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Introduction

• Technological trends and emerging applications

• The case for collaborative intelligence

Part 1 – Theory

• Review of information theory: entropy, mutual information, data processing inequality

• Bounds on feature compressibility

Part 2 – Practical considerations

• Error resilience

• Feature compression

• Privacy

• Scalable feature coding

• Motion analysis

Part 3 – Standardization

• JPEG AI and MPEG-VCM (Video Coding for Machines) 

OVERVIEW
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Internet of Things (IoT)

• 125 billion IoT devices by 2030

• Market worth >$500 billion

• By 2025, IoT data volume 80 zettabytes 

(801021 = 80,000,000,000,000,000,000,000 bytes)

• Many kinds of devices:

o Consumer products – digital assistants, home security cameras, smart appliances, …

o Industry 4.0 – automation, smart factories, predictive maintenance, …

o Logistics and fleet management – vehicles, ships, drones, aircraft, …

o Infrastructure – traffic monitoring, video surveillance, smart buildings, …

TECHNOLOGICAL TRENDS
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https://techjury.net/blog/how-many-iot-devices-are-there/
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Fifth Generation (5G) Communication Networks

• Higher bandwidth, higher data rates

• Shorter range at higher frequencies

• Different types of cells

• Broad application areas:

o Enhanced Mobile Broadband (eMBB) – improved services for mobile devices

o Ultra-Reliable Low-Latency Communications (URLLC) – for “mission-critical” applications

o Massive Machine-Type Communications (mMTC) – for “less critical” applications

TECHNOLOGICAL TRENDS
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Suitable for IoT applications
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Artificial Intelligence (AI)

• Different, this time around

• Industry-driven, products on the market

• Facilitated by advances in computing technology, 

machine/deep learning, data availability

• Becoming indispensable in:

o Computer vision and image processing

o Speech and audio processing and analysis

o Natural language processing and understanding

o Robotics and automation

o Medical diagnostics, …

TECHNOLOGICAL TRENDS
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Smart home

• Many sensors around home to help make the home 

more comfortable, safe, and efficient

• Control entertainment, lighting, heating, cooling, 

security, predictive maintenance, etc.

• Smart speaker market alone > $17B by 2025 

• “Silo” mode

o Devices communicate with each other through local network, but not with outside world

o Can still perform basic functions (control lights, security, leak detection, …) 

• Connected mode

o Full power of smart speakers (“What is the weather forecast for the weekend?”)

o Enhanced security (“There is a fire in the neighborhood”), efficiency and comfort (“avoid 

highway on your way to work due to heavy traffic”), …

EMERGING APPLICATIONS
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Traffic monitoring & management

• Cameras (and other sensors) along 

roads and intersections

• Counting vehicles, pedestrians, etc.

• Estimating their speed, traffic intensity, 

detecting violations and emergencies 

• Control traffic lights to manage traffic

• “Silo” mode

o Each camera controls its own traffic light 

• Connected mode

o Aggregate data from multiple cameras within a neighborhood to improve awareness and 

make better decisions

EMERGING APPLICATIONS
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Autonomous driving

• Cameras and other sensors mounted on the 

vehicle to help understand its surroundings

• Detecting vehicles, bikes, pedestrians, traffic lights

and signs, speed bumps, etc.

• Estimated ~ 2 kWh for on-board processing of

sensor data (2.5 kWh in cities)

• “Silo” mode

o Full autonomy, but energy cost high 

• Connected mode (especially appropriate in cities)

o Save energy by offloading some of the “intelligence” to the cloud

o Benefit from other sensors in the vicinity (e.g., children playing around the corner)

EMERGING APPLICATIONS

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – INTRODUCTION
IEEE ICME 2022 TUTORIAL

aarp.org

D. Richart, Autonomous Cars’ Big Problem: The energy consumption of edge processing reduces a car’s mileage with up to 30%, May 2019.

https://medium.com/@teraki/energy-consumption-required-by-edge-computing-reduces-a-autonomous-cars-mileage-with-up-to-30-46b6764ea1b7
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• Previous examples (and many more) make use of advanced sensing and processing capabilities 

of edge devices

• In many cases, the system can operate in the “silo” mode or in a connected mode

• “Silo” mode

o Most autonomous

o No need to communicate with the rest of the world

• Connected mode

o Requires communication, but…

o Enables more sophisticated applications

o Potential for energy savings

o Several ways to run this mode, depending on where “intelligence” is deployed

EMERGING APPLICATIONS
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The traditional approach

• Edge sensor captures the signal

• Signal transmitted to the cloud

• Analysis (“intelligence”) performed in the cloud

• Result sent back to the edge (if needed) or to 

other systems in the cloud

Challenges:

• Concerns over privacy

• Does not take full advantage of capabilities of

modern edge devices

CLOUD-BASED INTELLIGENCE
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The new approach

• Analysis (“intelligence”) performed at the edge

• Only the result sent to the cloud, could also operate

in “silo” mode

• Makes the edge device “smart”

• Addresses some privacy concerns

Challenges:

• Can be energy-intensive (at the edge)

• Model complexity limited by the resources of the edge device

o Cloud will always be able to host larger, more complex models

• What if more then one type of analysis (“task”) is needed, or requirements

change over time? 

EDGE-BASED INTELLIGENCE
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The future approach

• Covers the spectrum between cloud-only and edge-only

extremes

• Part of “intelligence” at the edge, other part at the cloud

• Signal features sent to the cloud, analysis completed there

• Able to address privacy concerns

• Able to scale to available resources

Challenges:

• Requires new science and engineering to understand 

tradeoffs

• Lack of clear design guidelines (true for all AI)

EDGE-CLOUD COLLABORATIVE INTELLIGENCE

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – INTRODUCTION
IEEE ICME 2022 TUTORIAL



15

Neurosurgeon study

• Measured energy (@ edge device) and latency for cloud-based, edge-based, and distributed 

model deployment

• Considered both CPU (Arm Cortex A15) and GPU (NVIDIA Kepler) @ edge 

• Considered various models and applications

o Image classification

o Face recognition

o Handwritten digit recognition

o Speech recognition

o Speech tagging

o …

THE CASE FOR COLLABORATIVE INTELLIGENCE
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Y. Kang et al., "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge," Proc. ACM ASPLOS'17, pp. 615–629, 2017.
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Some results from the Neurosurgeon study

Overall latency depends on type of connection and resources available at the edge device

THE CASE FOR COLLABORATIVE INTELLIGENCE
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Y. Kang et al., "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge," Proc. ACM ASPLOS'17, pp. 615–629, 2017.
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THE CASE FOR COLLABORATIVE INTELLIGENCE
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Y. Kang et al., "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge," Proc. ACM ASPLOS'17, pp. 615–629, 2017.

Some results from the Neurosurgeon study

Energy @ edge device also depends on type of connection and resources available at the edge
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Some results from the Neurosurgeon study

When considering end-to-end latency, running part of the model @ edge and remainder in the cloud 

often the best solution (above: using edge GPU and WiFi connection)

THE CASE FOR COLLABORATIVE INTELLIGENCE
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Y. Kang et al., "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge," Proc. ACM ASPLOS'17, pp. 615–629, 2017.
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Some results from the Neurosurgeon study

When considering energy @ edge, running part of the model @ edge and remainder in the cloud 

often the best solution (above: using edge GPU and WiFi connection)

THE CASE FOR COLLABORATIVE INTELLIGENCE
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Y. Kang et al., "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge," Proc. ACM ASPLOS'17, pp. 615–629, 2017.
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Some conclusions from the Neurosurgeon study

• In terms of end-to-end latency and energy @ edge, it is often best to run part of the AI model at 

the edge, and remainder in the cloud → collaborative intelligence

• Optimal partition depends on many factors:

o The architecture of the AI model

o Hardware @ edge

o Type of connection

o …

• Optimal partitioning point for energy might be different from that for latency

THE CASE FOR COLLABORATIVE INTELLIGENCE
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Y. Kang et al., "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge," Proc. ACM ASPLOS'17, pp. 615–629, 2017.
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Explaining the Neurosurgeon results:

• In many deep models, data volume

decreases towards the output

• Less data → fewer bits to send

• Fewer bits → less energy used

by radio

• Energy saved on radio may

compensate for energy spent

on extra computation

• Bits to be sent are the key!

THE CASE FOR COLLABORATIVE INTELLIGENCE
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H. Choi and I. V. Bajić, ”Deep feature compression for collaborative object detection," Proc. IEEE ICIP’18, pp. pp. 3743-3747, 2018.

