⇥ 512 using bilinear interpolation without
letterboxing, in order to generate (via LST) a feature tensor
eF (13)
1 2 R64⇥64⇥256 that can be directly fed into the YOLOv3

back-end. The same resizing is done with benchmark image
codecs.

Fig. 10 presents a comparison of our object detection
performance against various benchmarks in terms of bitrate
vs. mean Average Precision (mAP), where bpp is computed by
dividing total number of coded bits (base and side bitstreams)
by the number of input pixels. The mAP uses the Intersection
of Union (IoU) threshold of 0.5. In the figure, the black dashed
line shows the default mAP performance of 55.85% when
using test images as input to YOLOv3 [24] with pre-trained
weights. Our object detection achieves the best rate-accuracy

2The same model whose back-end is used in our multi-task network.
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B. Evaluation on machine vision tasks

Our multi-task networks are evaluated on relevant datasets
associated with targeted tasks, in terms of task accuracy vs.
bitrate. The benchmarks consist of conventional codecs, such
as HEVC [39] and VVC [48] with quantization parameters
QP 2 {22, 25, 28, ..., 40}, as well as DNN-based image
codecs [15], [16], applied to input images. Then decoded
images are used as input to the pre-trained computer vision
model2 to examine task accuracy.

Two-layer network: Our two-layer network supports object
detection in the base layer using the YOLOv3 [24] back-
end. We first evaluate the object detection performance on
the COCO2014 validation set [49], which includes about 5K
images. Since most vision networks resize the input to a
specific resolution before processing, we also resize input
images to 512 ⇥ 512 using bilinear interpolation without
letterboxing, in order to generate (via LST) a feature tensor
eF (13)
1 2 R64⇥64⇥256 that can be directly fed into the YOLOv3

back-end. The same resizing is done with benchmark image
codecs.

Fig. 10 presents a comparison of our object detection
performance against various benchmarks in terms of bitrate
vs. mean Average Precision (mAP), where bpp is computed by
dividing total number of coded bits (base and side bitstreams)
by the number of input pixels. The mAP uses the Intersection
of Union (IoU) threshold of 0.5. In the figure, the black dashed
line shows the default mAP performance of 55.85% when
using test images as input to YOLOv3 [24] with pre-trained
weights. Our object detection achieves the best rate-accuracy
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Results on the Kodak dataset
• Proposed scalable codec comparable to state-of-the-art on 

input reconstruction
• 10 – 20% degradation by adding a scalability layer (2 → 3), in 

line with earlier work on scalable video coding  
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Fig. 12. Comparison of input reconstruction performance in terms of (a) PSNR vs. bpp and (b) MS-SSIM vs. bpp

Fig. 13. Bits proportion for each layer of multi-layer networks

resorting to input reconstruction. Fig. 14 shows two examples
of the outputs of our 3-layer network, along with the results
obtained by the benchmarks. For each example, the first row
shows the input image and the reconstructed images with
the corresponding bitrate and RGB PSNR (bpp/dB). The
next two rows show the results of object segmentation and
object detection. For the benchmarks, reconstructed image
is fed to the corresponding model (Faster R-CNN [46] for
detection, Mask R-CNN [25] for segmentation) with pre-
trained weights to obtain the results. For our 3-layer network,
only the corresponding part of the bitstream is decoded. Hence,
since the input is not reconstructed in these cases, the results
are shown on the empty background, and the corresponding
rate is indicated below the image.

In the first example, our network successfully detects and
segments all three objects, with bitrates of 0.195 bpp for
detection and 0.205 bpp for segmentation. In contrast, all
benchmarks lead to mislabelling of a horse on the right as
a person, even in the case of object detection, despite the fact
they use more bits than our base layer. In the second example,
benchmark-coded images lead to some missing objects, while
our network correctly detect them all. For example, the image
coded by [15] leads to missing the second person from the
right in the background, as well as the baseball. Also, image
coded by [16] leads to missing the person in the background.

With conventional codecs (HEVC and VVC), either the person
or the baseball are missed. These examples illustrate why our
3-layer network provides superior performance in terms of
object detection and segmentation in Fig. 11.

V. CONCLUSION

We presented a DNN-based image compression framework
with latent-space scalability for human and machine vision.
Latent image representation is coded into multiple layers,
which can be separately decoded to enable the required task.
We embodied the proposed ideas into 2- and 3-layer multi-
task networks supporting object detection, segmentation, and
input reconstruction. Mutual information estimates show that
the proposed loss function facilitates steering of relevant task-
specific information into the corresponding portions of the
latent space during training. The experiments show that our
multi-task networks provide 37% - 80% bitrate savings on
machine vision tasks compared to relevant benchmarks, while
being comparable to state of the art image codecs in terms of
input reconstruction quality.
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TABLE III
BD-BITRATE RELATIVE TO VARIOUS BENCHMARKS ON KODAK [51]

Proposed methods

Benchmarks Two-layer Network Three-layer Network

BD-Bitrate
(PSNR)

BD-Bitrate
(MS-SSIM)

BD-Bitrate
(PSNR)

BD-Bitrate
(MS-SSIM)

VVC 10.17 –7.83 30.43 2.14
HEVC –14.27 –26.15 1.38 –17.96
JPEG –63.99 –63.99 –57.25 –57.84

[15] –3.58 –7.83 14.02 2.06
[16] 4.49 –1.90 24.24 9.55

Two-layer
Network - 18.84 11.95

generated feature tensors eF (4)
1 and eF (4)

2 from the base and the
first enhancement layer can be fed into the Faster and Mask
R-CNN back-ends, respectively. The resized images are also
used as input to benchmark image codecs.

Fig. 11 shows the performance of our three layer network
and the benchmarks on both tasks. In Fig. 11(a) and (b),
dashed black lines show the default mAP performance of
40.2% and 37.2% for object detection and segmentation,
respectively. Here, mAP is obtained using the IoU threshold
from 0.5 to 0.95 with a step size of 0.05. On both tasks, our 3-
layer network shows excellent performance: less than 1% mAP
drop down to 0.15 bpp, and less than about 1.5% mAP drop
at 0.1 bpp. Meanwhile, all benchmarks lose 1% mAP already
at 0.4 bpp, while at 0.1 bpp, they have lost 7-8% mAP.

Table II (last four columns) shows object detection and
segmentation performance vs. bitrate in terms of extended
versions of BD metrics [50]. Herem, the gains of our network
aganst the benchmarks are even higher. Against VVC, which
was the best-performing benchmark, our network achieves
BD-Bitrate savings of –73.2% on object detection and –71.2%
on object segmentation. At the same time, the BD-mAP gains
against VVC are 2.33% on object detection and 2.34% on
object segmentation.

C. Evaluation on input reconstruction

The highest enhancement layer of our 2- and 3-layer net-
works supports input reconstruction for human viewing. The
performance here is examined on the Kodak dataset [51],
which includes 24 uncompressed RGB images. Fig. 12(a)
shows PSNR (RGB) vs. bitrate curves. The data for benchmark
codecs comes from Bégaint et al. [45]. VVC achieves the
best performance among all methods in this figure. The
method from which our backbone is derived, Cheng et al. [16],
achieves the second-best performance. Our 2-layer network
shows competitive performance compared to [16] at lower
bitrates, but the reconstruction quality slightly degrades (by
about 0.3dB) compared to [16] at higher bitrates. This is the
price to pay for scalability and supporting object detection in
the base layer. Meanwhile, our 2-layer network outperforms
other benchmarks in this comparison. Table III shows BD-
Bitrate [50], [52] comparisons among various codecs. Overall,

our 2-layer network has a loss of 10.17% against VVC and
4.49% against [16], but saves –3.58%, –14.27%, and –63.99%
of bits compared to Minnen et al. [15], HEVC, and JPEG,
respectively, while providing 2-layer scalability.

Our 3-layer network is less efficient in terms of rate-
distortion performance on input reconstruction. As shown in
the last row of Table III, the 3-layer network suffers an increase
of 18.84% BD-Bitrate compared to the 2-layer network. Ear-
lier work on conventional scalable codecs suggests that adding
one scalability layer costs about 15-25% in terms of BD-
Bitrate [40], so the performance of our 3-layer network seems
reasonable in this context. It is still comparable with HEVC
(1.38% increase in BD-Bitrate) and much better than JPEG,
while providing 3-layer scalability and superior efficiency on
computer vision tasks. Overall, Fig. 12(a) shows that both our
2- and 3-layer networks are comparable with state of the art
codecs in terms of PSNR at lower bitrates, but their relative
PSNR performance degrades at higher bitrates.

In addition to PSNR results, we also provide perfor-
mance comparisons in terms of MS-SSIM [53] vs. bitrate
in Fig. 12(b). It is known that DNN-based codecs perform
very well on MS-SSIM, and this is also evident in Fig. 12(b)
and Table III. In particular, our 2-layer network achieves
the best results in this comparison, showing coding gains
against all benchmarks, with –1.9% savings compared to the
best benchmark [16]. Even our 3-layer network now shows
a gain of almost –18% relative to HEVC, and comparable
performance (with a gap around 2%) relative to VVC and [15].
We believe this improved performance of our networks in
terms of MS-SSIM is due to better latent representations
related to objects in the lower layers, which encourages higher
structural quality of the reconstructed input.

