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OVERVIEW

Introduction
« Technological trends and emerging applications
« The case for collaborative intelligence

Part 1 — Theory
« Review of information theory: entropy, mutual information, data processing inequality
* Bounds on feature compressibility

Part 2 — Practical considerations
* Error resilience
* Feature compression
* Privacy
« Scalable feature coding
* Motion analysis

Part 3 — Standardization
« JPEG Al and MPEG-VCM (Video Coding for Machines)
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TECHNOLOGICAL TRENDS

Internet of Things (l1oT)
« 125 billion 10T devices by 2030

e Market worth >$500 billion

« By 2025, IoT data volume 80 zettabytes
(80x102%! = 80,000,000,000,000,000,000,000 bytes)

« Many kinds of devices:
o Consumer products — digital assistants, home security cameras, smart appliances, ...
o Industry 4.0 — automation, smart factories, predictive maintenance, ...
o Logistics and fleet management — vehicles, ships, drones, aircraft, ...

o Infrastructure — traffic monitoring, video surveillance, smart buildings, ...

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — INTRODUCTION
IEEE ICME 2022 TUTORIAL




TECHNOLOGICAL TRENDS

Fifth Generation (5G) Communication Networks

« Higher bandwidth, higher data rates
« Shorter range at higher frequencies
« Different types of cells
* Broad application areas:

o Enhanced Mobile Broadband (eMBB) — improved services for mobile devices

o Ultra-Reliable Low-Latency Communications (URLLC) — for “mission-critical” applications

o Massive Machine-Type Communications (mMTC) — for “less critical” applications
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TECHNOLOGICAL TRENDS

Artificial Intelligence (Al)

« Different, this time around
* Industry-driven, products on the market

« Facilitated by advances in computing technology,
machine/deep learning, data availability

« Becoming indispensable in:
o Computer vision and image processing
o Speech and audio processing and analysis
o Natural language processing and understanding
o Robotics and automation

o Medical diagnostics, ...
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EMERGING APPLICATIONS

Smart home

* Many sensors around home to help make the home
more comfortable, safe, and efficient

« Control entertainment, lighting, heating, cooling,
security, predictive maintenance, etc.

« Smart speaker market alone > $17B by 2025

 “Silo” mode

o Devices communicate with each other through local network, but not with outside world
o Can still perform basic functions (control lights, security, leak detection, ...)

« Connected mode

o Full power of smart speakers (“What is the weather forecast for the weekend?”)
o Enhanced security (“There is a fire in the neighborhood”), efficiency and comfort (“avoid
highway on your way to work due to heavy traffic”), ...
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EMERGING APPLICATIONS

Traffic monitoring & management

« Cameras (and other sensors) along
roads and intersections

« Counting vehicles, pedestrians, etc.

« Estimating their speed, traffic intensity,
detecting violations and emergencies

« Control traffic lights to manage traffic

« “Silo” mode
o Each camera controls its own traffic light

 Connected mode

o Aggregate data from multiple cameras within a neighborhood to improve awareness and
make better decisions
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EMERGING APPLICATIONS

Autonomous driving

« Cameras and other sensors mounted on the
vehicle to help understand its surroundings

« Detecting vehicles, bikes, pedestrians, traffic lights
and signs, speed bumps, etc.

« Estimated ~ 2 kWh for on-board processing of
sensor data (2.5 kWh in cities)

« “Silo” mode
o Full autonomy, but energy cost high

« Connected mode (especially appropriate in cities)

o Save energy by offloading some of the “intelligence” to the cloud
o Benefit from other sensors in the vicinity (e.g., children playing around the corner)
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EMERGING APPLICATIONS

Previous examples (and many more) make use of advanced sensing and processing capabilities
of edge devices

* In many cases, the system can operate in the “silo” mode or in a connected mode
«  “Silo” mode

o Most autonomous

o No need to communicate with the rest of the world
« Connected mode

o Requires communication, but...

o Enables more sophisticated applications

o Potential for energy savings

o Several ways to run this mode, depending on where “intelligence” is deployed
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CLOUD-BASED INTELLIGENCE

The traditional approach
« Edge sensor captures the signal

- Signal transmitted to the cloud

« Analysis (“intelligence”) performed in the cloud

* Result sent back to the edge (if needed) or to
other systems in the cloud

Challenges:
« Concerns over privacy

* Does not take full advantage of capabilities of
modern edge devices
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EDGE-BASED INTELLIGENCE

The new approach
« Analysis (“intelligence”) performed at the edge

* Only the result sent to the cloud, could also operate
in “silo” mode

« Makes the edge device “smart”

* Addresses some privacy concerns

dog

Challenges:

« Can be energy-intensive (at the edge) Cloud

« Model complexity limited by the resources of the edge device
o Cloud will always be able to host larger, more complex models

L

« What if more then one type of analysis (“task”) is needed, or requirements
change over time?
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EDGE-CLOUD COLLABORATIVE INTELLIGENCE

The future approach

« Covers the spectrum between cloud-only and edge-only Q‘%ﬂ
extremes

« Part of “intelligence” at the edge, other part at the cloud
« Signal features sent to the cloud, analysis completed there
« Able to address privacy concerns

 Able to scale to available resources

Cloud

Challenges:
* Requires new science and engineering to understand
tradeoffs =

* Lack of clear design guidelines (true for all Al)
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THE CASE FOR COLLABORATIVE INTELLIGENCE

Neurosurgeon study

* Measured energy (@ edge device) and latency for cloud-based, edge-based, and distributed
model deployment

« Considered both CPU (Arm Cortex A15) and GPU (NVIDIA Kepler) @ edge

« Considered various models and applications
o Image classification

Face recognition

Handwritten digit recognition

Speech recognition

Speech tagging

O O O O O
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THE CASE FOR COLLABORATIVE INTELLIGENCE

Some results from the Neurosurgeon study
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Overall latency depends on type of connection and resources available at the edge device
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THE CASE FOR COLLABORATIVE INTELLIGENCE

Some results from the Neurosurgeon study
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Energy @ edge device also depends on type of connection and resources available at the edge
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THE CASE FOR COLLABORATIVE INTELLIGENCE

Some results from the Neurosurgeon study
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Partition points (after each layer)

(a) AlexNet latency

When considering end-to-end latency, running part of the model @ edge and remainder in the cloud
often the best solution (above: using edge GPU and WiFi connection)
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THE CASE FOR COLLABORATIVE INTELLIGENCE

Some results from the Neurosurgeon study
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Partition points (after each layer)
(b) AlexNet energy consumption

When considering energy @ edge, running part of the model @ edge and remainder in the cloud
often the best solution (above: using edge GPU and WiFi connection)
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THE CASE FOR COLLABORATIVE INTELLIGENCE

Some conclusions from the Neurosurgeon study

* In terms of end-to-end latency and energy @ edge, it is often best to run part of the Al model at
the edge, and remainder in the cloud — collaborative intelligence

* Optimal partition depends on many factors:
o The architecture of the Al model
o Hardware @ edge
o Type of connection

o ...