2. PRELIMINARIES

Object detection has been transformed in recent years with

the advent of deep models that are able to simultaneously de-

tect, localize, and classify objects in an image. Examples of

such detectors include R-CNN [8], SSD [9], and YOLO [10].

Thiswork focuseson YOLO. Oneof themajor innovationsof

these detectors was that they were trained using a cost func-

tion composed of both bounding box error and object class

error terms. The YOLO loss function is [10]:
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2
⇤

+ λcoor d

S2

X

i = 0

BX

j = 0

obj
i j (

p
wi −

p
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ĥi )
2

+

S2

X

i = 0

BX

j = 0

obj
i j (Ci − Ĉi )
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where (x i , yi ) is the center of the ground truth bounding box,

wi and hi are its width and height, (x̂ i , ŷi ) is the center of

the predicted bounding box whose width and height are ŵi

and ĥi , respectively. Ci and Ĉi are the ground truth and pre-

dicted confidence scores corresponding to cell i , pi (c) and

p̂i (c) are the ground truth and predicted conditional probabil-

ities for theobject classc in cell i ,
obj
i j isequal to 1 if the j -th

bounding box in cell i is responsible for prediction (i,e. box

j has the largest Intersection-over-Union among all boxes in

cell i ), and
n oobj
i j = 1 −

obj
i j . The scaling factors used are

λcoor d = 5 and λn oobj = 0.5.

Our experiments in this work are based on the recent ver-

sion of YOLO called YOLO9000 [11]. Fig. 1 shows the fea-

ture data volume (number of feature samples) at the output

of each layer of this model, as well as the cumulative com-

putational cost (normalized execution time) aswe move from

the input layer towards the output. Computational cost was

measured on a desktop machine with a Titan X GPU and In-

tel i7-6800K CPU over the images from a dataset described

in Section 4. As seen in the figure, the feature data volume

is fairly small starting with max-pooling layer max 7. Hence,

this layer, or other downstream layers seem to be good points

to split the network. Note that max-pooling (and other pool-

ing) layers reduce the data volume, so from the point of view

of data size, it is always advantageous to split the network at

the output of the max-pooling layer rather than at its input.

If wewere to split thenetwork at theoutput of some layer

and transfer its feature data losslessly (as32-bit floating point

Fig. 1. Cumulative computation complexity and layer-wise

output data volume

numbers) to the next layer (in the cloud), the accuracy would

clearly stay the same as without the split1. This is the ap-

proach taken in [3], and is illustrated in Fig. 2(a). But this is

inefficient because the data likely contains some redundancy.

A more efficient approach would be to compress the data

prior to upload to the cloud. To achieve this, we could quan-

tize the data, say to 8 bits per sample, then encode the quan-

tized data losslessly. This is the approach taken in [4] with

a lossless PNG encoder. It is illustrated in Fig. 2(b), where

the quantization layer is called the Q-layer. This approach

is near-lossless because there is some quantization involved,

and due to this quantization the accuracy of inference may be

affected. An even more efficient approach to data transfer is

to employ lossy compression after the Q-layer (Fig. 2(c)), but

this will have an even greater impact on the accuracy. These

issues are examined in Section 4.

3. PROPOSED METHODS

3.1. Quantization

In order to leverage existing codecs, the feature data is first

quantized to 8-, 10-, or 12-bit precision in aQ-layer, which is

inserted at the split point. Let V 2 RN ⇥M ⇥C be the tensor

containing the feature data at the point of split, with N rows,

M columns, and C channels. Let min(V ) and max(V ) bethe

minimum and maximum value in V , respectively. Quantiza-

tion with nbi t -precision and the corresponding inverse quan-

tization in the inverse Q-layer are performed as

eV = round

✓
V − min(V )

max(V ) − min(V )
· (2n bi t − 1)

◆

(2)

bV =
eV · (max(V ) − min(V ))

2n bi t − 1
+ min(V ) (3)

1If the data is not corrupted during transmission, as assumed in [3, 4].
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Questions?
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Part 1

Theory
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REVIEW OF RELEVANT INFORMATION THEORY
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Entropy

• Let 𝑋 be a discrete random variable taking on values 𝑥 in some sample space 𝒳

• The entropy of 𝑋 (in bits) is defined as

𝐻 𝑋 = −

𝑥∈𝒳

𝑝 𝑋 = 𝑥 ∙ log2𝑝 𝑋 = 𝑥

• Entropy is a measure of uncertainty (randomness)

• Entropy is the limit of lossless compressibility

• Examples:

o Fair coin: 𝒳 = {Heads, Tails},   𝑝 𝑋 = Heads = 𝑝 𝑋 = Tails = 1/2,   𝐻 𝑋 = 1 bit

o Fair die: 𝒳 = {1, 2, 3, 4, 5, 6},   𝑝 𝑋 = 1 = ⋯ = 𝑝 𝑋 = 6 = 1/6,   𝐻 𝑋 = log26 = 2.58 bits

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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REVIEW OF RELEVANT INFORMATION THEORY
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Mutual information

• Let 𝑋 and 𝑌 be discrete random variables taking on values in sample spaces 𝒳 and 𝒴

• The mutual information (MI) between 𝑋 and 𝑌 (in bits) is defined as

𝐼 𝑋; 𝑌 = 

(𝑥,𝑦)∈𝒳×𝒴

𝑝 (𝑋, 𝑌) = (𝑥, 𝑦) ∙ log2
𝑝 (𝑋, 𝑌) = (𝑥, 𝑦)

𝑝 𝑋 = 𝑥 ∙ 𝑝 𝑌 = 𝑦

• MI is a measure of statistical dependence (linear or nonlinear) between 𝑋 and 𝑌

• MI is the amount of information that 𝑋 carries about 𝑌, and vice versa 

• Examples:

o 𝑋 and 𝑌 independent  ⟺ 𝐼 𝑋; 𝑌 = 0

o 𝐼 𝑋; 𝑋 = 𝐻(𝑋) :  mutual information between 𝑋 and itself is its own entropy

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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REVIEW OF RELEVANT INFORMATION THEORY
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Markov chain

• A sequence of random variables 𝑋 → 𝑌 → 𝑍 is a Markov chain if 𝑍 is conditionally independent 

of 𝑋, given 𝑌

always

𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 ∙ 𝑝 𝑦 𝑥 ∙ 𝑝 𝑧 𝑦, 𝑥

= 𝑝 𝑥 ∙ 𝑝 𝑦 𝑥 ∙ 𝑝 𝑧 𝑦

if Markov chain

• If 𝑍 is a function of 𝑌, i.e. 𝑍 = 𝑓(𝑌), then 𝑋 → 𝑌 → 𝑍 is a Markov chain

o Since 𝑍 is computed from 𝑌, it does not depend on 𝑋 (when 𝑌 is given)

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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REVIEW OF RELEVANT INFORMATION THEORY

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 1: THEORY
IEEE ICME 2022 TUTORIAL

Data processing inequality (DPI)

• If 𝑋 → 𝑌 → 𝑍 is a Markov chain, then 

𝐼(𝑋; 𝑌) ≥ 𝐼(𝑋; 𝑍)

• Downstream variable (𝑍) has no more information about input (𝑋) than an upstream variable (𝑌)

o Processing cannot increase (mutual) information

• Extended version of DPI: if 𝑋 → 𝑌 → 𝑍 → 𝑊 is a Markov chain, then

𝐼(𝑌; 𝑍) ≥ 𝐼(𝑋;𝑊)

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.

R. W. Yeung, A First Course in Information Theory, Springer, 2006.
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS
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• 𝒴𝑖 =  output of the 𝑖-th layer in a feedforward neural network

(input)     𝑋 𝒴1 𝒴2 𝒴3 𝒴4 𝑇 (output)

• 𝑋 → 𝒴1 → 𝒴2 → 𝒴3 → 𝒴4 → 𝑇 is a Markov chain

o So is any chain 𝑋 → 𝒴𝑖 → 𝒴𝑗 → 𝑇 for 𝑖 < 𝑗

o True for dense layers, convolutional layers, pooling layers, etc.

N. Tishby and N. Zaslavsky, “Deep Learning and the Information Bottleneck Principle,” Proc. IEEE Information Theory Workshop (ITW), Mar. 2015.
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NEURAL NETWORK LAYERS FORM MARKOV CHAINS
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• What about skip connections?