D. Bitstream analysis
Fig. 13 shows the bitsteam composition of six versions of

our networks, from those trained for the lowest bitrate (quality
index 1), to those trained for the highest bitrate (quality index
6). For each index, left bar corresponds to the 2-layer network,
and the right bar to the 3-layer network. There are relatively
few bits in the side bitstream (blue), which accounts for less
than 2% of the total bitstream. The base layer (green) accounts
for most bits, and its fraction drops from over 93% at lowest
bitrates to less than 85% at highest bitrates for the 2-layer
network, and less than 70% for the 3-layer network. The
first enhancement layer (orange, denoted “Enh.” in the figure)
and the second enhancement layer in the 3-layer network
(purple, denoted “Top”) take up progressively more bits at
higher bitrates. Considering the fact that our networks show
more competitive performance of input reconstruction at lower
bitrates (Fig. 12), these results seem to indicate that the base
layer conveys significant information for input reconstruction
as well, in addition to enabling object detection.

E. Visual examples
One of the key contributions of the present paper is that

our scalable DNN-based image coding approach is able to
support birate-efficient high-quality machine vision without

[2]
[3]

[2]
[3]

[2]
[3]
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• Scalable face image coding [1]
o Base: facial landmark keypoints
o Enhancement: color and texture info
o Uses generative face decoder

• Semantic-to-signal-scalable coding [2]
o Base: deepest feature
o Enhancements: information lost when

going layer to layer
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• Scalable human-machine coding using conventional encoders
o Base: segmentation information
o First enhancement: preview 
o Second enhancement: reconstruction residual
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arXiv:2112.10071, Dec. 2021.
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• Human-machine coding for IoT [1]
o Base: classification + preview 
o Enhancement: reconstruction residual

• A few other approaches [2, 3]
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[1] Z. Wang, F. Li, J. Xu and P. C. Cosman, "Human–machine interaction-oriented image coding for resource-constrained visual monitoring in
IoT," IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16181-16195, 1 Sept. 2022.

[2] N. Patwa, N. Ahuja, S. Somayazulu, O. Tickoo, S. Varadarajan and S. Koolagudi, "Semantic-preserving image compression," Proc. ICIP, 2020,
pp. 1281-1285

[3] M. Wang, Z. Zhang, J. Li, M. Ma and X. Fan, "Deep joint source-channel coding for multi-task network," IEEE Signal Processing Letters, vol. 28,
pp. 1973-1977, 2021.
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Compressed-domain denoising
• One of the scenarios in the JPEG AI call for proposals
• Provide both the denoised image and noisy image from compressed representation

• Data processing inequality (DPI) applied to  𝒴 → X𝑋 → ~𝑋:      𝐼(𝒴; X𝑋) ≥ 𝐼(𝒴; ~𝑋)

• Problem can be solved by latent-space scalability
o Information needed for ~𝑋 is a subset of that needed for X𝑋

IMAGE COMPRESSION AND DENOISING

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL
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Scalable Image Coding for Humans and Machines
Hyomin Choi, Member, IEEE, and Ivan V. Bajić, Senior Member, IEEE

Abstract—At present, and increasingly so in the future, much
of the captured visual content will not be seen by humans.
Instead, it will be used for automated machine vision analytics
and may require occasional human viewing. Examples of such
applications include traffic monitoring, visual surveillance, au-
tonomous navigation, and industrial machine vision. To address
such requirements, we develop an end-to-end learned image codec
whose latent space is designed to support scalability from simpler
to more complicated tasks. The simplest task is assigned to a
subset of the latent space (the base layer), while more complicated
tasks make use of additional subsets of the latent space, i.e.,
both the base and enhancement layer(s). For the experiments, we
establish a 2-layer and a 3-layer model, each of which offers input
reconstruction for human vision, plus machine vision task(s),
and compare them with relevant benchmarks. The experiments
show that our scalable codecs offer 37%–80% bitrate savings on
machine vision tasks compared to best alternatives, while being
comparable to state-of-the-art image codecs in terms of input
reconstruction.

Index Terms—Image compression, deep neural network, multi-
task network, scalable coding, latent-space scalability

I. INTRODUCTION

ADVANCES in artificial intelligence (AI) are having a
major impact on both image/video coding and computer

vision. New research areas are emerging at their intersection,
where the goal is to develop compression systems to support
both human and machine vision [1]. Related standardization
activities – Video Coding for Machines (VCM) [2] and JPEG-
AI [3] – have recently been initiated.

Traditionally, input compression for human vision and
feature compression for machine vision have been ap-
proached separately or sequentially, through paradigms such as
compress-then-analyze or analyze-then-compress [1]. Exam-
ples of the former include traditional computer vision, where
it is common to train and test vision models on JPEG images,
as well as compressed-domain analytics such as [4]–[11],
where analysis is performed on conventionally-compressed
bitstreams without full decoding or input reconstruction. Ex-
amples of the latter include Compact Descriptors for Visual
Search (CDVS) [12], where machine vision-relevant features
such as SIFT [13] are first extracted from the input, then
compressed. In this case, however, reconstructing the input
image would require significant additional bitrate.

Recent deep neural network (DNN)-based image coding
methods [14]–[16] offer competitive rate-distortion (RD) per-
formance against traditional codecs, and their perceptual
performanceis even more impressive [17], [18]. DNN-based
codecs map the input image into a latent space, which is then
quantized and arithmetically coded [19]. Meanwhile, DNN

H. Choi and I. V. Bajić are with the School of Engineering Science, Simon
Fraser University, Burnaby, BC, V5A 1S6, Canada. E-mail: chyomin@sfu.ca,
ibajic@ensc.sfu.ca

Fig. 1. An example of latent-space scalability: channels of a feature tensor
(left) and the tasks they support (right).

computer vision models for classification [20], [21], object
detection [22]–[24], and segmentation [25] pass the input
image through a sequence of latent spaces while performing
analysis. What is interesting about these latent spaces is that
they are at least as compressible as the input, which we prove
in the Appendix. Hence, combining image compression and
DNN-based analysis is theoretically justified.

Another important trend has been the development of
DNN models that support multiple tasks, including input
reconstruction, using compressible representations [26]–[30].
In these methods, however, the entire latent space must be
reconstructed to support any of the tasks. The most recent
proposals [31]–[33] focus on multi-task scalability. For in-
stance, [31] presented a scalable framework to support facial
landmark reconstruction as the base task and input reconstruc-
tion as the enhancement task. However, both tasks rely on
generative [34] decoding, which makes it hard to guarantee
reconstruction fidelity. Liu et al. [32] present scalable image
compression supporting coarse-to-fine classification as well as
input reconstruction as the enhancement task. However, in this
approach, multiple latent spaces are compressed, leading to
inefficiency. The approach proposed in this paper compresses
a single latent space, and still achieves scalability among
multiple tasks, as illustrated in Fig. 1.

This paper is an extension of our recent preliminary
work [33], which presented a 2-layer model based on the
YOLOv3 [24] backbone to support object detection and input
reconstruction. In [33], the enhancement portion of the latent
space did not need to be reconstructed, but it still needed to
be entropy decoded. Those initial ideas are extended in the
present paper in the following ways:

• We extend the 2-task model from [33] so that base and
enhancement layers are now in separate bitstreams, and
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[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image

Process. 2007, pp. 2080–2095
[4] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible solution for CNN-based image denoising,” IEEE Trans. Image Process.,

2018, pp. 4608–4622

Experimental setup
• Six models trained using the Cheng2020 

backbone [2], tested on four other datasets
• System trained on CLIC dataset with additive 

Gaussian noise 𝜎 ∈ {15, 25, 50}
• Compared against CBM3D [3] and FFD-Net [4]
• In terms of AWGN denoising performance, on 

large noise, better than CBM3D without 
compression
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Unseen noise removal
• Tested on Poissonian-Gaussian noise model [2] 

that wasn’t used in training
• Noise generator [3] with parameters fitted on the 

SIDD [4] dataset was used
o Same noise generator was used in JPEG AI 

evaluation
• Surpasses CBM3D at bitrates around 1 bpp and 

higher
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Noisy Clean [2] + [3] [1]

[1] S. R. Alvar, M. Ulhaq, H. Choi, and I. V. Bajić, “Joint image compression and denoising via latent-space scalability,” Front. Signal Process., 2022.
[2] Z. Cheng et al., “Learned image compression with discretized gaussian mixture likelihoods and attention modules,” Proc. IEEE CVPR, 2020.
[3] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible solution for CNN-based image denoising,” IEEE Trans. Image Process.,

2018, pp. 4608–4622
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Noisy input reconstruction
• Whole latent space used
• Slightly worse than [2] on CBSD68, better on other 

datasets

BD-rate results

concentrated at higher bitrates. It is worth noting that, since our
proposedmethod is trained using theMSE loss, it performs better in
terms of PSNR than SSIM. Overall, the proposed JICD framework
achieves gains on both denoising and compression tasks compared
to Cheng + FFDNet-clip and Cheng et al. (2020) models.