« Optimal partitioning point for energy might be different from that for latency
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THE CASE FOR COLLABORATIVE INTELLIGENCE
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Questions?
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REVIEW OF RELEVANT INFORMATION THEORY
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Entropy

Let X be a discrete random variable taking on values x in some sample space X

The entropy of X (in bits) is defined as

HOO == ) p(X = x) - log;p(X = x)

XEX

Entropy is a measure of uncertainty (randomness)

Entropy is the limit of lossless compressibility

Examples:
o Fair coin: X = {Heads, Tails}, p(X = Heads) = p(X = Tails) = 1/2, H(X) =1 bit
o Fairdie: X ={1,2,3,4,5,6}, p(X=1)=--=p(X=6)=1/6, H(X) =log,6 = 2.58 bits
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REVIEW OF RELEVANT INFORMATION THEORY

Mutual information

« Let X and Y be discrete random variables taking on values in sample spaces X and Y

The mutual information (MI) between X and Y (in bits) is defined as

p((X,Y) = (x,¥))
p(X =x)-p(Y =y)

KGN = > P = (xy) - log;
(X, y)EXXY

Ml is a measure of statistical dependence (linear or nonlinear) between X and Y

MI is the amount of information that X carries about Y, and vice versa

Examples:
o X andY independent < I(X;Y) =0

o I(X;X) = H(X) : mutual information between X and itself is its own entropy
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REVIEW OF RELEVANT INFORMATION THEORY

Markov chain

* A sequence of random variables X — Y — Z is a Markov chain if Z is conditionally independent
of X, givenY

[ always

p(x,y,z) =px) - pylx) - p(zly, x)
=px) - plylx) - p(zly)

if Markov chain

« IfZisafunctionofY,ie.Z=f(Y), thenX - Y — Z is a Markov chain

o Since Z is computed from Y, it does not depend on X (when Y is given)
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REVIEW OF RELEVANT INFORMATION THEORY

Data processing inequality (DPI)
- IfX —>Y — ZisaMarkov chain, then

I(X;Y) =2 1(X;2)

* Downstream variable (Z) has no more information about input (X) than an upstream variable (Y)

o Processing cannot increase (mutual) information

« Extended version of DPI: if X - Y — Z — W is a Markov chain, then

1(Y;2) = 1(X; W)

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 1: THEORY
IEEE ICME 2022 TUTORIAL




NEURAL NETWORK LAYERS FORM MARKOV CHAINS

« UY; = output of the i-th layer in a feedforward neural network

—> > [—> —»@

(input) X Yy Y, Ys Y, T (output)

e« X—>1Y, - Y, > Y; — Y, — T is a Markov chain

o SoisanychainX - Y; - Y; »Tfori <j
o True for dense layers, convolutional layers, pooling layers, etc.
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS

* What about skip connections?

—> > [—> —»@

(input) X Yy Y, Ys Y, T (output)

« X > 1Y, > Y, — Yz is not a Markov chain
o Y3 depends on both Y, and Y, not just Y,
o However, X — Y, — VY5 is a Markov chain

o Markovity still holds “across” skip connections, but not “under” them
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LOSSLESS FEATURE COMPRESSIBILITY

Claim: In a non-generative feedforward neural network, in terms of lossless compression,
intermediate features are at least as compressible as the network’s input.

Proof (sketch):
« LetY ={Y;:1<i< L} be asetof some intermediate layer outputs (features)
« Decompose mutual information between input X and Y as
106Y) = HY) — KO
= H(Y) 0, because U is a function of X
* Note that X — X — Y is a Markov chain and apply DPI
HX) =1(X;X) = 1(X;Y) = H(Y)

 So, H(Y) is no larger than H(X) = features Y at least as compressible (losslessly) as input X
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LOSSLESS FEATURE COMPRESSIBILITY

* Intermediate features being more compressible than the input is good news for collaborative
intelligence!

o Bits saved on radio will help compensate for extra computation

o End-to-end latency can be reduced

« But lossless compressibility is very limiting

o Lossy compression gives much higher compression ratios
o Practical image, video, audio compression are all lossy

o Can we extend this result to lossy compression?

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 1: THEORY
IEEE ICME 2022 TUTORIAL




REVIEW OF RELEVANT INFORMATION THEORY

Rate-distortion function

 Let X be arandom variable and X be its “quantized” version according to some conditional
probability distribution p(x | x)

« Letd(x,x) be a distortion metric — how much x differs from x

« For a given distortion level D, define set Py (D) of conditional distributions as
Px(D) ={pE|x) + p(x)-p(&lx)- d(& x) <D}

Eld(X,X)]
« Rate-distortion (RD) function for X is given by

R.(D) = min 1(X: X
x(D) p(mx)e?x(m( )

* Ry(D) is the minimum rate (in bits) at which you can encode X without incurring distortion > D
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LOSSY FEATURE COMPRESSIBILITY

* In order to use RD theory in our case, we need some modifications

f

o<
<
~ —

When we compress input X, we care about what happens to the output T
Px(D) = {p(x|x) :E[d(f(X), f(X))] < D}
- Similarly, when we compress features Y, we care about what happens to the output T

PyD) ={pG 1y) :E[dn(Q),h(Y))] < D)
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LOSSY FEATURE COMPRESSIBILITY

« We can now define the RD function for the input

R.(D) = min 1(X: X
x(D) p(mx)E?X(D)( )

and the RD function for the features

Ry(D) = _ min  I(Y;7)

p(¥|y) € Py(D)

* In both cases, distortion is measured at the output of the network

« Distortion metric can be any metric appropriate for the network’s task, e.g.
o Mean Squared Error for regression tasks
o Cross-entropy or accuracy for classification tasks
o ...
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LOSSY FEATURE COMPRESSIBILITY

Claim: In a non-generative feedforward neural network, in terms of lossy compression,
intermediate features are at least as compressible as the network’s input.