(input)     𝑋 𝒴1 𝒴2 𝒴3 𝒴4 𝑇 (output)

• 𝑋 → 𝒴1 → 𝒴2 → 𝒴3 is not a Markov chain

o 𝑌3 depends on both 𝒴2 and 𝒴1, not just 𝒴2

o However, 𝑋 → 𝒴1 → 𝒴3 is a Markov chain

o Markovity still holds “across” skip connections, but not “under” them
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Claim: In a non-generative feedforward neural network, in terms of lossless compression, 

intermediate features are at least as compressible as the network’s input.

Proof (sketch):

• Let 𝒴 = {𝒴𝑖 ∶ 1 ≤ 𝑖 ≤ 𝐿} be a set of some intermediate layer outputs (features)

• Decompose mutual information between input 𝑋 and 𝒴 as

𝐼 𝑋;𝒴 = 𝐻 𝒴 − 𝐻 𝒴 𝑋)

= 𝐻 𝒴

• Note that 𝑋 → 𝑋 → 𝒴 is a Markov chain and apply DPI

𝐻 𝑋 = 𝐼 𝑋; 𝑋 ≥ 𝐼 𝑋;𝒴 = 𝐻 𝒴

• So, 𝐻 𝒴 is no larger than 𝐻 𝑋 ⟹ features 𝒴 at least as compressible (losslessly) as input 𝑋

LOSSLESS FEATURE COMPRESSIBILITY
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0, because 𝒴 is a function of 𝑋

H. Choi and I. V. Bajić, ”Scalable image coding for humans and machines," IEEE Trans. Image Processing, vol. 31, pp. 2739-2754, 2022.
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LOSSLESS FEATURE COMPRESSIBILITY
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• Intermediate features being more compressible than the input is good news for collaborative 

intelligence!

o Bits saved on radio will help compensate for extra computation

o End-to-end latency can be reduced

• But lossless compressibility is very limiting

o Lossy compression gives much higher compression ratios

o Practical image, video, audio compression are all lossy

o Can we extend this result to lossy compression?
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REVIEW OF RELEVANT INFORMATION THEORY
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Rate-distortion function

• Let 𝑋 be a random variable and 𝑋 be its “quantized” version according to some conditional 

probability distribution 𝑝 ො𝑥 𝑥)

• Let 𝑑(ො𝑥, 𝑥) be a distortion metric – how much ො𝑥 differs from 𝑥

• For a given distortion level 𝐷, define set 𝒫𝑋(𝐷) of conditional distributions as

𝒫𝑋(𝐷) = 𝑝 ො𝑥 𝑥) ∶ 𝑝(𝑥) ∙ 𝑝 ො𝑥 𝑥) ∙ 𝑑( ො𝑥, 𝑥) ≤ 𝐷

𝔼 𝑑( 𝑋, 𝑋)

• Rate-distortion (RD) function for 𝑋 is given by

𝑅𝑋 𝐷 = min
𝑝 ො𝑥 𝑥) ∈ 𝒫𝑋(𝐷)

𝐼(𝑋; 𝑋)

• 𝑅𝑋 𝐷 is the minimum rate (in bits) at which you can encode 𝑋 without incurring distortion > 𝐷

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd Edition, Wiley, 2006.
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LOSSY FEATURE COMPRESSIBILITY
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• In order to use RD theory in our case, we need some modifications

𝑓

𝑋 𝒴 𝑇
𝑔 ℎ

• When we compress input 𝑋, we care about what happens to the output 𝑇

𝒫𝑋(𝐷) = 𝑝 ො𝑥 𝑥) ∶ 𝔼 𝑑(𝑓( 𝑋), 𝑓(𝑋)) ≤ 𝐷

• Similarly, when we compress features 𝒴, we care about what happens to the output 𝑇

𝒫𝒴(𝐷) = 𝑝 ො𝑦 𝑦) ∶ 𝔼 𝑑(ℎ( 𝒴), ℎ(𝒴)) ≤ 𝐷
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LOSSY FEATURE COMPRESSIBILITY
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• We can now define the RD function for the input

𝑅𝑋 𝐷 = min
𝑝 ො𝑥 𝑥) ∈ 𝒫𝑋(𝐷)

𝐼(𝑋; 𝑋)

and the RD function for the features

𝑅𝒴 𝐷 = min
𝑝 ො𝑦 𝑦) ∈ 𝒫𝒴(𝐷)

𝐼(𝒴; 𝒴)

• In both cases, distortion is measured at the output of the network

• Distortion metric can be any metric appropriate for the network’s task, e.g.

o Mean Squared Error for regression tasks

o Cross-entropy or accuracy for classification tasks

o …
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Claim: In a non-generative feedforward neural network, in terms of lossy compression, 

intermediate features are at least as compressible as the network’s input.

𝑅𝒴 𝐷 ≤ 𝑅𝑋 𝐷

Proof (sketch):

• Let 𝐷 be given and let 𝑝∗ ො𝑥 𝑥) be optimal for input compression (achieves 𝑅𝑋 𝐷 )

• Draw inputs 𝑋 ~ 𝑝(𝑥) and process each input 𝑥 in two ways as follows

• For each 𝑥, obtain 𝑦 and 𝑦

• Define 𝑞 𝑦 𝑦) by pairing up 𝑦 and 𝑦

LOSSY FEATURE COMPRESSIBILITY

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 1: THEORY
IEEE ICME 2022 TUTORIAL

𝑥 ො𝑥 𝑦

𝑦

𝑝∗ ො𝑥 𝑥) 𝑔

𝑔

H. Choi and I. V. Bajić, ”Scalable image coding for humans and machines," IEEE Trans. Image Processing, vol. 31, pp. 2739-2754, 2022.
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Proof (sketch, continued):

• Show 𝑞 𝑦 𝑦) ∈ 𝒫𝒴(𝐷), i.e., satisfies distortion constraint for 𝐷

o Easy to show because 𝑞 𝑦 𝑦) is derived from 𝑝∗ ො𝑥 𝑥) ∈ 𝑅𝑋 𝐷 , which satisfies distortion 

constraint for 𝐷

• Apply DPI to Markov chain  ෨𝒴 → 𝑋 → 𝑋 → 𝒴 to show

𝐼 𝒴; ෨𝒴 ≤ 𝐼(𝑋; 𝑋)

• When 𝑝∗ ො𝑥 𝑥) is used to generate 𝑋, the above inequality becomes

𝐼 𝒴; ෨𝒴 ≤ 𝑅𝑋 𝐷

• So we have found one distribution 𝑞 𝑦 𝑦) ∈ 𝒫𝒴(𝐷) that achieves 𝐼 𝒴; ෨𝒴 below 𝑅𝑋 𝐷 . Therefore

𝑅𝒴 𝐷 = min
𝑝 ො𝑦 𝑦) ∈ 𝒫𝒴(𝐷)

𝐼(𝒴; 𝒴) ≤ 𝑅𝑋 𝐷

LOSSY FEATURE COMPRESSIBILITY

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 1: THEORY
IEEE ICME 2022 TUTORIAL

H. Choi and I. V. Bajić, ”Scalable image coding for humans and machines," IEEE Trans. Image Processing, vol. 31, pp. 2739-2754, 2022.
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DEEPER MEANS MORE COMPRESSIBLE
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Claim: In a non-generative feedforward neural network, deeper layers are more compressible.

𝐻 𝒴𝑖 ≤ 𝐻 𝒴𝑗 and     𝑅𝒴𝑖 𝐷 ≤ 𝑅𝒴𝑗 𝐷 for 𝑖 < 𝑗

(input)     𝑋 𝒴1 𝒴2 𝒴3 𝒴4 𝑇 (output)

Proof (sketch): Follows from previous proofs by replacing 𝑋 with 𝒴𝑖 and 𝒴 with 𝒴𝑗
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• Theory shows that intermediate features are at least as compressible as the network’s input

• This is true for any non-generative feedforward network, regardless of what its task is

• When optimally compressed, fewer bits will be sent in a collaborative intelligence approach 

compared to conventional cloud-based approach

• This bit saving, if large enough, will lead to lower latency and pay off for extra computation

• But:

o Theory talks about limits; practical codecs might be far from those limits

o Theory shows what is possible, but not how to get there

o Ideal for grant proposals 😀

• What can we expect from practical (i.e., non-optimal) codecs?

SUMMARY OF FEATURE COMPRESSIBILITY

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 1: THEORY
IEEE ICME 2022 TUTORIAL
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• A simple convolutional neural network (CNN) for cats vs. dogs classification

• Trained on Kaggle’s cats vs. dogs dataset

• Goal: compare input compression vs. feature compression in terms of resulting classification 

accuracy

TOY EXAMPLE OF FEATURE COMPRESSIBILITY

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 1: THEORY
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Figure 1: The CNN model used for cats vs. dogsclassification.