6 Conclusion

In this work, we presented a joint image compression and
denoising framework. The proposed framework is a scalable
multi-task image compression model based on the latent-
space scalability. The base features are used to perform the
denoising and the enhancement features are used when the
noisy input reconstruction is needed. Extensive experiments
show that the proposed framework achieves significant BD-
rate savings up to 80.20% across different dataset compared to
the cascade compression and denoising method. The
experimental results also indicate that the proposed method
achieves improved results for the unseen noise for both
denoising and noisy input reconstruction tasks.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: For CBSD8 and Kodak24 datasets:
https://github.com/cszn/KAIR, For McMaster dataset: https://
www4.comp.polyu.edu.hk/~cslzhang/CDM_Dataset.htm, For
JPEG AI: https://jpeg.org/jpegai/dataset.html.

FIGURE 13
The rate-SSIM curves for noisy input reconstruction. (A) CBSD68, (B) Kodak24, (C) McMaster, (D) JPEG-AI.

TABLE 4 The PSNR-based BD-rate of the proposed JICD compared to
the Cheng model on noisy input reconstruction.

Noise
type

Model CBSD68 Kodak24 McMaster JPEG
AI

Practical
noise

variable
σ

5.50% −11.74% −3.97% −13.49%

simulator

TABLE 5 The SSIM-based BD-rate of the proposed JICD compared to
the Cheng model on noisy input reconstruction.

Noise
type

Model CBSD68 Kodak24 McMaster JPEG
AI

Practical
noise

variable
σ

22.58% 1.90% 4.05% 0.58%

simulator

Frontiers in Signal Processing frontiersin.org15

Ranjbar Alvar et al. 10.3389/frsip.2022.932873
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Reconstructed noise distribution
• Compare distribution of input noise vs. 

distribution of reconstructed noise
• Example: one image from the JPEG AI 

test set, Gaussian noise with 𝜎 = 50

• At low bitrates, only low-variance 
reconstructed noise can be supported

• As the bitrate increases, reconstructed 
noise distribution better matches the input 
noise distribution



72

Summary

• Already a number of papers in the literature describing multi-task image compression

• Base task: computer vision

o Usually classification, sometimes object detection and/or segmentation

• Additional tasks: computer or human vision

• Computer vision tasks require fewer bits than input reconstruction

o Practically demonstrated in many cases

o Theoretical justification

o Still a ways to go: 

o ImageNet classification requires log$ 1000 ≈ 10 bits ≈ 0.0002 bpp for a 224×224 image; 
best currently available feature coding systems require > 0.01 bpp to maintain accuracy 

MULTI-TASK IMAGE COMPRESSION

multimedia laboratory
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Example of a scalable 2-task 
video compression system

• Base layer: object detection

• Enhancement layer: input 
reconstruction 

• Intra frames coded using the 
scalable human-machine 
image codec presented 
earlier

• Inter frames coded using 
DNN-aided HEVC pipeline

MULTI-TASK VIDEO COMPRESSION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

H. Choi and I. V. Bajić, “Scalable video coding for 
humans and machines,” Proc. IEEE MMSP, 2022.
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Decoder structure
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MULTI-TASK VIDEO COMPRESSION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

[1] H. Choi and I. V. Bajić, “Scalable video coding for humans and machines,” Proc. IEEE MMSP, 2022.
[2] H. Choi, E. Hosseini, S. R. Alvar, R. A. Cohen, and I. V. Bajić, “A dataset of labelled objects on raw video sequences,” Data in Brief, vol. 34,

article no. 106701, Feb. 2021.

TABLE I
� VALUES FOR TRAINING INTRA-FRAME CODING MODELS

Quality Index 1 2 3 4 5 6

� 0.0018 0.0035 0.0067 0.013 0.025 0.0483

TABLE II
COMBINATIONS OF MODEL INDEX (�) AND QP FOR INTRA AND INTER

FRAME, RESPECTIVELY, IN RANDOM ACCESS CODING

Intra Model index
(�)

6
(0.0483)

5
(0.025)

4
(0.013)

Inter QP 18 22 26 30 34 38

coding standards: HEVC [20] (specifically, HM-16.20) and
Versatile Video Coding (VVC) [24] (specifically, VTM-10.0).
We encode the test sequences using the all-intra and random
access configurations with intra period of 8. For benchmarks,
we encode the sequences with QP 2 {18, 22, 26, 30, 34, 38}
and QP 2 {20, 24, 28, 32, 36, 40} for HEVC and VVC, respec-
tively. For our proposed system in the all intra configuration,
we encode the sequences using the six models whose � values
are shown in Table I. For the random access case, to achieve
the range of bit rates comparable to the benchmarks, we used
several combinations of � values for the intra codec and QP
for inter coding, as shown in Table II. Inter frames are coded
with QP 2 {18, 22, 26, 30, 34, 38} plus the QP offsets related
to the hierarchical reference structure defined in the HEVC
Common Test Conditions (CTC) [25]. Bjøntegaard Delta (BD)
metrics [26], [27] are used to evaluate the performance against
the benchmarks in terms of rate-distortion and rate-accuracy.

B. Simultaneous evaluation for human and machine vision

First, we evaluate the performance of our system against
the benchmarks simultaneously on human and machine vision.
We do this on the SFU-HW-Objects-v1 dataset [28], which
contains COCO7-style object labels for a set of HEVC raw
video test sequences. This dataset is also being used in MPEG-
VCM [29]. Table III summarizes the performance of our cod-
ing system versus the benchmarks, with best results indicated
in bold. Since this experiment involves object detection, for
which our system uses only the base layer of the intra-coded
frames, the test is carried out in the all-intra configuration.
Benchmark codecs code intra frames, and decoded frames are
fed to YOLOv3. In our system, only the base layer of intra
frames is decoded and fed via LST to the YOLOv3 back-end,
as shown in Fig. 2.

Mean Average Precision (mAP) [19] is used as the object
detection accuracy metric. Unlike the Peak Signal-to-Noise-
Ratio (PSNR), mAP vs. bit rate curves are not always concave,
or even monotonic [29], which makes it impossible to compute
a valid BD-rate-mAP value. One example is shown in Fig. 5(a)
for the sequence FourPeople, where we see that HEVC and
VVC curves are non-concave and non-monotonic. For this

7https://cocodataset.org

TABLE III
BD PERFORMANCE OF THE PROPOSED VIDEO CODING SYSTEM AGAINST

HEVC AND VVC IN THE ALL-INTRA CONFIGURATION

HEVC (HM-16.20) VVC (VTM-10.0)
Benchmark Machine Vision Human Vision Machine Vision Human Vision

BD-rate- BD-rate-
Class Sequence mAP PSNR MS-SSIM mAP PSNR MS-SSIM

A
PeopleOnStreet -37.17% 8.55% -22.93% -29.52% 36.47% -6.34%

Traffic 33.82% 16.80% -20.72% 61.09% 44.38% -4.09%

Average -1.68% 12.67% -21.83% 15.78% 40.42% -5.21%

B

BQTerrace 16.37% 29.84% -18.33% -2.26% 73.32% 7.84%
BasketballDrive -49.91% 24.57% -13.63% -47.16% 64.10% 9.47%

Cactus -30.68% 20.79% -19.18% -46.64% 55.70% 2.28%
Kimono -75.00% 1.37% -15.72% -70.98% 24.91% 0.74%

ParkScene -35.81% 14.63% -16.45% -20.30% 40.05% -0.63%

Average -35.01% 18.24% -16.66% -37.47% 51.62% 3.94%

C

BQMall -51.04% 1.07% -20.80% -51.96% 31.80% 0.95%
BasketballDrill -37.45% 0.62% -22.76% -46.88% 46.70% 5.09%

PartyScene -8.01% 15.60% -12.54% -12.25% 43.87% 5.33%
RaceHorses 27.07% 8.49% -11.43% -36.60% 38.90% 8.37%

Average -17.36% 6.44% -16.88% -36.92% 40.32% 4.94%

D

BQSquare -6.51% 7.39% -25.10% -15.38% 32.52% -10.52%
BasketballPass -57.82% -2.33% -16.14% -55.58% 29.18% 6.82%

BlowingBubbles -15.49% 1.08% -15.26% -2.86% 30.57% 5.72%
RaceHorses 21.69% -4.15% -11.10% -22.45% 27.46% 11.82%

Average -14.53% 0.50% -16.90% -24.07% 29.93% 3.46%

E
Johnny 116.35% 7.87% -19.50% 86.62% 47.54% 7.45%

KristenAndSara -39.08% 7.48% -29.17% -8.03% 42.40% -8.88%

Average 38.64% 6.21% -24.90% 39.29% 41.19% -2.60%

Avg. (A - D) -20.40% 9.62% -17.47% -26.65% 41.33% 2.86%

Avg. (A - E) -13.45% 9.05% -18.71% -18.89% 41.31% 1.95%

reason, the sequence FourPeople has been excluded from the
results. Other sequences had well-behaved mAP vs. bit rate
curves, like the one shown in Fig. 5(b) for BasketballPass.