Ry(D) < Ry(D)

Proof (sketch):
« Let D be given and let p*(X | x) be optimal for input compression (achieves Ry (D))

* Draw inputs X ~ p(x) and process each input x in two ways as follows

g
y

v

|
X — > X y
p* (X | x) g

v

 For each x, obtain y and y

« Define q(¥| y) by pairing up y and y
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LOSSY FEATURE COMPRESSIBILITY

Proof (sketch, continued):

« Show q(J| y) € Py(D), i.e., satisfies distortion constraint for D

o Easy to show because q(y| y) is derived from p*(X | x) € Rx(D), which satisfies distortion
constraint for D

«  Apply DPI to Markov chain J — X — X — U to show
1(Y;9) < 1(X:X)
- When p*(% | x) is used to generate X, the above inequality becomes
1(Y;Y) < Rx(D)
- So we have found one distribution q(J| y) € Py(D) that achieves I(Y; Y) below Ry(D). Therefore

Ry (D) = min  I(Y;Y) < Ry(D
VD)= 5 )y YY) = Rx(D)
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DEEPER MEANS MORE COMPRESSIBLE

Claim: In a non-generative feedforward neural network, deeper layers are more compressible.

H(Y) <H(Y;) and Ry,(D) <Ry (D) fori<j

—> —S—» [—> —»@

(input) X Yy Y, Ys Y, T (output)

Proof (sketch): Follows from previous proofs by replacing X with Y; and Y with Y;
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SUMMARY OF FEATURE COMPRESSIBILITY

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 1: THEORY
IEEE ICME 2022 TUTORIAL

Theory shows that intermediate features are at least as compressible as the network’s input
This is true for any non-generative feedforward network, regardless of what its task is

When optimally compressed, fewer bits will be sent in a collaborative intelligence approach
compared to conventional cloud-based approach

This bit saving, if large enough, will lead to lower latency and pay off for extra computation
But:

o Theory talks about limits; practical codecs might be far from those limits

o Theory shows what is possible, but not how to get there

o ldeal for grant proposals

What can we expect from practical (i.e., non-optimal) codecs?
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TOY EXAMPLE OF FEATURE COMPRESSIBILITY

A simple convolutional neural network (CNN) for cats vs. dogs classification
« Trained on Kaggle’s cats vs. dogs dataset

« Goal: compare input compression vs. feature compression in terms of resulting classification
accuracy
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TOY EXAMPLE OF FEATURE COMPRESSIBILITY

Compression vs. accuracy

Input -
0.90 1 iI
|
Layer 1 087 E
I
0804
g 0.75 1
< 0.70 1
Input
0.65 Layer 1
Layer 2
0.60 - Layer 3
! Layer 4
Layer 5 0.55 / === Layer5
lDI{}O 2 DI{J 0 3[}'(]0 4[}'(]0 5[}:[]0 GDI{}CI ?DIU 0
> Average |PEG filesize (Bytes)
File size
Feature compression better than input
Features tiled into an compression starting with layer 3 — why?
Image and compressed If we had an optimal encoder, this
using JPEG would already happen at layer 1
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IMPLICATIONS FOR INFERENCE LATENCY

Inference
latency
A

« Cloud has more powerful hardware
than edge device

 Feature transmission takes fewer bits

than input transmission Edge

= CI will have lower inference
latency over some intermediate range
of upload bitrates Collaborative

edge-cloud
Cloud

>

Interval over which Available bitrate
collaborative edge-
cloud inference is the
fastest
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Questions?
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Part 2

Practical considerations
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ERROR RESILIENCE

Intermediate

. . . . features
* In ClI, intermediate features are transmitted over imperfect
channel
» Bit errors at physical layer — packet loss at application %ﬂ
layer Q
o What is the impact on inference accuracy?
o How can we recover lost features? Lossy
packet
Cloud network

* Firstidea:

o Use existing tensor completion (imputation)
approaches
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TENSOR COMPLETION

*  Well-known tensor completion methods for visual data:
o Simple Low-Rank Tensor Completion (SILRTC)
o High-Accuracy Low-Rank Tensor Completion (HaLRTC)

o Fused Canonical Polyadic (FCP) Decomposition

« Key assumption:

o Tensor lies in a low-rank manifold (fewer degrees of freedom than tensor elements)

« Operationalization of the key assumption:

o Use Singular Value Decomposition (SVD) of unfolded tensor to find this manifold (SILRTC
and HaLRTC)

o Use CP Decomposition (CPD) of unfolded tensor to find this manifold (FCP)
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TENSOR COMPLETION

« Advantage of existing methods:

o Generic — don’t need to know how tensor was created in the first place

« Downsides:
o Decompositions (SVD and CPD) are computationally expensive

o lIterative — need to perform expensive decompositions in each iteration

* In the case of Cl, we know how the tensor is generated

o Can we use this knowledge to develop better tensor completion methods?
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MODEL-BASED TENSOR COMPLETION

Key idea:

o Model the dependence among data in a feature tensor

«  We know the process by which the feature tensor is generated (DNN front-end)
* We also know the kind of input data (e.g., images) from which feature tensor was generated

« This knowledge should give us some ways of modeling the feature tensor

« First attempt:
o Adaptive Linear Tensor Completion (ALTeC)

o Assume a certain linear relationship among feature tensor data
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ALTEC — ADAPTIVE LINEAR TENSOR COMPLETION

Packetization of tensor data

» One row = one packet

Assume linear relationship among rows

o Each row is approximately a linear combination of co-located rows in other channels and
two spatial neighbors (top and bottom) in the same channel

L et xl@ be the i-th row in channel ¢

zwm D 1 w@x© 4 w@x©

l+1 i+1
Jj#cC

Obtain the weights wl.(j)

on a training set
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ALTEC — ADAPTIVE LINEAR TENSOR COMPLETION

Edge Sub-model

Cloud Sub-model

Lossy

INpUt IMAQES s— — o ] T Tensor Completion = - Final Predictions

1L+

« Experimental setup
o NL —no loss (tensor with all data used by the back-end)
o NC —no completion (missing tensor values replaced by zeros)

o TC —tensor completion (various methods used to estimate missing values)
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ALTEC — ADAPTIVE LINEAR TENSOR COMPLETION

Results on VGG-16

« Two configurations tested:
o Default: each method runs until convergence
o Speed-matched: iterative methods run as many
iterations they can up to ALTeC execution time
« Conclusions:
o No significant difference between methods (t-test)

* Reason:
o VGG-16 uses Rectified Linear Unit (ReLU) activation
o Feature tensors have many zeros

o Easy to recover, all methods do reasonably good job

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

Default

Speed-matched

‘ Ploss

Algorithm‘ HNL ‘ HNC ‘ INC

HTC ‘ oTC

HTC arTc

SiLRTC | 56.20% | 55.96% | 0.41% | | 56.09% | 0.39% | | 55.96% | 0.41%

5% HaLRTC | 56.20% | 55.96% | 0.41% | | 56.06% | 0.36% | | 55.96% | 0.41%
FCP 56.20% | 55.96% | 0.41% | | 56.09% | 0.41% | | 55.99% | (0.44%