Discussion The above theorem is a lossy counterpart to Theorem 1, showing that in the lossy233

case also, layers’ outputs are at least as compressible as the input for any given distortion level.234

What is interesting in this case is that even if the mapping from input X to layers’ outputs T is235

perfectly invertible, T may still bemorecompressible than X , because it may allow for moreefficient236

quantization. This is different from the lossless case where invertibility of the mapping from X to T237

meant than T is no more compressible than X .238

5 Examples239

5.1 A simple cats vs. dogs exper iment240

To illustrate practical compression of inputs vs. layer outputs, we constructed asimple Convolutional241

Neural Network (CNN) for cats vs. dogs classification, as shown in Figure 1. The model has seven242

layers. Thefirst fiveare composed of 2D convolution (3⇥3 filters), batch normalization, Rectified243

Linear Unit (ReLU) activation, and 2⇥2 max pooling. The number of filters is8 in thefirst layer, and244

increases by a factor of 2 up to thefifth layer. The last two layers are fully connected, with 512 and245

128 units, respectively, and ReLU activation. The output is a single unit with sigmoid activation. The246

figureshows tensor dimensions at the output of each layer.247

Themodel was implemented in Keras and trained on the data from Kaggle.3 From the25,000 labeled248

images provided (12,500 for each class), 22,000 were selected for training (11,000 in each class)249

and the remaining 3,000 were used for testing. Inputswere resized to 128⇥128 and the model was250

trained for 20 epochs using the Adam optimizer with the initial learning rate of 5 · 10− 3. The test251

accuracy was 0.9113. There are, of course, more sophisticated and accurate models for this problem;252

our goal here is to illustrate feature compression on asimplemodel, rather than construct themost253

accurate model for this problem.254

To compress tensors at intermediate layers, the tensor was tiled into an image, rescaled to range255

[0, 255], rounded to the nearest integer, and encoded as a grayscale image using JPEG4 with varying256

quality factors from 2 to 95. This gave a range of qualities and file sizes. The maximum value of257

each tensor, which isneeded for scaling to [0, 255] and back, was stored asa32-bit (4 Byte) value258

and included in the file size. For comparison, 128⇥128 input images were also encoded using JPEG.259

The left part of Figure 2 shows an example of an input image encoded at various JPEG qualities (top)260

and the corresponding tiled tensors from layers 1-5 also encoded at various JPEG qualities.261

The compression vs. accuracy curves for the input and layers 1-5 are shown in the right part of262

Figure 2. With input compression, baseline accuracy can be reached with average JPEG filesize of263

3
https://www.kaggle.com/c/dogs-vs-cats

4
https://pillow.readthedocs.io/en/stable/handbook/image-file-formats.html

7
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TOY EXAMPLE OF FEATURE COMPRESSIBILITY
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Input

Layer 1

…

Layer 5

File size

Features tiled into an 

image and compressed 

using JPEG

Feature compression better than input 

compression starting with layer 3 – why?

If we had an optimal encoder, this 

would already happen at layer 1



41

• Cloud has more powerful hardware 

than edge device

• Feature transmission takes fewer bits 

than input transmission

⟹ CI will have lower inference 

latency over some intermediate range 

of upload bitrates

IMPLICATIONS FOR INFERENCE LATENCY

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 1: THEORY
IEEE ICME 2022 TUTORIAL

M. Ulhaq and I. V. Bajić, “Shared mobile-cloud inference for 

collaborative intelligence,” arXiv:2002.00157, demo at NeurIPS'19, 

Vancouver, BC, Dec. 2019.
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Questions?
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Part 2

Practical considerations
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• In CI, intermediate features are transmitted over imperfect 

channel

• Bit errors at physical layer → packet loss at application 

layer

o What is the impact on inference accuracy?

o How can we recover lost features?

• First idea:

o Use existing tensor completion (imputation) 

approaches

ERROR RESILIENCE

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL
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• Well-known tensor completion methods for visual data:

o Simple Low-Rank Tensor Completion (SiLRTC)

o High-Accuracy Low-Rank Tensor Completion (HaLRTC)

o Fused Canonical Polyadic (FCP) Decomposition

• Key assumption:

o Tensor lies in a low-rank manifold (fewer degrees of freedom than tensor elements)

• Operationalization of the key assumption:

o Use Singular Value Decomposition (SVD) of unfolded tensor to find this manifold (SiLRTC

and HaLRTC)

o Use CP Decomposition (CPD) of unfolded tensor to find this manifold (FCP) 

TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

J. Liu et al., “Tensor completion for estimating missing values in visual data,” IEEE TPAMI, vol. 35, no. 1, pp. 208–220, Jan. 2013.

Y. Wu et al., "A fused CP factorization method for incomplete tensors," IEEE TNNLS, vol. 30, no. 3, pp. 751–764, Mar. 2019.
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• Advantage of existing methods:

o Generic – don’t need to know how tensor was created in the first place

• Downsides:

o Decompositions (SVD and CPD) are computationally expensive

o Iterative – need to perform expensive decompositions in each iteration

• In the case of CI, we know how the tensor is generated

o Can we use this knowledge to develop better tensor completion methods?

TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL
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• Key idea:

o Model the dependence among data in a feature tensor

• We know the process by which the feature tensor is generated (DNN front-end)

• We also know the kind of input data (e.g., images) from which feature tensor was generated

• This knowledge should give us some ways of modeling the feature tensor

• First attempt:

o Adaptive Linear Tensor Completion (ALTeC)

o Assume a certain linear relationship among feature tensor data

MODEL-BASED TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

L. Bragilevsky and I. V. Bajić, "Tensor completion methods for collaborative intelligence," IEEE Access, vol. 8, pp. 41162-41174, Feb. 2020.
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• Packetization of tensor data

• Assume linear relationship among rows

o Each row is approximately a linear combination of co-located rows in other channels and 

two spatial neighbors (top and bottom) in the same channel

• Let 𝐱𝑖
(𝑐)

be the 𝑖-th row in channel 𝑐

𝐱𝑖
(𝑐)

≈

𝑗≠𝑐

𝑤𝑖
𝑗
𝐱𝑖

𝑗
+ 𝑤𝑖−1

𝑐
𝐱𝑖−1

𝑐
+ 𝑤𝑖+1

𝑐
𝐱𝑖+1

𝑐

• Obtain the weights 𝑤𝑖
𝑗

on a training set

ALTEC – ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

L. Bragilevsky and I. V. Bajić, "Tensor Completion Methods for Collaborative Intelligence," IEEE Access, vol. 8, pp. 41162-41174, Feb. 2020.

One row = one packet
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• Experimental setup

o NL – no loss (tensor with all data used by the back-end)

o NC – no completion (missing tensor values replaced by zeros)

o TC – tensor completion (various methods used to estimate missing values)

ALTEC – ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

L. Bragilevsky and I. V. Bajić, "Tensor Completion Methods for Collaborative Intelligence," IEEE Access, vol. 8, pp. 41162-41174, Feb. 2020.
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Results on VGG-16

• Two configurations tested:

o Default: each method runs until convergence

o Speed-matched: iterative methods run as many 

iterations they can up to ALTeC execution time

• Conclusions:

o No significant difference between methods (t-test)

• Reason:

o VGG-16 uses Rectified Linear Unit (ReLU) activation

o Feature tensors have many zeros

o Easy to recover, all methods do reasonably good job

ALTEC – ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

L. Bragilevsky and I. V. Bajić, "Tensor Completion Methods for Collaborative Intelligence," IEEE Access, vol. 8, pp. 41162-41174, Feb. 2020.
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Results on ResNet-34

• Two configurations tested:

o Default: each method runs until convergence

o Speed-matched: iterative methods run as many 

iterations they can up to ALTeC execution time

• Conclusions:

o HaLRTC usually best in default config, ALTeC best 

in speed-matched scenario (t-test)