On object detection, our coding system shows significant bit
savings of 13.45% and 18.85% on average against HEVC and
VVC, respectively, when averaged over all sequence classes.
Without Class E sequences, average bit reduction is even
higher – 20.40% and 26.65%, respectively, against HEVC and
VVC. Surprisingly, we save more bits against VVC compared
to HEVC, which implies that advanced coding tools adopted
in VVC are less machine vision-friendly.

In terms of input reconstruction for human viewing, stan-
dard codecs perform better, as expected, because that is what
they are optimized for. In terms of BD-rate-PSNR, our system
increases bits by about 9% and 41% against HEVC and VVC,
respectively. In other words, the compression efficiency of
VVC is far superior to other methods in terms of rate-PSNR.
Meanwhile, our system performs reasonably well against
HEVC, achieving some gains on two sequences in Class D.
Overall, our method shows better performance in classes C
and D compared to other classes. We suspect that this is due
to input scaling with bilinear interpolation, which may cause
some artifacts to the sequences in Class C (832⇥ 480) and D
(416⇥ 240) compared to sequences with higher resolution.

In terms of BD-rate-MS-SSIM, our system outperforms
HEVC by 18.71% and has marginally worse performance
(by 1.95%) compared to VVC. If we consider MS-SSIM a
more relevant metric for human viewing experience, then one
could argue that our system provides comparable or better
performance for human viewing while achieving gains on
machine vision. Indeed, it has been known for a while that
DNN-based codecs do well on MS-SSIM, and our system

(a) FourPeople (b) BasketballPass

Fig. 5. Examples of rate-mAP curves: (a) shows the case when these curves are non-concave and non-convex. Moreover, there are no overlaps on the mAP
axis between the blue curve and the other two curves. Hence, BD-rate-mAP cannot be reliably computed. (b) shows the case where the curves rate-mAP
curves have similar characteristics as the rate-PSNR curves, so BD-rate-mAP can be reliably computed.

TABLE IV
INPUT RECONSTRUCTION PERFORMANCE OF THE PROPOSED VIDEO

CODING SYSTEM AGAINST HEVC AND VVC IN THE RANDOM ACCESS
CONFIGURATION WITH THE INTRA PERIOD OF 8

Benchmark HEVC (HM-16.20) VVC (VTM-10.0)

Class Sequence BD-rate
(PSNR)

BD-rate
(MS-SSIM)

BD-rate
(PSNR)

BD-rate
(MS-SSIM)

A
PeopleOnStreet -1.27% -12.15% 20.82% 9.41%

Traffic 21.88% 8.90% 48.65% 33.31%

Average 10.30% -1.63% 34.74% 21.36%

B

BQTerrace 21.70% 3.32% 55.15% 32.94%
BasketballDrive 5.85% -2.02% 42.65% 31.89%

Cactus 16.54% -1.89% 49.58% 27.42%
Kimono 0.50% -9.96% 29.06% 14.88%

ParkScene 14.13% 0.86% 39.48% 23.98%

Average 11.74% -1.94% 43.18% 26.22%

C

BQMall 3.14% -9.64% 40.89% 22.20%
BasketballDrill 10.91% -4.05% 56.60% 54.33%

PartyScene 12.99% -0.45% 43.24% 24.76%
RaceHorses 4.23% -1.58% 37.94% 31.42%

Average 7.82% -3.93% 44.67% 33.18%

D

BQSquare 7.38% -9.49% 50.49% 19.02%
BasketballPass -2.86% -9.68% 36.77% 23.01%

BlowingBubbles 4.18% -6.94% 39.37% 21.03%
RaceHorses -2.71% -4.75% 38.38% 31.18%

Average 1.50% -7.71% 41.25% 23.56%

E

FourPeople 11.52% -11.51% 45.47% 13.16%
Johnny 17.84% -2.49% 62.58% 32.28%

KristenAndSara 14.26% -16.50% 53.67% 11.36%

Average 14.54% -10.17% 53.90% 18.94%

Avg. (A - D) 7.77% -3.97% 41.94% 26.72%

Avg. (A - E) 8.90% -5.00% 43.93% 25.42%

benefits from DNN-based intra coding in this experiment.

C. Input reconstruction with random access coding

Table IV summarizes input reconstruction performance in
terms of BD-rate metrics for the random access configuration
with the intra period of 8. Here, benchmark codecs perform
better than they did on the object detection task, because they

TABLE V
THE EFFECT OF DNN-AIDED FRAME PREDICTION IN THE RANDOM

ACCESS CONFIGURATION

Class BD-rate-PSNR BD-rate-MS-SSIM

A -2.19% -3.61%

B 0.35% 0.60%

C -1.02% -1.33%

D -0.79% -0.38%

E -1.33% -1.46%

Average -0.77% -0.86%

were optimized for this kind of use. In terms of BD-rate-
PSNR, our system increases the rate by about 8.9% on average
against HEVC. Recall that our inter-coding pipeline is built
upon HEVC. Considering the fact that conventional scalable
extensions of HEVC increase the bit rate by 15%–25% per
layer [30], our scalable system for human and machine vision
performs well within this margin. The performance against
VVC in terms of BD-rate-PSNR is correspondingly lower, as
expected, with about 44% rate increase. Our codec performs
much better in terms of MS-SSIM. In fact, in this case, it
provides BD-rate savings of 5%, on average, against HEVC,
and the loss against VVC is now reduced to about 25%.

D. Ablation study

Here we examine the effect of DNN-aided frame prediction
within our system, by comparing the full version of the system
against a stripped-down version, which does not include DNN-
based frame prediction. The results are shown in Table V for
the random access configuration with the intra period of 8.
DNN-aided frame prediction brings 0.8%–0.9% bit savings
on average, both in terms of PSNR and MS-SSIM.

E. Break-even points

In earlier sections we saw that, compared with conventional
HEVC or VVC coding, our system achieves compression gains
when only the machine vision task is needed, but suffers
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vs. HEVC vs. VVC
PSNR MS-SSIM PSNR MS-SSIM
59.8% 100% 31.4% 90.7%

frac. time 
human vision

frac. time 
machine vision

TABLE I
� VALUES FOR TRAINING INTRA-FRAME CODING MODELS

Quality Index 1 2 3 4 5 6

� 0.0018 0.0035 0.0067 0.013 0.025 0.0483

TABLE II
COMBINATIONS OF MODEL INDEX (�) AND QP FOR INTRA AND INTER

FRAME, RESPECTIVELY, IN RANDOM ACCESS CODING

Intra Model index
(�)

6
(0.0483)

5
(0.025)

4
(0.013)

Inter QP 18 22 26 30 34 38

coding standards: HEVC [20] (specifically, HM-16.20) and
Versatile Video Coding (VVC) [24] (specifically, VTM-10.0).
We encode the test sequences using the all-intra and random
access configurations with intra period of 8. For benchmarks,
we encode the sequences with QP 2 {18, 22, 26, 30, 34, 38}
and QP 2 {20, 24, 28, 32, 36, 40} for HEVC and VVC, respec-
tively. For our proposed system in the all intra configuration,
we encode the sequences using the six models whose � values
are shown in Table I. For the random access case, to achieve
the range of bit rates comparable to the benchmarks, we used
several combinations of � values for the intra codec and QP
for inter coding, as shown in Table II. Inter frames are coded
with QP 2 {18, 22, 26, 30, 34, 38} plus the QP offsets related
to the hierarchical reference structure defined in the HEVC
Common Test Conditions (CTC) [25]. Bjøntegaard Delta (BD)
metrics [26], [27] are used to evaluate the performance against
the benchmarks in terms of rate-distortion and rate-accuracy.

B. Simultaneous evaluation for human and machine vision

First, we evaluate the performance of our system against
the benchmarks simultaneously on human and machine vision.
We do this on the SFU-HW-Objects-v1 dataset [28], which
contains COCO7-style object labels for a set of HEVC raw
video test sequences. This dataset is also being used in MPEG-
VCM [29]. Table III summarizes the performance of our cod-
ing system versus the benchmarks, with best results indicated
in bold. Since this experiment involves object detection, for
which our system uses only the base layer of the intra-coded
frames, the test is carried out in the all-intra configuration.
Benchmark codecs code intra frames, and decoded frames are
fed to YOLOv3. In our system, only the base layer of intra
frames is decoded and fed via LST to the YOLOv3 back-end,
as shown in Fig. 2.