ALTeC | 56.20% | 55.96% | 0.41% | | 56.07% | 0.40% | | 56.07% | 0.40%
SiLRTC | 56.20% | 55.50% | 0.55% | | 55.67% | 0.44% | | 55.53% | 0.52%

10% HaLRTC | 56.20% | 55.50% | 0.55% | | 55.75% [ 0.37% | | 55.51% | 0.54%
FCP 56.20% | 55.50% | 0.55% | | 55.78% [ 0.51% | | 55.78% | 0.53%

ALTeC | 56.20% | 55.50% | 0.55% | | 55.70% | 0.48% | | 55.70% | 0.48%
SiLRTC | 56.20% | 54.76% | 0.60% | | 54.99% | 0.58% | | 54.79% | 0.62%

15% HalLRTC | 56.20% | 54.76% | 0.60% | | 55.14% | 0.44% | | 54.75% | (.59%
FCP 56.20% | 54.76% | 0.60% | | 55.17% | 0.55% | | 55.15% | 0.59%

ALTeC | 56.20% | 54.76% | 0.60% | | 55.11% | 0.56% | | 55.11% | 0.56%
SILRTC | 56.20% | 54.18% | 0.63% | | 54.51% | 0.61% | | 54.24% | (0.64%

20% HaLRTC | 56.20% | 54.18% | 0.63% | | 54.67% | 0.55% | | 54.21% | 0.64%
FCP 56.20% | 54.18% | 0.63% | | 54.74% | 0.65% | | 54.72% | 0.67%

ALTeC | 56.20% | 54.18% | 0.63% | | 54.64% | 0.63% | | 54.64% | (.63%
SILRTC | 56.20% | 53.45% | 0.79% | | 53.95% | (0.69% | | 53.51% | 0.76%

25% HalLRTC | 56.20% | 53.45% | 0.79% | | 54.19% | (0.67% | | 53.48% | 0.80%
FCP 56.20% | 53.45% | 0.79% | | 54.16% | 0.71% | | 54.16% | 0.72%

ALTeC | 56.20% | 53.45% | 0.79% | | 54.03% | 0.75% | | 54.03% | 0.75%
SILRTC | 56.20% | 52.57% | 0.77% | | 53.13% | 0.73% | | 52.69% | 0.78%

30% HalLRTC | 56.20% | 52.57% | 0.77% | | 53.39% | 0.67% | | 52.65% | 0.78%
FCP 56.20% | 52.57% | 0.77% | | 53.31% | 0.78% | | 53.26% | 0.74%

ALTeC | 56.20% | 52.57% | 0.77% | | 53.25% | 0.81% | | 53.25% | 0.81%

SFU
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ALTEC — ADAPTIVE LINEAR TENSOR COMPLETION

Default Speed-matched
‘ Pioss | Algorithm [ FUNL ‘ HNC ‘ ONC ‘ HrC l a1c ke | orc
RGSU'tS On ReSNEt-34 SILRTC | 58.10% | 57.57% | 0.61% | | 57.77% | 0.49% | | 57.75% | 0.53%

HalRTC | 58.10% | 57.57% | 0.61% | | 57.94% | 0.37% | | 57.75% | 0.61%
FCP 58.10% | 57.57% | 0.61% | | 57.92% | 0.43% | | 57.59% | 0.60%

« Two configurations tested: ALTeC | 58.10% | 57.57% | 0.61% | | 58.04% | 0.44% | | 58.04% | 0.44%

SiLRTC | 58.10% | 54.57% | 0.68% | | 56.47% | 0.60% | | 56.12% | 0.66%
HaLRTC | 58.10% | 54.57% | 0.68% | | 57.65% | 0.46% | | 54.57% | 0.68%

5%

o Default: each method runs until convergence

. . 10% FCP 58.10% | 54.57% | 0.68% | | 56.56% | 0.66% | | 55.98% | 0.69%

o Speed-matched; iterative methods run as many ALTeC | 58.10% | 54.57% | 0.68% | | 57.18% | 0.61% | | 57.18% | 0.61%
IteratIOnS they Can up to ALTeC exeCUtlon tlme SILRTC | 58.10% | 49.30% | 0.78% | | 53.89% | 0.64% | | 52.84% | 0.71%
15% HaLRTC | 58.10% | 49.30% | 0.78% | | 57.02% | 0.51% | | 49.31% | 0.78%

FCP | 58.10% | 49.30% | 0.78% | | 53.96% | 0.75% | | 53.20% | 0.78%
e Conclusions: ALTeC | 58.10% | 49.30% | 0.78% | | 55.09% | 0.71% | | 55.09% | 0.71%

SiLRTC | 58.10% | 40.87% | 0.86% | | 49.61% | 0.77% | | 48.64% | 0.80%

o HaLRTC usually best in default config, ALTeC best | sy | HLRIC |58.10% | 4087% | 086% || 56.26%| 0.60%| | 40.87% | 0.86%

) ) FCP | 58.10% | 40.87% | 0.86% | | 49.76% | 0.76% | | 49.10% | 0.87%
N Speed-matched scenario (t-test) ALTeC | 58.10% | 40.87% | 0.86% | | 51.99% | 0.72% | | 51.99% | 0.72%

SiLRTC | 58.10% | 29.11% | 0.86% | | 43.56% | 0.87% | | 41.40% | 0.99%
P Ler
° Reason 25% HalLRTC | 58.10% | 29.11% | 0.86% | | 55.09% | 0.65% | | 29.11% | 0.87%

FCP 58.10% | 29.11% | 0.86% | | 44.10% | 0.81% | | 43.07% | 0.82%
o ReSNet'34 uses Leaky Rect|f|ed L|near Unlt (ReLU) ALTeC 58.10% | 29.11% | 0.86% | | 47.52% | 0.67% | | 47.52% | 0.67%
activations — feature tensors have fewer zeros

SiLRTC | 58.10% | 15.72% | 0.77% | | 34.56% | 0.89% | | 31.85% | 0.83%
HaLRTC |58.10% | 15.72% | 0.77% | | 53.63% | 0.68% | | 15.73% | 0.77%
FCP 58.10% | 15.72% | 0.77% | | 36.06% | 0.76% | | 34.93% | 0.80%

o Differences between methods more obvious ALTeC | 58.10% | 15.72% | 0.77% | | 41.23% | 0.80% | | 41.23% | 0.80%

30%
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CALTEC — CONTENT-ADAPTIVE LINEAR TENSOR COMPLETION

ALTeC was very fast and fairly accurate — best in speed-matched tests, second-best in
unrestricted tests

« However, it was content-agnostic

o “Adaptive” in ALTeC refers to spatial adaptation — different rows in a feature tensor have
different coefficients Wi(] )

o But dependence of features on the input (content) is not being exploited

* Improvement: Content-Adaptive Linear Tensor Completion (CALTeC)
o Recovery of missing data depends on the content — no pre-training

o But might be slower than ALTeC
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CALTEC — CONTENT-ADAPTIVE LINEAR TENSOR COMPLETION