• Reason:

o ResNet-34 uses Leaky Rectified Linear Unit (ReLU) 

activations → feature tensors have fewer zeros

o Differences between methods more obvious

ALTEC – ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

L. Bragilevsky and I. V. Bajić, "Tensor Completion Methods for Collaborative Intelligence," IEEE Access, vol. 8, pp. 41162-41174, Feb. 2020.
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• ALTeC was very fast and fairly accurate – best in speed-matched tests, second-best in 

unrestricted tests

• However, it was content-agnostic

o “Adaptive” in ALTeC refers to spatial adaptation – different rows in a feature tensor have 

different coefficients 𝑤𝑖
𝑗

o But dependence of features on the input (content) is not being exploited

• Improvement: Content-Adaptive Linear Tensor Completion (CALTeC)

o Recovery of missing data depends on the content – no pre-training

o But might be slower than ALTeC

CALTEC – CONTENT-ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

A. Dhondea, R. A. Cohen, and I. V. Bajić, “CALTeC: Content-adaptive linear tensor completion for collaborative intelligence,” IEEE ICIP, Sep. 2021. 
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• 8 rows per packet (similar to JPEG image transmission)

• Find the channel with 

o Available co-located packet

o Most similar available neighboring packets

• Estimate affine transform by matching neighbors

• Apply the affine transformation to co-located packet and use this as estimate of missing one

CALTEC – CONTENT-ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

A. Dhondea, R. A. Cohen, and I. V. Bajić, “CALTeC: Content-adaptive linear tensor completion for collaborative intelligence,” IEEE ICIP, Sep. 2021. 
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• Experiments on ResNet-18

• CALTeC slower than ALTeC, but still much 

faster than SiLRTC and HaLRTC

• Best on add_1 tensors, second-best (after 

ALTeC) on add_3 tensors

CALTEC – CONTENT-ADAPTIVE LINEAR TENSOR COMPLETION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

A. Dhondea, R. A. Cohen, and I. V. Bajić, “CALTeC: Content-adaptive linear tensor completion for collaborative intelligence,” IEEE ICIP, Sep. 2021. 
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Fig. 3. Top-1 classification accuracy averaged over 70 Monte

Carlo simulation runs under various conditions. In (b), SiL-

RTC curve is behind the ‘No Completion’ curve.

tion on add 1 tensors and two iterations on add 3 tensors,

due to the time-consuming singular value decomposition of

unfolded tensors employed in these methods.

Looking at default-settings results in Fig. 3(a) and (c),

we see that all four tensor completion methods bring im-

provement compared to ‘No Completion,’ except SiLRTC

in Fig. 3(c). Among the four completion methods, SiL-

RTC has the worst performance. CALTeC and HaLRTC

offer very similar, almost identical, performance. ALTeC is

slightly worse than CALTeC and HaLRTC on add 1 tensors

in Fig. 3(a), and slightly better on add 3 tensors in Fig. 3(c).

However, keep in mind that ALTeC requires pre-training,

whereas the other three methods do not.

In speed-matched results in Fig. 3(b) and (d), the advan-

tage of CALTeC and ALTeC over SiLRTC and HaLRTC is

obvious. CALTeC and ALTeC are non-iterative, and are able

to recover missing data much faster than SiLRTC and HaL-

RTC. Especially HaLRTC needs around 10-15 iterations to

start producing reasonable output; after just 1-2 iterations,

the “ recovered” data is of such poor quality that the result-

ing tensor virtually never produces the correct classification,

so the Top-1 accuracy is near zero. The first 1-2 iterations

of SiLRTC give better results, but still noticeably worse than

CALTeC and ALTeC. Since inference latency is an important

factor in collaborativeintelligence, CALTeC and ALTeC have

a clear advantage here over the other two methods. In addi-

tion, CALTeC does not require pre-training, so it combines

the best properties of ALTeC (speed and accuracy) and those

of SiLRTC/HaLRTC (no need for pre-training).

Fig. 4 shows an example of a damaged add 1 layer ten-

sor channel (specifically, channel 1 from Fig. 1) and how it is

repaired by various methods. CALTeC, ALTeC, and HaL-

Table 2. Average execution times (in milliseconds) per test

imagefor tensor completion methodsused in theexperiments.

Valuesfor SiLRTC and HaLRTC correspond to thetimetaken

per iteration.

Method add 1 add 3

SiLRTC [14] (per iteration) 228.1 ms 122.1 ms

HaLRTC [14] (per iteration) 242.6 ms 128.2 ms

ALTeC [13] 30.5 ms 102.0 ms

CALTeC 77.5 ms 186.8 ms

(a) Original (b) ALTeC (c) CALTeC

(d) Damaged (e) SiLRTC 50 (f) HaLRTC 50

Fig. 4. Channel 1 in a ResNet-18 add 1 tensor produced

from a starfish image: (a) original; (b) damaged; repaired

with (c) CALTeC, (d) ALTeC, (e) SiLRTC and (f) HaLRTC.

Imagesweremapped to grayscaleand scaled up using bicubic

interpolation for enhanced visualization.

RTC do a fairly good job of recovering the missing data,

with starfish outlines clearly visible in their outputs. On the

other hand, SiLRTC performs poorly in this example. AL-

TeC in Fig. 4(d) appears to be most successful in recovering

theunderlying texture here, but note that CALTeC yields bet-

ter overall Top-1 accuracy on add 1 layer tensors over the

whole test set, as shown in Fig. 3(a).

5. CONCLUSIONS

We presented Content-Adaptive Linear Tensor Completion

(CALTeC), a method for recovering missing feature tensor

datain collaborativeintelligence. CALTeC takesadvantageof

intra- and inter-channel similarity in feature tensors tofind the

best candidates in other channels tofill thegapsin feature ten-

sors, and then applies an affine transformation estimated from

the same channel to properly adjust recovered data. In doing

so, CALTeC combines the best properties of methods previ-

ously used for this purpose: speed, accuracy, and no need for

pre-training. Experiments demonstrated CALTeC’s competi-

tiveperformance compared to other methods.
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• We know PDE-based inpainting works well for images

• A popular PDE model for inpainting:

𝜕𝐼

𝜕𝑥
𝑣𝑥 +

𝜕𝐼

𝜕𝑦
𝑣𝑦 +

𝜕𝐼

𝜕𝑡
= 0

o 𝐼 – image intensity;    𝑡 – iteration

o 𝑣𝑥, 𝑣𝑦 – surface flow

• If this model works well in the input space, what it its 

equivalent in the latent space?

• How does the above PDE change as 𝐼 is transformed 

through the network’s front-end (edge sub-model)?

TENSOR COMPLETION BY PDE-BASED INPAINTING

multimedia laboratory
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M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-Stokes, fluid dynamics, and image and video inpainting,” Proc. IEEE CVPR, 2001.
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Common operations in convolutional networks:

1. Convolution

2. Nonlinear activation

3. Batch normalization

4. Pooling

o Max pooling

o Mean pooling

o Learnt pooling (strided convolution)

• Examine the effect of each of these on the surface flow PDE

TENSOR COMPLETION BY PDE-BASED INPAINTING

multimedia laboratory
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I. V. Bajić, “Latent space inpainting for loss-resilient collaborative object detection,” Proc. IEEE ICC, Montreal, Canada, Jun. 2021.
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• When input image 𝐼 is convolved with kernel 𝑓, the resulting flow equation is

𝜕

𝜕𝑥
𝑓 ∗ 𝐼 𝑢𝑥 +

𝜕

𝜕𝑦
𝑓 ∗ 𝐼 𝑢𝑦 +

𝜕

𝜕𝑡
𝑓 ∗ 𝐼 = 0

where 𝑢𝑥, 𝑢𝑦 is the new flow field

• Convolution and differentiation commute:

𝑓 ∗
𝜕𝐼

𝜕𝑥
𝑢𝑥 +

𝜕𝐼

𝜕𝑦
𝑢𝑦 +

𝜕𝐼

𝜕𝑡
= 0
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same flow equation as in input space
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• When input image 𝐼 passes through nonlinear activation 𝜎(∙), the resulting flow equation is

𝜕 𝜎 𝐼

𝜕𝑥
𝑢𝑥 +

𝜕 𝜎 𝐼

𝜕𝑦
𝑢𝑦 +

𝜕 𝜎 𝐼

𝜕𝑡
= 0

where 𝑢𝑥, 𝑢𝑦 is the new flow field

• Using the chain rule of differentiation:

𝜎′(𝐼) ∙
𝜕𝐼

𝜕𝑥
𝑢𝑥 +

𝜕𝐼

𝜕𝑦
𝑢𝑦 +

𝜕𝐼

𝜕𝑡
= 0
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same flow equation as in input space
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• It can be shown that the flow equation is (approximately) preserved through other processing 

layers commonly found in convolutional neural networks

o Details in [1]

• Hence, an input-space surface flow solver should be able to do a good job in the latent space 

too

• Some popular solvers:

o “Navier-Stokes” [2]

o “Telea” [3]

TENSOR COMPLETION BY PDE-BASED INPAINTING

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

[1]  I. V. Bajić, “Latent space inpainting for loss-resilient collaborative object detection,” Proc. IEEE ICC, Montreal, Canada, Jun. 2021.