Mean Average Precision (mAP) [19] is used as the object
detection accuracy metric. Unlike the Peak Signal-to-Noise-
Ratio (PSNR), mAP vs. bit rate curves are not always concave,
or even monotonic [29], which makes it impossible to compute
a valid BD-rate-mAP value. One example is shown in Fig. 5(a)
for the sequence FourPeople, where we see that HEVC and
VVC curves are non-concave and non-monotonic. For this

7https://cocodataset.org

TABLE III
BD PERFORMANCE OF THE PROPOSED VIDEO CODING SYSTEM AGAINST

HEVC AND VVC IN THE ALL-INTRA CONFIGURATION

HEVC (HM-16.20) VVC (VTM-10.0)
Benchmark Machine Vision Human Vision Machine Vision Human Vision

BD-rate- BD-rate-
Class Sequence mAP PSNR MS-SSIM mAP PSNR MS-SSIM

A
PeopleOnStreet -37.17% 8.55% -22.93% -29.52% 36.47% -6.34%

Traffic 33.82% 16.80% -20.72% 61.09% 44.38% -4.09%

Average -1.68% 12.67% -21.83% 15.78% 40.42% -5.21%

B

BQTerrace 16.37% 29.84% -18.33% -2.26% 73.32% 7.84%
BasketballDrive -49.91% 24.57% -13.63% -47.16% 64.10% 9.47%

Cactus -30.68% 20.79% -19.18% -46.64% 55.70% 2.28%
Kimono -75.00% 1.37% -15.72% -70.98% 24.91% 0.74%

ParkScene -35.81% 14.63% -16.45% -20.30% 40.05% -0.63%

Average -35.01% 18.24% -16.66% -37.47% 51.62% 3.94%

C

BQMall -51.04% 1.07% -20.80% -51.96% 31.80% 0.95%
BasketballDrill -37.45% 0.62% -22.76% -46.88% 46.70% 5.09%

PartyScene -8.01% 15.60% -12.54% -12.25% 43.87% 5.33%
RaceHorses 27.07% 8.49% -11.43% -36.60% 38.90% 8.37%

Average -17.36% 6.44% -16.88% -36.92% 40.32% 4.94%

D

BQSquare -6.51% 7.39% -25.10% -15.38% 32.52% -10.52%
BasketballPass -57.82% -2.33% -16.14% -55.58% 29.18% 6.82%

BlowingBubbles -15.49% 1.08% -15.26% -2.86% 30.57% 5.72%
RaceHorses 21.69% -4.15% -11.10% -22.45% 27.46% 11.82%

Average -14.53% 0.50% -16.90% -24.07% 29.93% 3.46%

E
Johnny 116.35% 7.87% -19.50% 86.62% 47.54% 7.45%

KristenAndSara -39.08% 7.48% -29.17% -8.03% 42.40% -8.88%

Average 38.64% 6.21% -24.90% 39.29% 41.19% -2.60%

Avg. (A - D) -20.40% 9.62% -17.47% -26.65% 41.33% 2.86%

Avg. (A - E) -13.45% 9.05% -18.71% -18.89% 41.31% 1.95%

reason, the sequence FourPeople has been excluded from the
results. Other sequences had well-behaved mAP vs. bit rate
curves, like the one shown in Fig. 5(b) for BasketballPass.

On object detection, our coding system shows significant bit
savings of 13.45% and 18.85% on average against HEVC and
VVC, respectively, when averaged over all sequence classes.
Without Class E sequences, average bit reduction is even
higher – 20.40% and 26.65%, respectively, against HEVC and
VVC. Surprisingly, we save more bits against VVC compared
to HEVC, which implies that advanced coding tools adopted
in VVC are less machine vision-friendly.

In terms of input reconstruction for human viewing, stan-
dard codecs perform better, as expected, because that is what
they are optimized for. In terms of BD-rate-PSNR, our system
increases bits by about 9% and 41% against HEVC and VVC,
respectively. In other words, the compression efficiency of
VVC is far superior to other methods in terms of rate-PSNR.
Meanwhile, our system performs reasonably well against
HEVC, achieving some gains on two sequences in Class D.
Overall, our method shows better performance in classes C
and D compared to other classes. We suspect that this is due
to input scaling with bilinear interpolation, which may cause
some artifacts to the sequences in Class C (832⇥ 480) and D
(416⇥ 240) compared to sequences with higher resolution.

In terms of BD-rate-MS-SSIM, our system outperforms
HEVC by 18.71% and has marginally worse performance
(by 1.95%) compared to VVC. If we consider MS-SSIM a
more relevant metric for human viewing experience, then one
could argue that our system provides comparable or better
performance for human viewing while achieving gains on
machine vision. Indeed, it has been known for a while that
DNN-based codecs do well on MS-SSIM, and our system

TABLE I
� VALUES FOR TRAINING INTRA-FRAME CODING MODELS

Quality Index 1 2 3 4 5 6

� 0.0018 0.0035 0.0067 0.013 0.025 0.0483

TABLE II
COMBINATIONS OF MODEL INDEX (�) AND QP FOR INTRA AND INTER

FRAME, RESPECTIVELY, IN RANDOM ACCESS CODING

Intra Model index
(�)

6
(0.0483)

5
(0.025)

4
(0.013)

Inter QP 18 22 26 30 34 38

coding standards: HEVC [20] (specifically, HM-16.20) and
Versatile Video Coding (VVC) [24] (specifically, VTM-10.0).
We encode the test sequences using the all-intra and random
access configurations with intra period of 8. For benchmarks,
we encode the sequences with QP 2 {18, 22, 26, 30, 34, 38}
and QP 2 {20, 24, 28, 32, 36, 40} for HEVC and VVC, respec-
tively. For our proposed system in the all intra configuration,
we encode the sequences using the six models whose � values
are shown in Table I. For the random access case, to achieve
the range of bit rates comparable to the benchmarks, we used
several combinations of � values for the intra codec and QP
for inter coding, as shown in Table II. Inter frames are coded
with QP 2 {18, 22, 26, 30, 34, 38} plus the QP offsets related
to the hierarchical reference structure defined in the HEVC
Common Test Conditions (CTC) [25]. Bjøntegaard Delta (BD)
metrics [26], [27] are used to evaluate the performance against
the benchmarks in terms of rate-distortion and rate-accuracy.

B. Simultaneous evaluation for human and machine vision

First, we evaluate the performance of our system against
the benchmarks simultaneously on human and machine vision.
We do this on the SFU-HW-Objects-v1 dataset [28], which
contains COCO7-style object labels for a set of HEVC raw
video test sequences. This dataset is also being used in MPEG-
VCM [29]. Table III summarizes the performance of our cod-
ing system versus the benchmarks, with best results indicated
in bold. Since this experiment involves object detection, for
which our system uses only the base layer of the intra-coded
frames, the test is carried out in the all-intra configuration.
Benchmark codecs code intra frames, and decoded frames are
fed to YOLOv3. In our system, only the base layer of intra
frames is decoded and fed via LST to the YOLOv3 back-end,
as shown in Fig. 2.

Mean Average Precision (mAP) [19] is used as the object
detection accuracy metric. Unlike the Peak Signal-to-Noise-
Ratio (PSNR), mAP vs. bit rate curves are not always concave,
or even monotonic [29], which makes it impossible to compute
a valid BD-rate-mAP value. One example is shown in Fig. 5(a)
for the sequence FourPeople, where we see that HEVC and
VVC curves are non-concave and non-monotonic. For this
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TABLE III
BD PERFORMANCE OF THE PROPOSED VIDEO CODING SYSTEM AGAINST

HEVC AND VVC IN THE ALL-INTRA CONFIGURATION

HEVC (HM-16.20) VVC (VTM-10.0)
Benchmark Machine Vision Human Vision Machine Vision Human Vision

BD-rate- BD-rate-
Class Sequence mAP PSNR MS-SSIM mAP PSNR MS-SSIM

A
PeopleOnStreet -37.17% 8.55% -22.93% -29.52% 36.47% -6.34%

Traffic 33.82% 16.80% -20.72% 61.09% 44.38% -4.09%

Average -1.68% 12.67% -21.83% 15.78% 40.42% -5.21%

B

BQTerrace 16.37% 29.84% -18.33% -2.26% 73.32% 7.84%
BasketballDrive -49.91% 24.57% -13.63% -47.16% 64.10% 9.47%

Cactus -30.68% 20.79% -19.18% -46.64% 55.70% 2.28%
Kimono -75.00% 1.37% -15.72% -70.98% 24.91% 0.74%

ParkScene -35.81% 14.63% -16.45% -20.30% 40.05% -0.63%

Average -35.01% 18.24% -16.66% -37.47% 51.62% 3.94%

C

BQMall -51.04% 1.07% -20.80% -51.96% 31.80% 0.95%
BasketballDrill -37.45% 0.62% -22.76% -46.88% 46.70% 5.09%

PartyScene -8.01% 15.60% -12.54% -12.25% 43.87% 5.33%
RaceHorses 27.07% 8.49% -11.43% -36.60% 38.90% 8.37%

Average -17.36% 6.44% -16.88% -36.92% 40.32% 4.94%

D

BQSquare -6.51% 7.39% -25.10% -15.38% 32.52% -10.52%
BasketballPass -57.82% -2.33% -16.14% -55.58% 29.18% 6.82%

BlowingBubbles -15.49% 1.08% -15.26% -2.86% 30.57% 5.72%
RaceHorses 21.69% -4.15% -11.10% -22.45% 27.46% 11.82%

Average -14.53% 0.50% -16.90% -24.07% 29.93% 3.46%

E
Johnny 116.35% 7.87% -19.50% 86.62% 47.54% 7.45%

KristenAndSara -39.08% 7.48% -29.17% -8.03% 42.40% -8.88%

Average 38.64% 6.21% -24.90% 39.29% 41.19% -2.60%

Avg. (A - D) -20.40% 9.62% -17.47% -26.65% 41.33% 2.86%

Avg. (A - E) -13.45% 9.05% -18.71% -18.89% 41.31% 1.95%

reason, the sequence FourPeople has been excluded from the
results. Other sequences had well-behaved mAP vs. bit rate
curves, like the one shown in Fig. 5(b) for BasketballPass.