Channels ¢ __— Damaged Channel 0 Candidate Channel 9

packet
T TOWS

1. Affine transformation
}— with spatial neighbor —{
packet 4

5

S/
WENLA

2. Co-located candidate packet 3
is transformed & filled in damaged
channel. l

CALTeC-repaired Channel 0

« 8 rows per packet (similar to JPEG image transmission)

* Find the channel with
o Available co-located packet

o Most similar available neighboring packets
- Estimate affine transform by matching neighbors

* Apply the affine transformation to co-located packet and use this as estimate of missing one
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CALTEC — CONTENT-ADAPTIVE LINEAR TENSOR COMPLETION

- \\_‘_‘Q\ - I e S

.71 —— No Loss == .71 —— No Loss T

N_IethOd _ _ add_1 add.3 g —— HaLRTC g —— HaLRTC

SLRTC (per iteration) | 228.1ms | 122.1 ms 5057 ---- CcALTeC \ 5057 - cALTeC \

HaLRTC  (periteration) | 242.6 ms | 128.2ms 7 03] ALTeC 7 03] ALTeC

ALTeC 30.5ms | 102.0ms & —_— IS\II{EJ Pé}ir?lpletion & —_— IS\II{EJ Pé:ripletion

CALTeC 77.5ms | 186.8 ms 0.0 | | | 0.0 ~ | |

0.01 0.10 0.20 0.30 0.01 0.10 0.20 0.30

Py PB

(a) Default settings add_1. (b) Speed-matched add_1.

« Experiments on ResNet-18 .. — .
¢ 0.797 —— No Loss g 0.7 —— No Loss —
. - 5 | —— HaLRTC 5 —— HaLRTC
CALTeC slov_ver than ALTeC, but still much 805 - carmo 8os AT
faster than SILRTC and HaLRTC - ALTeC ~ 03 ALTeC
g SiLRTC g SILRTC
- Beston add 1 tensors, second-best (after 7 | — NoCompletion : |~ No Completion
ALTeC) on add 3 tensors T 0.10 0.20 00 o0 0.10 0.20 0.30
_ Py Pg

(c) Default settings add_3. (d) Speed-matched add_3.
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TENSOR COMPLETION BY PDE-BASED INPAINTING

*  We know PDE-based inpainting works well for images

Edge
* A popular PDE model for inpainting: sut?—model
>
0l N 0l N ol 0
ax * oy T ot
A
o I —image intensity; t — iteration Surface ' 9
flow
o (v, vy,) — surface flow J
Edge
sub-model
 If this model works well in the input space, what it its >

equivalent in the latent space?

 How does the above PDE change as I is transformed
through the network’s front-end (edge sub-model)?
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TENSOR COMPLETION BY PDE-BASED INPAINTING

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

Common operations in convolutional networks:

1.

2
3.
4

Convolution
Nonlinear activation
Batch normalization
Pooling

o Max pooling

o Mean pooling

o Learnt pooling (strided convolution)

Examine the effect of each of these on the surface flow PDE
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TENSOR COMPLETION BY PDE-BASED INPAINTING

« When input image I is convolved with kernel f, the resulting flow equation is
0 (f * Du, + 0 (f * Du,, + 0 (fxI)=0
S k S k e k =
ox U Dux + 52+ Duy + 500

where (uy, u,) is the new flow field

 Convolution and differentiation commute;

or ol oI\ _
x| — —_ — | =
[ \axtt W T

same flow equation as in input space
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TENSOR COMPLETION BY PDE-BASED INPAINTING

* When input image I passes through nonlinear activation o(-), the resulting flow equation is

0o(l) 0o(l) +60(I)_
ax X7 Tay T T T

where (uy, uy) is the new flow field

» Using the chain rule of differentiation:

61 01 ol
o (I) ay +a =0

same flow equation as in input space

ltimedia laboratory

SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL




TENSOR COMPLETION BY PDE-BASED INPAINTING

It can be shown that the flow equation is (approximately) preserved through other processing
layers commonly found in convolutional neural networks

o Details in [1]

* Hence, an input-space surface flow solver should be able to do a good job in the latent space
too

« Some popular solvers:

o “Navier-Stokes” [2]

o “Telea” [3]
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TENSOR COMPLETION BY PDE-BASED INPAINTING

« Feature tensor — 8 rows = packet

packetization:

DNN model: YOLOvV3 (object detector) split at layer 12

* Channel model: i.i.d. packet loss

e Dataset: COCO 2017 validation
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TENSOR COMPLETION BY PDE-BASED INPAINTING

oo M ethod Avg. mAP gain | Time per tensor (sec.)
SILRTC-50 0.1028 17.0793
05 | - TT==—.] [ SLRTC-250 0.3101 83.2044
Navier-Stokes 0.3823 0.1408
0.4t Telea 0.3837 0.1356

el Avg. mAP gain (X) = [AUC (X) — AUC (No rec.)] / 0.3

0.2

No recovery
SILRTC-50
SILRTC-250
= = = avier-Stokes
Telea

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3
Packet loss probability
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TENSOR COMPLETION BY PDE-BASED INPAINTING

No recovery SILRTC-50 SILRTC-250

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL
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SUMMARY OF TENSOR COMPLETION FOR COLLABORATIVE INTELLIGENCE

0.91 0.9
> >
Comparison of all methods on image classification £°7] 507
8 0.5 805
« CALTeC and PDE-based inpainting good L b
o V.07 &,0.31
across the board e &
 ALTeC also good, but requires pre-training 0.0t T 030 001 . 030
« HaLRTC good performance when allowed to (a) ResNet-18 add_1. (b) ResNet-34 add_ 3.
run enough iterations, but extremely slow
. 0.91 No Loss
« SILRTC weakest and slow - - HLRTC
5 —— CALTeC
«ﬁo 0.57 —»—- Navier-Stokes
If you want to experiment, Deep Feature 203 ALTeC
. . & —— SiLRTC
Transmlss!on Simulator (DFTS2) offers an easy- 0.1 —4— No Completion
to-use environment: 0.01 010020 0.30
https://github.com/AshivDhondea/DFTS2 (c) DenseNet-121
poolZ_conv.
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Questions?
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FEATURE COMPRESSION

 How can we practically compress features
obtained from a neural network?