[2]  M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-Stokes, fluid dynamics, and image and video inpainting,” CVPR 2001. 

[3]  A. Telea, “An image inpainting technique based on the fast marching method,” J. Graphics Tools, 2004. 
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• Feature tensor

packetization: 

• DNN model: YOLOv3 (object detector) split at layer 12

• Channel model:   i.i.d. packet loss

• Dataset: COCO 2017 validation

TENSOR COMPLETION BY PDE-BASED INPAINTING

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

J. Redmon and A. Farhadi, “YOLOv3: an incremental improvement,” arXiv preprint arXiv:1804.02767, 2018. 

8 rows = packet
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Fig. 4. Top row: object detections overlaid on the original image. Bottom row: part of the latent space (9 tensor channels) corresponding

to the object detections in the top row. Tensor channels have been mapped to grayscale and enhanced for visualization purposes. From left
to right: (1) Without any data recovery (locations of lost data indicated as black), no detections are made; SiLRTC-50 (not shown) also does

not provide sufficient recovery for any detections to be made. (2) With SiLRTC-150, one STOP sign is detected with confidence 0.52. (3)
With SiLRTC-250, two STOP signs are detected, and the confidence for the smaller sign is improved to 0.82. (4) With Navier-Stokes [19]

and Telea [20] inpainting, two STOP signs are detected, and the confidence for the smaller sign is improved to 0.91. (5) Without any loss,
a truck is also detected, and the confidence for the smaller STOP sign is 0.94.

TABLE II

AVERAGE MAP GAI N AND EXECUTION TIME OF VARIOUS FEATURE RECOVERY METHODS

Method Avg. mAP gain Time per tensor (sec.)

SiLRTC-50 0.1028 17.0793

SiLRTC-250 0.3101 83.2044

Navier-Stokes 0.3823 0.1408

Telea 0.3837 0.1356

by the edge sub-model. Note that the entire tensor contains 256 channels, so the nine channels in the

figure are only a small part of the latent space.

The leftmost images in the figure correspond to the case where no feature recovery is performed. One

can see the black lines in the tensor channels, indicating the locations of the missing packets. No objects

are detected when such a tensor is fed to the cloud sub-model. The next case to the right is SiLRTC-50,

which manages to provide some recovery to the missing features, resulting in the detection of a small

STOP sign in the background, which is barely detected with confidence of 0.52. In the next case to the

right, SiLRTC-250 provides somewhat better recovery and the resulting tensor allows detection of the large

STOP sign in the foreground, as well as the small sign in the background, now with increased confidence

Avg. mAP gain (X) = [AUC (X) –AUC (No rec.)] / 0.3
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No recovery SiLRTC-50 SiLRTC-250 Telea No loss
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Comparison of all methods on image classification

• CALTeC and PDE-based inpainting good 

across the board

• ALTeC also good, but requires pre-training

• HaLRTC good performance when allowed to 

run enough iterations, but extremely slow

• SiLRTC weakest and slow

If you want to experiment, Deep Feature 

Transmission Simulator (DFTS2) offers an easy-

to-use environment:

https://github.com/AshivDhondea/DFTS2

SUMMARY OF TENSOR COMPLETION FOR COLLABORATIVE INTELLIGENCE
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A. Dhondea et al., “DFTS2: Deep feature transmission simulation for collaborative intelligence,” Proc. IEEE VCIP, Dec. 2021.
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• How can we practically compress features 

obtained from a neural network?

• One idea: 

1. Reorganize the feature tensor into an image

o Two possibilities – tiling and quilting 

(tiling works better)

2. Quantize to 8 bits/tensor element

3. Use an existing image codec (PNG, JPEG, 

JPEG2000, HEVC/BPG, VVC, …) to encode 

as a grayscale image

FEATURE COMPRESSION

multimedia laboratory
EDGE-CLOUD COLLABORATIVE MULTIMEDIA ANALYSIS – PART 2: PRACTICE
IEEE ICME 2022 TUTORIAL

H. Choi and I. V. Bajić, “Deep feature compression for collaborative object detection,” Proc. IEEE ICIP, Oct. 2018.

Tiling Quilting
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Results on YOLOv2 [1] object detector

• Features compressed by BPG (HEVC-Intra)

• Part of VOC2007 dataset for testing

• Images from VOC2007 and VOC2012 for re-

training to account for quantization

• Savings of up to 60% bits at equivalent accuracy 

without re-training

• Savings of 70% bits with re-training

FEATURE COMPRESSION

multimedia laboratory
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IEEE ICME 2022 TUTORIAL

[1]  J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” Proc. IEEE CVPR, Jul. 2017.

[2]  H. Choi and I. V. Bajić, “Deep feature compression for collaborative object detection,” Proc. IEEE ICIP, Oct. 2018.
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• Types of collaborative intelligence (CI) systems:

a) Single-stream single task (1×1)

b) Single-stream multi-task (1×k)

c) Multi-stream single-task (N×1)

d) Multi-stream multi-task (N×k)

• In multi-stream CI systems, rates of individual streams

need to be optimized

• In [Alvar and Bajić, TIP 2021]:

o Tractable R-D model for CI systems proposed

o Analytical bit allocation solution for N×1 systems

o Pareto set characterization for 2×k systems

o Bounds on Pareto set for 3×2 systems

3

(a)

(b)

(c)

(d)

Figure 1: CI systems: (a) single-stream single-task; (b) single-

stream multi-task; (c) multi-stream single-task; (d) multi-

stream multi-task.

other cases, a measure that decreases with accuracy is used,

for example Root Mean Squared Error (RMSE) for disparity

estimation [34]. These accuracy measures also have differ-

ent scales, making their comparison difficult. It is therefore

important to define task distortion that would map all these

measures to a set of more comparable values and ensure

uniform behavior (either increasing or decreasing) as the

accuracy degrades. Below we define one such task distortion.

Consider a DNN model with k ≥ 1 tasks. Let A i be

the the model’s average performance on the i -th task, on a

given dataset, without tensor compression. We define the task-

specific distortion as the fraction of the performance drop

relative to the case where no compression is applied to the

feature tensors. Let A i be the average performance with tensor

compression on the same dataset. Then the distortion for task

i is defined as

D i =
|A i − A i |

A i

⇥100. (1)

Note that D i = 0 if the accuracy with compression (A i )

matches the accuracy without compression (A i ), and increases

as A i starts to deviate from A i . D i can be interpreted as a

percentage drop in performance due to feature compression.

C. Distortion-rate model

Let R = (R1, R2, ..., RN ) be the vector of bit rates for the

N tensors to be compressed in a multi-stream CI system. We

Figure 2: distortion-rate surface obtained by encoding two

deep feature tensors (green) and the fitted surface (gray). R1

and R2 are the average bit rates (Kbits/tensor) of the two

tensors in a split DenseNet [11] used for image classification.

model the dependence of task distortion on these rates using

monotonically-decreasing convex surfaces given by:

D i (R ) = D i (R1, ..., RN ) ⇡ γi +

NX

j = 1

↵ i ,j 2− β i , j R j , (2)

where γi , ↵ i ,j > 0 and βi ,j > 0 are surface parameters. In our

experiments, we used non-linear least squares method based

on Levenberg-Marquardt algorithm [35] to fit the surface (2)

to the measured distortion-rate points.

There are several reasons for using such a distortion-rate

model. First, the model is quite accurate in approximating

measured distortion-rate points. As an example, Fig. 2 shows

a fitted surface for a single-task model (DenseNet [11]),

with two tensors to be coded (hence, two rates). As seen

in the figure, the agreement between the original points and

the fitted surface is quite good. This is further confirmed

quantitatively using the coefficient of multiple determination

R2 [36], which, for the surface in Fig. 2, was R2 = 0.98. Note

that 0 R2 1, so R2 = 0.98 is quite high. In addition, the

residuals (the differences between the actual points and the

fitted surface) were clustered around zero, with mean residual

being 2.4⇥10− 10. This, together with the high value of R2,

indicates that the model in (2) is an excellent approximation to

the measured distortion-rate points. Indeed, in all test cases in

our experiments we were obtaining R2 > 0.94, with residuals

centered around zero.