On object detection, our coding system shows significant bit
savings of 13.45% and 18.85% on average against HEVC and
VVC, respectively, when averaged over all sequence classes.
Without Class E sequences, average bit reduction is even
higher – 20.40% and 26.65%, respectively, against HEVC and
VVC. Surprisingly, we save more bits against VVC compared
to HEVC, which implies that advanced coding tools adopted
in VVC are less machine vision-friendly.

In terms of input reconstruction for human viewing, stan-
dard codecs perform better, as expected, because that is what
they are optimized for. In terms of BD-rate-PSNR, our system
increases bits by about 9% and 41% against HEVC and VVC,
respectively. In other words, the compression efficiency of
VVC is far superior to other methods in terms of rate-PSNR.
Meanwhile, our system performs reasonably well against
HEVC, achieving some gains on two sequences in Class D.
Overall, our method shows better performance in classes C
and D compared to other classes. We suspect that this is due
to input scaling with bilinear interpolation, which may cause
some artifacts to the sequences in Class C (832⇥ 480) and D
(416⇥ 240) compared to sequences with higher resolution.

In terms of BD-rate-MS-SSIM, our system outperforms
HEVC by 18.71% and has marginally worse performance
(by 1.95%) compared to VVC. If we consider MS-SSIM a
more relevant metric for human viewing experience, then one
could argue that our system provides comparable or better
performance for human viewing while achieving gains on
machine vision. Indeed, it has been known for a while that
DNN-based codecs do well on MS-SSIM, and our system

Break-even point
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HMFVC
• Base layer: action recognition or object detection
• Enhancement: input reconstruction
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Z. Huang, C. Jia, S. Wang, and S. Ma, "HMFVC: A human-machine friendly video compression scheme," IEEE Trans. Circ. Syst. Video 
Technol., Early Access, 2022.
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What is shown in the image?

LATENT-SPACE MOTION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

Input video One feature tensor channel 
from add_3 layer of ResNet-34

Observation:

• Input motion seems to be 
preserved in the latent space

• Why?
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Understanding latent-space motion

• Consider motion in the input space between two 
consecutive frames

• Map each frame to the latent space via the model front—
end

• What is the relationship between the corresponding 
feature tensors?

LATENT-SPACE MOTION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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• A popular motion model in computer vision is “optical flow”:

𝜕𝐼
𝜕𝑥 𝑣! +

𝜕𝐼
𝜕𝑦 𝑣' +

𝜕𝐼
𝜕𝑡 = 0

o 𝐼 – image intensity;    𝑡 – time
o 𝑣! , 𝑣' – optical flow

• If this model describes motion in the input space, what it its 
equivalent in the latent space?

LATENT-SPACE MOTION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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Common operations in convolutional networks:

1. Convolution

2. Nonlinear activation

3. Batch normalization

4. Pooling

o Max pooling

o Mean pooling

o Learnt pooling (strided convolution)

• Examine the effect of each of these on the optical flow PDE

LATENT-SPACE MOTION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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• When input image 𝐼 is convolved with kernel 𝑓, the resulting flow equation is

𝜕
𝜕𝑥 𝑓 ∗ 𝐼 𝑢! +

𝜕
𝜕𝑦 𝑓 ∗ 𝐼 𝑢' +

𝜕
𝜕𝑡 𝑓 ∗ 𝐼 = 0

where 𝑢! , 𝑢' is the flow field after convolution

• Convolution and differentiation commute:

𝑓 ∗
𝜕𝐼
𝜕𝑥 𝑢! +

𝜕𝐼
𝜕𝑦 𝑢' +

𝜕𝐼
𝜕𝑡 = 0

LATENT-SPACE MOTION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

same flow equation as in input space  ⟹ solution to input flow is one solution to output flow 

M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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• When input image 𝐼 passes through nonlinear activation 𝜎(*), the resulting flow equation is

𝜕 𝜎 𝐼
𝜕𝑥 𝑢! +

𝜕 𝜎 𝐼
𝜕𝑦 𝑢' +

𝜕 𝜎 𝐼
𝜕𝑡 = 0

where 𝑢! , 𝑢' is the flow field after nonlinear activation

• Using the chain rule of differentiation:

𝜎D(𝐼) *
𝜕𝐼
𝜕𝑥 𝑢! +

𝜕𝐼
𝜕𝑦 𝑢' +

𝜕𝐼
𝜕𝑡 = 0

LATENT-SPACE MOTION
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M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.

same flow equation as in input space  ⟹ solution to input flow is one solution to output flow 
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Summary

• Optical flow of the input remains one (approximate) 
solution to the optical flow after common operations 
(convolution, nonlinear activation, pooling, etc.)

• Pooling with a spatial scale change causes a 
corresponding scale change in the optical flow
o For example, 2×2 pooling scales the flow field by a 

factor of ½

• This is why input motion is approximately preserved in 
the latent space

• This also justifies using techniques originally developed 
for input-space motion (optical flow, block-based motion 
estimation/compensation) for feature-domain coding

LATENT-SPACE MOTION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL

M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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PRIVACY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 2: PRACTICE
IEEE ICIP 2022 TUTORIAL
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Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against collaborative inference,” Proc. 35th Annual Computer Security Applications 
Conference, p. 148–162, 2019

• In many multi-task systems, we code latent-
space features

• Are features privacy-preserving?

• Need precise definition of privacy

• Strategies for privacy

o Adding noise to features

o Information-theoretic privacy

o Resilience to model inversion attack

Input

Input reconstruction from YOLOv2

Data processing inequality at work:
𝐼(𝑋; 𝑌!) ≥ 𝐼(𝑋; 𝑌") ≥ 𝐼(𝑋; 𝑌#)

𝑋

𝑌!

𝑌"

𝑌#

Not compression 
friendly
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PRIVACY FAN
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• “Privacy fan” – a post-hoc information-theoretic privacy model for multi-task compression

• Start with a pre-trained model

• 𝑌,, …, 𝑌C - features

• 𝑇,, …, 𝑇6 - tasks

• Some task outputs reveal private 
information (e.g. input reconstruction), 
some not

• Let 𝒫 be the set of “private” tasks

• Goal: identify a set of features ℬ that carry minimum 
information about private tasks, while providing sufficient
information about non-private ones
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PRIVACY FAN
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• Privacy fan formulation

min
ℬ
(
+∈ℬ

(
/∈𝒫

𝐼(𝑌+; 𝑇/) , such that (
+∈ℬ

(
/∉𝒫

𝐼(𝑌+; 𝑇/) ≥ 𝑅

• Solution: define a Lagrangian ℒ+ for each feature 𝑌+:

ℒ+ =(
/∈𝒫

𝐼(𝑌+; 𝑇/) − 𝛽 *(
/∉𝒫

𝐼(𝑌+; 𝑇/)

where 𝛽 > 0 is the Lagrange multiplier controlling the privacy-accuracy trade-off

o ℬ = 𝑌+ ∶ ℒ+ < 0

• Special case, practically important: set ℬ is limited to 𝐶′ features: ℬ ≤ 𝐶′
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SCALABLE PRIVACY
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• Lagrangians:   
ℒ+ = 𝐼 𝑌+; 𝑇- − 𝛽 * 𝐼 𝑌+; 𝑇, + 𝐼 𝑌+; 𝑇$

Input reconstruction (private)         Segmentation and depth est. (non-private)

• Obtain set ℬ by solving the privacy fan – call these “base” features

Fig. 1: Multi-task model for collaborative intelligence.

there are three branches (Models 1-3), each responsible for
one of the following tasks: semantic segmentation [12], dis-
parity map estimation [12], and input reconstruction. All
these models consists of convolutional and transpose con-
volutional (convolution with upsampling) layers, in order to
make the resolution of their output equal to the resolution
of the input image. Model 1 maps the received features to a
semantic segmentation map, Model 2 maps the features to a
disparity map, while Model 3 tries to reconstruct the original
input image. We selected these tasks due to the availability of
sufficient amount of ground truth, but the overall framework
is not dependent on these specific tasks.

One point to note is that each of the three branches in the
cloud uses the same set of features. This is in contrast to most
of the recent work on MT models [7, 9], where features from
different layers of the network are concatenated and then sep-
arated according to the tasks to be performed. In the context
of CI, such approach would be less appropriate, since fea-
tures from multiple layers would need to be transferred to the
cloud, which would increase the bit rate. In our case (Fig. 1),
we only transfer bottleneck features obtained from the last
layer of the encoder. This may affect the performance of the
our MT model compared to state of the art on each task, but
it leads to a more practical CI solution.

Deep feature compression is accomplished following [4].
The Q-Layer in Fig. 1 implements uniform n-bit quantization.
The quantized feature tensor is then re-arranged into an image
tile (Fig. 2) and compressed using either lossless (e.g. PNG)
or lossy (e.g. JPEG) image codec. Note that quantization in
the Q-Layer is not differentiable, so during training, similar
to the method in [13], uniform noise is added to the Q-Layer
input to emulate quantization. This keeps the model differen-
tiable, and it can be trained end-to-end. In the testing phase,
quantization is applied as usual.