* One idea:
1. Reorganize the feature tensor into an image

o Two possibilities — tiling and quilting
(tiling works better)

2. Quantize to 8 bits/tensor element

3. Use an existing image codec (PNG, JPEG, Tiling Quilting
JPEG2000, HEVC/BPG, VVC, ...) to encode
as a grayscale image
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FEATURE COMPRESSION

Results on YOLOvV2 [1] object detector

» Features compressed by BPG (HEVC-Intra)

0.74 !
« Part of VOC2007 dataset for testing

0.72f =@=Input
[ =&=Max11_w_Default_Weights

“p=Max11_w_Re-trained_Weights

* Images from VOC2007 and VOC2012 for re-

mean Average Precision (mAP)

training to account for quantization 0.7} ~4-Max17_w_Default_Weights
- -l-Max17_w_Re-trained Weights
« Savings of up to 60% bits at equivalent accuracy o.csl
without re-training ;
« Savings of 70% bits with re-training 0.661 |
- - - - 0.64 i 1 1 1 1 1 1
Splitat  Default weights Re-trained weights 0 50 100 150 200 250 300
Kbits per Image (KBPI)
max_11 —6.09% —45.23%
max_17 —60.30% —70.30%
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MULTI-STREAM COLLABORATIVE INTELLIGENCE SYSTEMS

Types of collaborative intelligence (Cl) systems:
a) Single-stream single task (1 X 1)

b) Single-stream multi-task (1 X k)

c) Multi-stream single-task (N x 1)

d) Multi-stream multi-task (N X k)

* In multi-stream CI systems, rates of individual streams
need to be optimized

* In[Alvar and Baji¢, TIP 2021].
o Tractable R-D model for ClI systems proposed
o Analytical bit allocation solution for N X 1 systems
o Pareto set characterization for 2 X k systems
o Bounds on Pareto set for 3 X 2 systems
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TRACTABLE RD MODEL FOR MULTI-STREAM MULTI-TASK CI SYSTEMS

accuracy w/o accuracy after

compression compression
* Task distortion: \ /

D. = |Ai:Ai| . 100 % change in task accuracy
' A; due to compression
« Rate-Distortion (RD) model
N
Di(RlJ ""RN) ~ Vi +Zai,j2 Bl'] J 100
j =1 [ Original surface
80 [ IFitted surface

« Benefits of this RD model:
“Makes sense” — distortion reduces exponentially

60

40

Total Distortion

with rates
o Fits the data: R? > 0.94 in all our tests
o Tractable — distortion is convex and monotonically 0" )

decreasing with rate

R, (Kbits) 200 R, (Kbits)
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EXAMPLE OF BIT ALLOCATION IN MULTI-STREAM MULTI-TASK MODELS

Model 1
7
Deep || Deep N J Model 2
Feature|| Feature
Encoder||Decoder
|Model 3
L& J o
- v
Edge Cloud
-'5-— 480 I I I I I R +RI =R |1
it 1 2 1
09 .-“". Pareto set
460 | ¢ minD, ||
Pareto front ~ Pareto set minD,
5 o085 F ) a0l N\ |
g (rates that achieve _ "\
W =
o =
. the Pareto front) € a2
ol
E -mww_::.-q--f-wms--'—m*“--?***"“: 400
8 o715 Ry*R<R,
DN " R‘I+R2=Rt 380
+  Pareto front
O minD,
0.7 min If.'!2 360 -
1.6 162 164 166 168 1.7 172 174 176 178 540 560 580 600 620 640
D, (Semantic segmentation) R1 (Kbits)
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Questions?
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LATENT SPACE SCALABILITY

In multi-task systems we looked at so far, all features supported all tasks; but a better design is
possible

 The tasks often include input image reconstruction (X) and/or some computer vision (CV)
inference tasks T

- But CV inference can also be obtained from X (common in practice)
- Data processing inequality (DPI) appliedto Y — X — T:

I(Y; X) = 1(Y;T)
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LATENT SPACE SCALABILITY

I(Y; X) = I(Y;T)

« Latent space Y contains less
information about CV task T than
about input reconstruction X

==

« Dedicate a subset of Y to T, all of it
to X

« When only T is needed, decode
only a subset of Y

Input
Reconstruction

\
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LATENT SPACE SCALABILITY

End-to-end neural image codec

X—& Encoder — Y = {¥;, ..., Y;| Y;11, ..., Yc} —— Decoder %— X

y 1 Latent-space
—>
transform

T
— CV back-end —— T

Example 2-layer scalable system:

« End-to-end image codec backbone [2]

« Subset of latent space (Y,) needs to be transformed into the latent space F of the CV back-end
o Need latent-space transform (another neural network)

« CV back-end (for object detection) is YOLOv3 [3] starting at layer 13
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LATENT SPACE SCALABILITY

End-to-end neural image codec

X—& Encoder — Y = {¥;, ..., Y;| Y;11, ..., Yc} —— Decoder %— X

y 1 Latent-space
—>
transform

T
— CV back-end —— T

Loss function:
L=R+2-|[MSE(X,X) +y-MSE(F,F)]

D

R is the rate estimate [2]
Distortion D composed of input reconstruction MSE(X, X) and CV feature reconstruction MSE(F, F)

Since MSE(?—", f") depends only on Y; (and not on Y\Y,), CV-relevant information is steered to Y,
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LATENT SPACE SCALABILITY

* Object detection experiments on the
COCO dataset

* Performance much better than
compressing input directly:

o 37 —48% bit savings compared to
state-of-the-art image codecs

o 2.8 —-4.5% more accurate
detection at the same bit rate

o Reason: not all pixel details are
needed for object detection

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2:

IEEE ICME 2022 TUTORIAL

PRACTICE

2-layer system: object detection + input reconstruction

ey gy wpp— — i rrr: B e S N N N B B

==+ QOriginal Performance (55.85%)
—— HEWVC
—— WC
=& Minnen et al.
Cheng et al.
== Proposed Two-layer Network

0.1 0.2 03 04 05 0.6 0.7 0.8 09 1.0 1.1

bpp
‘ Two-layer Network
Benchmarks ‘ BD-Bitrate BD-mAP
VVC -39.8 2.79
HEVC —47.9 4.55
Minnen et al. —41.3 3.26
Cheng et al. L -37.4 2.89
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LATENT SPACE SCALABILITY

End-to-end neural image codec

~

X — Encoder — Y = {¥;, ..., ¥;| Y41, |.., Yc} —> Decoder b

Y ~ Latent-space
~ transform 1

—1 CV back-end1 —— T,

Yz

Latent-space

2
transform 2 CV back-end 2 > T,

Example 3-layer scalable system
« End-to-end image codec backbone [2]
 CV task 1: object detection using Detectron [3] back-end

« CV task 2: semantic segmentation using Detectron [3] back-end
o Object detection c semantic segmentation = Y, c Y,
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LATENT SPACE SCALABILITY