Another reason for selecting the model in (2) is the fact that

theoretical distortion-rate functions [37] for commonly-used

source models, such as Gaussian source with squared-error

distortion and Laplacian source with absolute-error distortion,

have this form, where distortion decays exponentially with

increasing rate. And finally, the fact that distortion-rate sur-

faces in (2) are convex and monotonically decreasing allows us

to obtain closed-form solutions for single-task and scalarized
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• Task distortion:

𝐷𝑖 =
𝐴𝑖 − 𝐴𝑖

𝐴𝑖
∙ 100

• Rate-Distortion (RD) model

• Benefits of this RD model:

o “Makes sense” – distortion reduces exponentially 

with rates

o Fits the data: R2 > 0.94 in all our tests

o Tractable – distortion is convex and monotonically 

decreasing with rate

% change in task accuracy 

due to compression
3

(a)

(b)

(c)

(d)

Figure 1: CI systems: (a) single-stream single-task; (b) single-

stream multi-task; (c) multi-stream single-task; (d) multi-

stream multi-task.

other cases, a measure that decreases with accuracy is used,

for example Root Mean Squared Error (RMSE) for disparity

estimation [34]. These accuracy measures also have differ-

ent scales, making their comparison difficult. It is therefore

important to define task distortion that would map all these

measures to a set of more comparable values and ensure

uniform behavior (either increasing or decreasing) as the

accuracy degrades. Below we define one such task distortion.

Consider a DNN model with k ≥ 1 tasks. Let A i be

the the model’s average performance on the i -th task, on a

given dataset, without tensor compression. We define the task-

specific distortion as the fraction of the performance drop

relative to the case where no compression is applied to the

feature tensors. Let A i be the average performance with tensor

compression on the same dataset. Then the distortion for task

i is defined as

D i =
|A i − A i |

A i

⇥100. (1)

Note that D i = 0 if the accuracy with compression (A i )

matches the accuracy without compression (A i ), and increases

as A i starts to deviate from A i . D i can be interpreted as a

percentage drop in performance due to feature compression.

C. Distortion-rate model

Let R = (R1, R2, ..., RN ) be the vector of bit rates for the

N tensors to be compressed in a multi-stream CI system. We

Figure 2: distortion-rate surface obtained by encoding two

deep feature tensors (green) and the fitted surface (gray). R1

and R2 are the average bit rates (Kbits/tensor) of the two

tensors in a split DenseNet [11] used for image classification.

model the dependence of task distortion on these rates using

monotonically-decreasing convex surfaces given by:

D i (R ) = D i (R1, ..., RN ) ⇡ γi +

NX

j = 1

↵ i ,j 2− β i , j R j , (2)

where γi , ↵ i ,j > 0 and βi ,j > 0 are surface parameters. In our

experiments, we used non-linear least squares method based

on Levenberg-Marquardt algorithm [35] to fit the surface (2)

to the measured distortion-rate points.

There are several reasons for using such a distortion-rate

model. First, the model is quite accurate in approximating

measured distortion-rate points. As an example, Fig. 2 shows

a fitted surface for a single-task model (DenseNet [11]),

with two tensors to be coded (hence, two rates). As seen

in the figure, the agreement between the original points and

the fitted surface is quite good. This is further confirmed

quantitatively using the coefficient of multiple determination

R2 [36], which, for the surface in Fig. 2, was R2 = 0.98. Note

that 0 R2 1, so R2 = 0.98 is quite high. In addition, the

residuals (the differences between the actual points and the

fitted surface) were clustered around zero, with mean residual

being 2.4⇥10− 10. This, together with the high value of R2,

indicates that the model in (2) is an excellent approximation to

the measured distortion-rate points. Indeed, in all test cases in

our experiments we were obtaining R2 > 0.94, with residuals

centered around zero.

Another reason for selecting the model in (2) is the fact that

theoretical distortion-rate functions [37] for commonly-used

source models, such as Gaussian source with squared-error

distortion and Laplacian source with absolute-error distortion,

have this form, where distortion decays exponentially with

increasing rate. And finally, the fact that distortion-rate sur-

faces in (2) are convex and monotonically decreasing allows us

to obtain closed-form solutions for single-task and scalarized

𝐷𝑖 𝑅1, … , 𝑅𝑁 ≈ 𝛾𝑖 +

𝑗=1

𝑁

𝛼𝑖,𝑗2
−𝛽𝑖,𝑗𝑅𝑗

accuracy w/o 

compression

accuracy after 

compression
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Edge Cloud

Pareto front Pareto set

(rates that achieve

the Pareto front)

8

(a)

(b)

(c)

Figure 5: DNN models used in the experiments: (a) ©2017 IEEE. DenseNet [11]; the dashed line indicates where the model

is split. (b) ©2017 IEEE. Illustration of tensors in a simple dense block of DenseNet. (c) ©2020 IEEE. The 2-stream, 3-task

DNN from [15]. For clarity, feature tensors are shown, rather than layers.

Figure 6: An example of the tiled quantized deep feature tensor

(enhanced for better visualization).

{ 50, 100, 150} Kbits. We randomly selected 20 balanced

classes from the validation set. In each class, 20% of the data

is randomly chosen to obtain distortion-rate surface (Fig. 2)

parameters, and the remaining 80% of the data is used for

testing. Distortion (1) is derived from the Top-1 accuracy.

With reference to Section VI-A, the distortion-rate surface

in Fig. 2 is obtained by setting Rm i n
t = 50, Rm ax

t = 150,

and sampling rates in 0.5Rmin
t R1 + R2 1.5Rmax

t , i.e.,

25 R1 + R2 225. Note that the first tensor has 4 times

as many elements as the second tensor (Table V), so it can be

expected that its rate will be (roughly) 4 times as large, i.e.,

R1 = 4 ·R2. Plugging this back into the above inequality, we

obtain that the ranges where R1 and R2 should be sampled

are 20 R1 180 and 5 R2 45. For the proposed bit

allocation method, we fitted the surface model (2) and then

used (15) to allocate bits.

Fig. 7 shows the fitted distortion-rate surface from Fig. 2,

along with the intersections of this surface with three rate

constraint planes R1 + R2 = Rt . The red dashed curve corre-

sponds to Rt = 50 Kbits, the blue dashed curve corresponds

to Rt = 100 Kbits and the yellow dashed curve corresponds to

Rt = 150 Kibts. Notice that the red curve is in a highly sloped

part of the surface, blue curve in the medium-slope part, and

yellow curve in a relatively flat part. The difference between

optimal and sub-optimal bit allocations aremost obvious in the

highly sloped part (lowest Rt ), since the impact on distortion

is higher here than in the flatter parts of the surface. As we

move towards the flatter parts of the surface, the difference
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• In multi-task systems we looked at so far, all features supported all tasks; but a better design is 

possible

• The tasks often include input image reconstruction ( 𝑋) and/or some computer vision (CV) 

inference tasks 𝑇

• But CV inference can also be obtained from 𝑋 (common in practice)

• Data processing inequality (DPI) applied to  𝒴 → 𝑋 → 𝑇:

𝐼(𝒴; 𝑋) ≥ 𝐼(𝒴; 𝑇)

𝑋 𝒴

𝑋

𝑇

𝑇

Input image Latent 

representation

Reconstructed

image

CV task

CV task
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𝐼(𝒴; 𝑋) ≥ 𝐼(𝒴; 𝑇)

• Latent space 𝒴 contains less 

information about CV task 𝑇 than 

about input reconstruction 𝑋

• Dedicate a subset of 𝒴 to 𝑇, all of it 

to 𝑋

• When only 𝑇 is needed, decode 

only a subset of 𝒴

𝒴
𝑇

𝑋
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[3] J. Redmon and A. Farhadi, ”YOLOv3: An incremental improvement,” arXiv:1804.02767, Apr. 2018.