2.2. Deep feature compressibility loss

Loss functions for the three tasks in Fig. 1 are well-defined.
The loss for semantic segmentation is the cross-entropy loss
in [12]. Mean Squared Error (MSE) loss is chosen for depth
prediction, and Mean Absolute Error (MAE) loss is chosen

for input reconstruction. However, to be able to accomplish
these tasks with compressible features, one needs to include
the feature compressibility loss. Such a loss should be related
to the bit rate needed to compress the features and it should
be differentiable almost everywhere.

To be more specific, let F 2 RH⇥W⇥C be the feature
tensor at the output of the last layer at the encoder in Fig. 1,
where H , W , and C are the height, width, and channel depth
of the feature tensor, respectively. F is a function of both
the input image X and the weights W of the encoder model:
F = f(X;W). Note that f(·), being a forward mapping
of a neural network, is an (almost everywhere) differentiable
function of the weights W - otherwise the model would not
be able to train via backpropagation. What we want to con-
struct is a loss function Lr = g(F) that is related to the bit
rate required for F, and is differentiable with respect to F al-
most everywhere. Then, since Lr = g(f(X;W)), this loss
term would also be differentiable with respect to W, which is
needed for training.

One could easily compute the entropy of F by, say, quan-
tizing its entries, creating a histogram of their values, and
then computing the entropy from the normalized histogram.
However, this process is not differentiable with respect to
the values in F, so we cannot use entropy as the loss term.
Alternative solutions have been proposed in recent image
codecs based on deep networks [14, 15, 16], where the fea-
ture value probabilities are predicted using another neural
network (hence, in a differentiable manner) such as Pixel-
CNN [17] and PixelRNN [18]. Another approach to obtain
a bit rate-related quantity is ⇢-domain analysis [19], where
the fraction of non-zero DCT coefficients (⇢) is used for this

Fig. 2: An example of the tiled quantized deep feature tensor
(enhanced for better visualization).
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S. R. Alvar and I. V. Bajić, “Scalable privacy in multi-task image compression,” Proc. IEEE VCIP, Dec. 2021. 

• Encode “base” features at high quality, other (“enhancement”) features at lower quality, 
depending on the application

Lagrangian
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Varying the rate of enhancement layer

Semantic segmentation Depth estimation Character recognition
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Varying the rate of enhancement layer

• Segmentation and depth estimation accuracy approximately the same in all cases

• Character recognition accuracy increases with increasing enhancement rate
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• Another approach to privacy: train autoencoder to make it more difficult to recover input image 
from encoded features (model inversion attack)

B. Azizian and I. V. Bajić, “Privacy-preserving feature coding for machines,” Picture Coding Symposium (PCS), 2022. 
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• Reconstruction loss

ℒGHI = 𝑋 − X𝑋 , + 𝛽 * 𝑆! ∗ 𝑋 − X𝑋 , + 𝑆' ∗ 𝑋 − X𝑋
,

• Autoencoder’s loss

ℒJK = ℒLMN − 𝑤 * ℒGHI

• Adversarial training – alternate between:

o Train decoder using ℒGHI (autoencoder frozen) – encourage decoder to be as good as it can 
on recovering input image, especially edges

o Train autoencoder using ℒJK (decoder frozen) – penalize encoder if decoder does a good 
job (reverse sign of ℒGHI)

B. Azizian and I. V. Bajić, “Privacy-preserving feature coding for machines,” Picture Coding Symposium (PCS), 2022. 
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• Showing images recovered from 
YOLOv5’s own features           and 
autoencoder’s bottleneck features

• Details harder to distinguish in the 
images recovered from bottleneck 
features

B. Azizian and I. V. Bajić, “Privacy-preserving feature coding for machines,” Picture Coding Symposium (PCS), 2022. 

all the steps, we used Stochastic Gradient Descent (SGD)
optimizer with the initial learning rate equal to 0.01, changing
by a cosine learning rate decay [30] over the training.

A. Resistance to model inversion
As mentioned before, RecNet is an auxiliary DNN model

exploited in the adversarial training stage. So, RecNet is not
part of the final pipeline. In a real situation, however, if an
adversary can get hold of the edge device, they can try to train
their own input reconstruction model using input-bottleneck
pairs. In order to test our model against this attack, we train a
new, randomly initialized RecNet on the bottleneck features
generated by the autoencoder obtained in the adversarial
training stage. This RecNet is trained with a `1-norm loss
(the first term in (2)) and is called RecNet-bottleneck. For
comparison, we have also trained another RecNet, whose first
three layers are removed, on the original YOLOv5m latent
space (without the AE). We call this model RecNet-latent.

We test the resistance against model inversion attack by ap-
plying RecNet-latent to YOLOv5m features at layer 5 (without
compression) and applying RecNet-bottleneck to our bottle-
neck features (also without compression). Input reconstruction
performance is measured using conventional Peak Signal-to-
Noise Ratio (PSNR), as well as a new quality metric called
edge-PSNR that emphasizes PSNR near the edges. To compute
the edge-PSNR, the horizontal and vertical Sobel filters are
applied to the original and reconstructed images to capture
the image gradients in horizontal and vertical directions. Then,
the magnitude of the gradient is considered as a new image
based on which the edge-PSNR is calculated. The values of
PSNR and edge-PSNR are given in Table I. These results show
that our AE is able to remove some information required for
input reconstruction, especially near the edges. In particular,
reconstruction from our bottleneck features is 1.4 dB worse
than reconstruction from YOLOv5m features, and this loss is
mostly concentrated near the edges since edge-PSNR is 2.5 dB
lower. Some visual examples are also provided in Fig. 3. As
can be seen, the edges are more distorted in the output of
RecNet-bottleneck, the text is not readable, and the faces and
facial expressions are not easily recognizable.

B. Feature compression results
To measure the impact of feature compression, we encode

the bottleneck features of the COCO validation images using
VVC-Intra, specifically, its VVenC [31] implementation. Prior
to that, the 64 channels in the bottleneck are clipped, quantized
to 8 bits, and tiled into an 8⇥ 8 matrix to create a gray-scale
image. On the decoder side, the bitstream is decoded, and the
resulting tensors are passed to AD and the YOLOv5m back-
end for inference.

TABLE I: Input reconstruction results

RecNet-latent RecNet-bottleneck Difference

PSNR 21.78 dB 20.38 dB �1.40 dB
edge-PSNR 25.61 dB 23.12 dB �2.49 dB

(a) (b) (c)

Fig. 3: Examples of input reconstruction: (a) original image
(b) RecNet-latent’s output (c) RecNet-bottleneck’s output

We found that most of the feature values in the bottleneck lie
in the range of [�6, 6]. As noted in [32], feature compression
performance can be improved via clipping. To this end, we
tested three clipping ranges: [�6, 6], [�3, 3], and [�1.5, 1.5].
We computed Bjøntegaard-Delta values [33] between their
associated Rate-Accuracy curves (not shown due to space
constraints), where object detection accuracy is measured via
mean Average Precision (mAP) at the IoU threshold of 0.5.
QP values {34, 36, 38, 40, 41, 42} were used to obtain these
results. Using the performance for the [�1.5, 1.5] clipping
range as the anchor, BD-Rate calculated based on the MPEG-
VCM reporting template [34] shows that clipping ranges
[�3, 3] and [�6, 6] reduce the bitrate by 8.1% and 7.1%
on average, respectively. Hence, we selected [�3, 3] as the
clipping range for further experiments.

Finally, we compare our proposed method against direct
coding of YOLOv5m layer 5 features, which we call the
“Anchor.” Similar to encoding the bottleneck, the 192 channels
in the YOLOv5m latent space are clipped, quantized to 8 bits,
tiled into a 12⇥ 16 matrix, and coded using VVC-Intra.