3-layer system: (a) object detection, (b) segmentation

- Detection and segmentation experiments on COCO | | _1%miPless |

2% mAP loss

« Again, Performance much better than compressing § — = Orginal Performance (40.2%)
input directly: €34 e
32 —&— Minnen et al
o 71— 78% bit savings compared to state-of-the-art 30 | et e iyer Nacerk
image COdeCS 0.05 015 025 0.35 bo.ds 0.55 0.65 0.75
pp
o 2.3 —-3.5% more accurate detection at the same @
' e —— S
blt rate 36 f’*_ - 1% mAP loss

b - - - - - I — — = = e = = ——

2% mAP loss
Three-layer Network

| Object Detection | Segmentation ——. Orginal Performance (37.2%)
. ; —— HEVC
Benchmarks ‘ BD-Bitrate BD-mAP ‘ BD-Bitrate BD-mAP —— W
vvC ~73.2 233 ~71.2 2.34 ~& Minnen ¢ al
Cheng et al.
~ HEVC _ | 732 3.05 747 2.96 o] Propesalt Thras-idyer Hetwork
Minnen et al. ~78.7 3.73 =772 3.38 r . 025 035 045 055 0.65 075
Cheng et al. -76.6 3.62 -754 3.49 bpp

(b)
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LATENT SPACE SCALABILITY

== Proposed Two-layer
37 | —— Proposed Three-layer
—&— Minnen et al 2] 0.98
~— Cheng et al. 3]
35 e
—p— HEWC
—— |PEG 0.96
<33 =
= E[},g.q- —de— Proposed Two-layer
31 —o— Progosed Three-ls;yer
—— hcn;nnen et T. [2]
| =l eng et al.
20| 0.92 e 9 (3
27" 01 02 03 04 05 06 07 08 09 09091 02 03 04 05 06 07 08 09
PP pp
‘ Proposed methods
ReSUItS on the KOdak dataset Benchmarks ‘ Two-layer Network ‘ Three-layer Network
- Proposed scalable codec comparable to state-of-the-art on PESNR (MSSSIM) | (PSNR) (MO.SSIMG
input reconstruction HvC | 14z 2615 | s 1796
. . aye . JPEG -63.99 -63.99 -57.25 -57.84
« 10 - 20% degradation by adding a scalability layer (2 — 3), in o s s 1202 206
line with earlier work on scalable video coding S
Network ' '
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Questions?

ltimedia laboratory

SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL




PRIVACY

Features, not input, sent from edge to cloud
— potential for privacy Input reconstruction from YOLOv2

* Are features privacy-preserving?
* Need precise definition of privacy
« Strategies for privacy

CNN Forward

o Resilience to model inversion

Computation
o Adding noise to features )
o Information-theoretic privacy %

Reorg Result
Concat Buffer in DDR
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PRIVACY FAN

“Privacy fan” — an information-theoretic privacy model for collaborative intelligence and multi-
task compression

* Yi, ..., Y. -features T
« Ty, ..., Ty - tasks g / T,
« Some task outputs reveal private X > Ys /
information (e.g. input reconstruction), :
some not
YC \
* Let P be the set of “private” tasks
TN

« Goal: identify a set of features B that carry minimum
information about private tasks, while providing sufficient
information about non-private ones
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PRIVACY FAN

* Privacy fan formulation
mBinZZI(Yi;T]-), such that ZZI(YL-;T]-) > R
IEB jEP IEB j&P
« Solution: define a Lagrangian £; for each feature Y;:
L= ) 10T = - ) 1% T))
JEP J&P
where > 0 is the Lagrange multiplier controlling the privacy-accuracy trade-off

o B={Y; : L; <0}
« Special case, practically important: set B is limited to C’ features: |B| < ('
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SCALABLE PRIVACY

Model 1

X X Model 2

:Deep Feature:
: Com pression:

V2 |/ Model 3
Edge
* 3-task model: Ly = 1;T3) — BT +1(Y;T,)]
Input reconstruction (private) Segmentation and depth est. (non-private)

» Obtain set B by solving the privacy fan — call these “base” features

« Encode “base” features at high quality, other (“enhancement”) features at appropriate quality,
depending on the application
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SCALABLE PRIVACY

Varying the rate of enhancement layer

64
79; _70¢
G
63.8 =60
S
— * —* 550¢
X 636 7.857 9
— L o |
- W T 40
© = S
c 634 = =30
L [@)]
8 S20f
63.2 @
N R S 10T
H—F #* * —
63 ' ' ' ' ' ' 775 - - - - - - 9 ' ' ' ' '
120 140 160 180 200 220 240 120 140 160 180 200 220 240 1600 1800 2000 2200 2400 2600 2800
Kbytes Kbytes Kbytes
Semantic segmentation Depth estimation Character recognition
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SCALABLE PRIVACY

Varying the rate of enhancement layer

A

L 4 3 1 .
‘. \l y'-t' B
P Jal 1y
M Bb, |
! i1l
" mil e "
—— .
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Questions?
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LATENT-SPACE MOTION

What is shown in the image?

Observation:

* Input motion seems to be
preserved in the latent space

 Why?

One feature tensor channel
from add 3 layer of ResNet-34
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LATENT-SPACE MOTION

Understanding latent-space motion

Consider motion in the input space between two
consecutive frames

Map each frame to the latent space via the model front—
end

Model
front-end

What is the relationship between the corresponding Motion
feature tensors?

Model
front-end

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

ltimedia laboratory

SIMON FRASER UNIVERSITY
ENGAGING THE WORLD




LATENT-SPACE MOTION

* A popular motion model in computer vision is “optical flow”:

Model
dl N dl N dl 0 front-end
U+ VU, + o=
dx * o9y ¥ Ot >
o I —image intensity; t —time A
o (v, v,)— optical flow Voo ' 9
v
 If this model describes motion in the input space, what it its Model
equivalent in the latent space? front-end
>

* Note: the same equation was used to describe “surface
flow” in PDE-based inpainting

o Can reuse that analysis, but interpretation slightly
different
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LATENT-SPACE MOTION

« When input image I is convolved with kernel f, the resulting flow equation is
0 (f * Du, + 0 (f * Du,, + 0 (fxI)=0
S k S k e k =
ox U Dux + 52+ Duy + 500

where (uy, uy ) is the flow field after convolution

 Convolution and differentiation commute;

or ol oI\ _
x| — —_ — | =
[ \axtt W T

same flow equation as in input space = solution to input flow is one solution to output flow
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LATENT-SPACE MOTION

* When input image I passes through nonlinear activation o(-), the resulting flow equation is

0o(l) 0o(l) +60(I)_
ax X7 Tay T T T

where (uy, uy ) is the flow field after nonlinear activation

» Using the chain rule of differentiation:

61 01 ol
o (I) ay +a =0

same flow equation as in input space = solution to input flow is one solution to output flow
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LATENT-SPACE MOTION

* Following pooling operations are commonly found in deep neural networks:
o Max pooling
o Mean pooling
o Learnt pooling (strided convolution)

« Each of these pooling operations can be represented as

spatial operation followed by spatial scale change

where spatial operation is

o Local maximum in case of max pooling

o Local average in case of mean pooling

o Weighted local average in case of learnt pooling

* Note: (weighted) local average is a special case of of convolution, and it was already shown
that optical flow before convolution is one solution to the optical flow after the convolution
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LATENT-SPACE MOTION

Using a linear approximation to the local maximum, it can also be shown [1, 2] that optical flow
prior to local max is an approximate solution to the optical flow after the local max

« For the spatial scale change, define I;(x,y,t) = I(s- x,s -y, t) to be the signal after scale
change in x- and y-directions by a factor of s, and consider optical flow in I;:

615 L s al,

ax - ay”yJ’E:O

where (uy, uy ) is the flow field after spatial scale change

al al oI I al. oI . .
. Slnce =5 —, =5 —, and—s=a, the new field is

ox’ 0y ady ot
Vy Uy
(ux: uy) = (?,?)

Hence, after spatial scale change, flow field scales accordingly
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LATENT-SPACE MOTION

Summary

* Optical flow of the input remains one (approximate)
solution to the optical flow after common operations
(convolution, nonlinear activation, pooling, etc.)

« Pooling with a spatial scale change causes a
corresponding scale change in the optical flow
o For example, 2 X 2 pooling scales the flow field by a
factor of 2

« This is why input motion is approximately preserved in
the latent space

* Motion compensation from video coding may be a good
strategy for compression of sequences of feature
tensors derived from input video
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Questions?
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Part 3

Standardization
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STANDARDIZATION

Standards are important
o Ensure interoperability

o Give device developers confidence that their products will have a large market

* There are a number of standardization activities related to collaborative intelligence and, more
broadly, 10T

«  We will briefly describe those related to compression:
o JPEG Al (Joint Photographic Experts Group — Artificial Intelligence)
o MPEG-VCM (Motion Pictures Experts Group — Video Coding for Machines)
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JPEG Al

* Scope

“The scope of the JPEG Al is the creation of a learning-based image coding standard offering
a single-stream, compact compressed domain representation, targeting both human
visualization, with significant compression efficiency improvement over image coding
standards in common use at equivalent subjective quality, and effective performance for
Image processing and computer vision tasks, with the goal of supporting a royalty-free
baseline.” [JPEG Al White Paper, 2021]

» Difference from earlier image coding standards

o Learning-based

o Support for image processing and computer vision tasks (besides human vision)
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JPEG Al

 Use cases
o Cloud storage
o Visual surveillance
o Autonomous vehicles and devices
o Image collection storage and management
o Live monitoring of visual data
o Media distribution

o Television broadcast distribution and editing
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JPEG Al

« Examples of image processing tasks
o Super-resolution
o Denoising
o Low-light enhancement, exposure compensation, color correction
o Inpainting
« Examples of computer vision tasks
o Image classification
o Obiject/face detection, recognition, identification
o Semantic segmentation

o Event detection, action recognition
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JPEG Al

« Timeline
o January 2022 — Final Call for Proposals
o February 2022 — Proposal registration

o April 2022 — Proposal submission

o October 2023 — Draft standard
o April 2024 — Final standard
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JPEG Al

Input
Image

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS — PART 3: STANDARDIZATION

JPEG Al coding framework

Image Processed
task

JPEG Al Learning-based Core Engine

Latent
representation

Transform uantization

Entropy
encoding

Latent
representation

OO

Standard
» decoded
image

Standard
reconstruction

Entropy
decoding

Latent
representation

OO
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Class, object,
semantic map,
etc.

Computer
vision task
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MPEG-VCM

* Scope

‘MPEG-VCM aims to define a bitstream from compressing video or feature extracted from
video that is efficient in terms of bitrate/size and can be used by a network of machines
after decompression to perform multiple tasks without significantly degrading task
performance. The decoded video or feature can be used for machine consumption or
hybrid machine and human consumption.

The differences between VCM and video coding with deep learning are:

1. VCM is used for machine consumption or hybrid machine and human consumption, while
current video coding aims for human consumption;

2. VCM technologies could be but is not required to be based on deep learning

3. VCM can achieve analysis efficiency, computational offloading and privacy protection as
well as compression efficiency, while traditional video coding pursues mainly on
compression efficiency. ” [VCM m57648 , 2021]
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MPEG-VCM

« Use cases
o Surveillance
o Intelligent transportation
o Smart city
o Intelligent industry
o Intelligent content
o Consumer electronics
o Smart retail
o Smart agriculture

o Autonomous vehicles / UAV
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MPEG-VCM

« Examples of image processing tasks

O

O

« Examples of computer vision tasks

O

©)
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Image/video enhancement

Stereo/Multiview processing

Object detection, segmentation, masking, tracking, measurement
Event search, detection, prediction

Anomaly detection

Crowd density estimation

Pose estimation and tracking
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MPEG-VCM

« Track 1 — Feature extraction and compression
o Focus on machine vision

o Call for Evidence: July 2022

« Track 2 — Image and video compression
o Both human and machine vision

o Call for Proposals: April 2022
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MPEG-VCM

Coding pipelines under consideration

Video Encoder

Video Encoder

Video
Video | Machine Feature Feature
—_— Analysla > § .
(Part1) Conversion
Video | Machine  eature
»  Analysis .
(Part1)

Feature Encoder

Y

Video Encoder

Bitstream . Vid Machine Analysis
I ~ 4| Video Decoder 1geo y '“;EW;’;CE .
(Part1) (Part2) esults
Bitstream Feature | Machine
: | Video Decoder | —f Feature Inverse ure | Amaivels | Inference
Conversion .[pmﬁ] Results
Bitst Machine
itstream .| Feature Decoder Feature | eette Inference _
{F‘arﬁ} Results
L i
Bitstream Video

W

Video Decoder
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Questions?
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SUMMARY

« Collaborative intelligence — a perfect fit for 10T

O

O

 \What we have learned:

O

©)

O

EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS
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Enables lower latency and better energy efficiency at the edge

Still take advantage of computing resources in the cloud

Features produced by neural networks are more compressible than the input
They have their own structure, which allows recovering missing data

Approximate invariance to flow PDE — enables data recovery and explains why maotion is
preserved in the latent space

Privacy fan model for privacy protection in collaborative intelligence

Various methods for single- and multi-stream feature compression — more to come in the
near future

Related standardization activities: JPEG Al and MPEG-VCM
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Thank you!
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