Fig. 4 shows the Rate-Accuracy and Quality-Accuracy
curves. The points on these curves were obtained by QP
2 {34, 36, 38, 40, 41, 42} for the “Proposed” and QP 2
{39, 41, 42, 43, 44, 45} for the “Anchor.” BD-Rate between the
curves presented in Fig. 4a is �31.3%. Hence, our proposed
method reduces the bitrate by over 30% on average for the
equivalent accuracy. This reduction is not surprising given the
reduced dimensionality of the bottleneck features. However,
the novel benefit of the proposed method is the reduction
of input reconstruction ability at the same accuracy, which
is depicted in Fig. 4b. Here, BD-PSNR between the curves
is �0.76 dB, meaning that our bottleneck features lower the
input reconstruction ability by about 0.8 dB on average. As

1 2 3

1 2 3

2
3
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Lower bit rate at the same accuracy (BD-rate = –31.3%)                Lower reconstruction PSNR at the same accuracy (BD-PSNR = –0.76dB)

• Anchor: YOLOv5 features compressed using VVC
• Proposed: AE bottleneck features compressed using VVC

B. Azizian and I. V. Bajić, “Privacy-preserving feature coding for machines,” Picture Coding Symposium (PCS), 2022. 
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• Standards are important
o Ensure interoperability
o Give developers confidence that their products will have a large market

• There are several standardization activities related to multi-task compression

• We will briefly describe two:

o JPEG AI (Joint Photographic Experts Group – Artificial Intelligence)

o MPEG-VCM (Motion Pictures Experts Group – Video Coding for Machines)

STANDARDIZATION

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 3: STANDARDIZATION
IEEE ICIP 2022 TUTORIAL

ISO/IEC JTC 1/SC29/WG1 N90049, "White Paper on JPEG AI Scope and Framework v1.0," 2021.
W. Gao et al., “Recent standard development activities on Video Coding for Machines,” arXiv:2105.12653, May 2021.
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• Scope

“The scope of the JPEG AI is the creation of a learning-based image coding standard offering 
a single-stream, compact compressed domain representation, targeting both human 
visualization, with significant compression efficiency improvement over image coding 
standards in common use at equivalent subjective quality, and effective performance for 
image processing and computer vision tasks, with the goal of supporting a royalty-free 
baseline.” [JPEG AI White Paper, 2021]

• Difference from earlier image coding standards

o Learning-based

o Support for image processing and computer vision tasks (besides default input 
reconstruction)

JPEG AI

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION – PART 3: STANDARDIZATION
IEEE ICIP 2022 TUTORIAL

https://jpeg.org/jpegai/
ISO/IEC JTC 1/SC29/WG1 N90049, "White Paper on JPEG AI Scope and Framework v1.0," 2021.
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• Use cases

o Cloud storage

o Visual surveillance

o Autonomous vehicles and devices

o Image collection storage and management

o Live monitoring of visual data

o Media distribution

o Television broadcast distribution and editing

JPEG AI
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.
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- 4 - 

an efficient compressed domain representation useful not only for visualization, but also for machine image 

processing and computer vision tasks. Figure 1 shows the high-level JPEG AI framework, which is fully 

described in the JPEG AI Use Cases and Requirements document (WG1N91014); it includes three pipelines: 

standard image reconstruction, compressed domain computer vision processing and compressed domain 

image processing, all from the latent representation that is obtained after entropy decoding.  

 

Fig. 1:  JPEG AI learning-based image coding framework. 

 

Considering this context, this Call for Proposals (CfP) on JPEG AI Learning-based Image Coding 

Technologies solicits technical contributions that demonstrate efficient compression of images as well as 

effective performance for image processing and computer vision tasks. 

3. Use Cases and Requirements 

This Call for Proposals addresses several use cases: 

• Cloud storage 

• Visual surveillance 

• Autonomous vehicles and devices 

• Image collection storage and management 

• Live monitoring of visual data 

• Media distribution 

• Television broadcast distribution and editing 
 

Detailed information on these use cases and derived requirements are contained in the JPEG AI Use Cases 

and Requirements document (WG1N91014). 
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.
ISO/IEC JTC 1/SC29/WG1 N100190, REQ " Submission Instructions for the JPEG AI Call for Proposals," 95th Meeting, April 2022.

• Examples of image processing tasks

o Super-resolution

o Denoising

o Low-light enhancement, exposure compensation, color correction

o Inpainting

• Examples of computer vision tasks

o Image classification

o Object/face detection, recognition, identification

o Semantic segmentation

o Event detection, action recognition
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CfP results: average BD-rate over several quality metrics

JPEG AI
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J. Ascenso, “JPEG AI Learning-based Image Compression,” Second AG4 Workshop on JPEG and MPEG Emerging Activities, Sept. 2022. 

Performance Relatively to VVC anchor

12

} Average BD-rate performance over all quality metrics

} Decoding run time relative to anchor using the same CPU (times) 

TEAMID 
BD-rate performance CPU dec. time GPU dec. 

time  
J2K HEVC VVC J2K HEVC VVC HEVC 

TEAM12 -39.3% -13.2% -3.1% 601 606 484 NA 
TEAM13 -31.5% -2.1% 10.6% 21 21 16 1.9 
TEAM14 -57.2% -39.6% -32.3% 39 39 31 7.4 
TEAM15 -6.7% 33.6% 51.2% 25 25 19 NA 
TEAM16 -47.7% -26.6% -17.9% 44 44 34 0.7 
TEAM17 -21.5% 15.4% 32.0% 98 98 75 25.0 
TEAM19 -34.2% -4.4% 8.6% 21 21 16 2.3 
TEAM21 -33.4% 1.6% 13.8% 153 153 118 NA 
TEAM22 -32.6% -4.9% 7.2% 136 136 105 NA 
TEAM24 -56.5% -37.4% -29.9% 44 44 34 0.7 

 
23/9/22Second AG4 Workshop on JPEG and MPEG Emerging Activities
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• Timeline

o January 2022 – Final Call for Proposals

o February 2022 – Proposal registration

o April 2022 – Proposal submission

o October 2022 – Verification Model under Consideration (VMuC)

o ...

o October 2023 – Draft standard

o April 2024 – Final standard

JPEG AI
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.
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• Scope
“MPEG-VCM aims to define a bitstream for compressing video or feature extracted from 
video that is efficient in terms of bitrate/size and can be used by a network of machines 
after decompression to perform multiple tasks without significantly degrading task 
performance. The decoded video or feature can be used for machine consumption or 
hybrid machine and human consumption.
The differences between VCM and video coding with deep learning are:
1. VCM is used for machine consumption or hybrid machine and human consumption, while 

current video coding aims for human consumption;
2. VCM technologies could be but is not required to be based on deep learning
3. VCM can achieve analysis efficiency, computational offloading and privacy protection as 

well as compression efficiency, while traditional video coding pursues mainly on 
compression efficiency. ” [VCM m57648 , 2021]

MPEG-VCM
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Y. Zhang et al., "[VCM] Updates to use cases and requirements for video coding for machines", m57648, July 2021.
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• Use cases

o Surveillance

o Intelligent transportation

o Smart city

o Intelligent industry

o Intelligent content

o Consumer electronics

o Smart retail

o Smart agriculture

o Autonomous vehicles / UAV

MPEG-VCM
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Y. Zhang et al., "[VCM] Updates to use cases and requirements for video coding for machines", m57648, July 2021.
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MPEG-VCM
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Y. Zhang et al., "[VCM] Updates to use cases and requirements for video coding for machines", m57648, July 2021.
ISO/IEC JTC 1/SC 29/WG 2, “Evaluation Framework for Video Coding for Machines ,” N0193, Apr. 2022.

• Examples of image processing tasks

o Image/video enhancement 

o Stereo/Multiview processing

• Examples of computer vision tasks

o Object detection, segmentation, masking, tracking, measurement

o Event search, detection, prediction

o Anomaly detection

o Crowd density estimation

o Pose estimation and tracking
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Machine vision tasks and datasets for evaluation

MPEG-VCM
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S. Liu, ”Updates on Video Coding for Machines," Second AG4 Workshop on JPEG and MPEG Emerging Activities, Sept. 2022.

VCM Evaluation Methodology (1)

• Three machine vision tasks are selected to cover the main tasks identified in the use cases:
• Object detection, instance segmentation and Object tracking.

• Four Datasets with suitable license terms are adopted for evaluation.

Machine Task Network Architecture Evaluation Dataset Evaluation Metric

Object Detection Faster R-CNN with ResNeXt-101 
backbone 

OpenImageV6
TVD
FLIR
SFU-HW-object-v1

mAP@0.5

mAP@[0.5:0.95]

Instance Segmentation Mask R-CNN with ResNeXt-101 
backbone

OpenImageV6
TVD

mAP@0.5

Object Tracking JDE-1088x608 TVD
HiEve-10* MOTA

Action Recognition SlowFast HiEve-10* frame mAP (fmAP)
Pose Estimation HRNet HiEve-10* mAP@0.5

9/23/22 © 2022 Tencent Media Lab 8
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• Track 1 – Feature extraction and compression

o Focus on machine vision

o Call for Evidence (CfE): July 2022

o Response to CfE: October 2022

• Track 2 – Image and video compression

o Both human and machine vision

o Call for Proposals (CfP): April 2022

o Response to CfP: October 2022

MPEG-VCM
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S. Liu, ”Updates on Video Coding for Machines," Second AG4 Workshop on JPEG and MPEG Emerging Activities, Sept. 2022.
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Coding pipelines under consideration

MPEG-VCM
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ISO/IEC JTC 1/SC29/WG2 N78, ”Evaluation Framework for Video Coding for Machines," April 2021.
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• Multi-task compression is not new

o But there are exciting new developments and techniques

o Some requirements are new (e.g., lower bitrate for machine vision)

• What we have learned:

o Features produced by neural networks are more compressible than the input

o Learning-based techniques are good at distinguishing what is relevant for machine vision 
vs. other information

o Unified framework for compression and analysis

o Privacy is an open challenge

o More work is needed on precise definitions and quantification of privacy in the context 
of multi-task compression

o Related standardization activities: JPEG AI and MPEG-VCM

SUMMARY

multimedia laboratoryMULTI-TASK IMAGE AND VIDEO COMPRESSION
IEEE ICIP 2022 TUTORIAL
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Thank you!
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Questions?
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