Example 2-layer scalable system:

• End-to-end image codec backbone [2]

• Subset of latent space (𝒴1) needs to be transformed into the latent space ℱ of the CV back-end 

o Need latent-space transform (another neural network)

• CV back-end (for object detection) is YOLOv3 [3] starting at layer 13

𝑋 𝒴 = {𝑌1, … , 𝑌𝑖 , 𝑌𝑖+1, … , 𝑌𝐶} 𝑋

𝑇

Input image
Reconstructed

image

CV task

Encoder Decoder

End-to-end neural image codec

CV back-end
Latent-space 

transform

ℱ𝒴1
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• Loss function:

ℒ = 𝑅 + 𝜆 ∙ MSE 𝑋, 𝑋 + 𝛾 ∙ MSE ℱ, ℱ

• 𝑅 is the rate estimate [2]

• Distortion 𝐷 composed of input reconstruction MSE 𝑋, 𝑋 and CV feature reconstruction MSE ℱ, ℱ

• Since MSE ℱ, ℱ depends only on 𝒴1 (and not on 𝒴\𝒴1), CV-relevant information is steered to 𝒴1

𝐷

𝑋 𝒴 = {𝑌1, … , 𝑌𝑖 , 𝑌𝑖+1, … , 𝑌𝐶} 𝑋

𝑇

Input image
Reconstructed

image

CV task

Encoder Decoder

End-to-end neural image codec

CV back-end
Latent-space 

transform

ℱ𝒴1
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• Object detection experiments on the 

COCO dataset

• Performance much better than 

compressing input directly:

o 37 – 48% bit savings compared to 

state-of-the-art image codecs

o 2.8 – 4.5% more accurate 

detection at the same bit rate

o Reason: not all pixel details are 

needed for object detection

SUBMITTED FOR PEER REVIEW 7

(a) (b)
Fig. 9. Part of network architectures for targeted vision tasks: (a) YOLOv3 [24] and (b) Feature Pyramid Network used for Faster [46] and Mask [25] R-CNN

Fig. 10. Two-layer network’s object detection performance compared with
benchmarks

performance, with mAP loss of about 1% at 0.74 bpp, where

most benchmarks suffer a mAP loss of about 2%. Moreover, at

0.56 bpp, our method operates within a 2% mAP loss margin,

whereas most benchmarks have lost about 4% mAP at this

point. Cheng et al. [16] shows the best performance among

the benchmarks, but there is stil l significant gap between it

and our proposed method.

Table II (first three columns) summarizes object detection

vs. bitrate results using extended versions of BD metrics [50].

For the BD-mAP metric, positive numbers represent an av-

erage increase of mAP at the same bitrate. For BD-Bitrate,

negative numbers indicate average bit savings at the same

accuracy. Our method shows a noticeable bit savings and

increased accuracy compared to all benchmarks. For example,

against HEVC, we achieve BD-Bitrate savings of –47.9%, and

BD-mAP gain of 4.55%. Against Cheng et al. [16], weachieve

BD-Bitrate savings of –37.4%, and BD-mAP gain of 2.89%.

Three-layer network: The three-layer network supports

object detection in the base layer and object segmentation

in the first enhancement layer. The corresponding back-ends

use ResNet-50-based Faster [46] and Mask [25] R-CNN,

respectively. To assess the performance of both tasks, we use

the COCO2017 [49] validation set, which provides labelled

(a)

(b)

Fig. 11. Performance of (a) object detection and (b) segmentation with three-
layer multi-task network

ground truth for both bounding boxes and segmentation maps.

Faster R-CNN and Mask R-CNN have a constraint on the

input resolution that the shorter edge must be less than or

equal to 800 pixels according to given default configuration.

Hence, we resize the test images to meet the constraint using

bilinear interpolation prior to the experiment, then use the

resized images as input to our three-layer network. As a result,

2-layer system: object detection + input reconstruction
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Example 3-layer scalable system

• End-to-end image codec backbone [2]

• CV task 1: object detection using Detectron [3] back-end

• CV task 2: semantic segmentation using Detectron [3] back-end 

o Object detection ⊂ semantic segmentation   ⟹ 𝒴1 ⊂ 𝒴2

𝑋 𝒴 = {𝑌1, … , 𝑌𝑖 , 𝑌𝑖+1, … , 𝑌𝐶} 𝑋

𝑇1

Input image
Reconstructed

image

CV task 1

Encoder Decoder

End-to-end neural image codec

CV back-end 1
Latent-space 

transform 1

ℱ1𝒴1

𝑇2

CV task 2

CV back-end 2
Latent-space 

transform 2

ℱ2
𝒴2
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• Detection and segmentation experiments on COCO

• Again, Performance much better than compressing 

input directly:

o 71 – 78% bit savings compared to state-of-the-art 

image codecs

o 2.3 – 3.5% more accurate detection at the same 

bit rate

SUBMITTED FOR PEER REVIEW 7

(a) (b)
Fig. 9. Part of network architectures for targeted vision tasks: (a) YOLOv3 [24] and (b) Feature Pyramid Network used for Faster [46] and Mask [25] R-CNN

Fig. 10. Two-layer network’s object detection performance compared with
benchmarks

performance, with mAP loss of about 1% at 0.74 bpp, where

most benchmarks suffer a mAP loss of about 2%. Moreover, at

0.56 bpp, our method operates within a 2% mAP loss margin,

whereas most benchmarks have lost about 4% mAP at this

point. Cheng et al. [16] shows the best performance among

the benchmarks, but there is stil l significant gap between it

and our proposed method.

Table II (first three columns) summarizes object detection

vs. bitrate results using extended versions of BD metrics [50].

For the BD-mAP metric, positive numbers represent an av-

erage increase of mAP at the same bitrate. For BD-Bitrate,

negative numbers indicate average bit savings at the same

accuracy. Our method shows a noticeable bit savings and

increased accuracy compared to all benchmarks. For example,

against HEVC, we achieve BD-Bitrate savings of –47.9%, and

BD-mAP gain of 4.55%. Against Cheng et al. [16], weachieve

BD-Bitrate savings of –37.4%, and BD-mAP gain of 2.89%.

Three-layer network: The three-layer network supports

object detection in the base layer and object segmentation

in the first enhancement layer. The corresponding back-ends

use ResNet-50-based Faster [46] and Mask [25] R-CNN,

respectively. To assess the performance of both tasks, we use

the COCO2017 [49] validation set, which provides labelled

(a)

(b)

Fig. 11. Performance of (a) object detection and (b) segmentation with three-
layer multi-task network

ground truth for both bounding boxes and segmentation maps.

Faster R-CNN and Mask R-CNN have a constraint on the

input resolution that the shorter edge must be less than or

equal to 800 pixels according to given default configuration.

Hence, we resize the test images to meet the constraint using

bilinear interpolation prior to the experiment, then use the

resized images as input to our three-layer network. As a result,

3-layer system: (a) object detection, (b) segmentation
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Results on the Kodak dataset

• Proposed scalable codec comparable to state-of-the-art on 

input reconstruction

• 10 – 20% degradation by adding a scalability layer (2 → 3), in 

line with earlier work on scalable video coding  

SUBMITTED FOR PEER REVIEW 9

(a) (b)

Fig. 12. Comparison of input reconstruction performance in terms of (a) PSNR vs. bpp and (b) MS-SSIM vs. bpp

Fig. 13. Bits proportion for each layer of multi-layer networks

resorting to input reconstruction. Fig. 14 shows two examples

of the outputs of our 3-layer network, along with the results

obtained by the benchmarks. For each example, the first row

shows the input image and the reconstructed images with

the corresponding bitrate and RGB PSNR (bpp/dB). The

next two rows show the results of object segmentation and

object detection. For the benchmarks, reconstructed image

is fed to the corresponding model (Faster R-CNN [46] for

detection, Mask R-CNN [25] for segmentation) with pre-

trained weights to obtain the results. For our 3-layer network,

only thecorresponding part of thebitstream isdecoded. Hence,

since the input is not reconstructed in these cases, the results

are shown on the empty background, and the corresponding

rate is indicated below the image.

In the first example, our network successfully detects and

segments all three objects, with bitrates of 0.195 bpp for

detection and 0.205 bpp for segmentation. In contrast, all

benchmarks lead to mislabelling of a horse on the right as

a person, even in the case of object detection, despite the fact

they use more bits than our base layer. In the second example,

benchmark-coded images lead to some missing objects, while

our network correctly detect them all. For example, the image

coded by [15] leads to missing the second person from the

right in the background, as well as the baseball. Also, image

coded by [16] leads to missing the person in the background.

With conventional codecs (HEVC and VVC), either the person

or the baseball are missed. These examples illustrate why our

3-layer network provides superior performance in terms of

object detection and segmentation in Fig. 11.

V. CONCLUSION

We presented a DNN-based image compression framework

with latent-space scalability for human and machine vision.

Latent image representation is coded into multiple layers,

which can be separately decoded to enable the required task.

We embodied the proposed ideas into 2- and 3-layer multi-

task networks supporting object detection, segmentation, and

input reconstruction. Mutual information estimates show that

the proposed loss function facilitates steering of relevant task-

specific information into the corresponding portions of the

latent space during training. The experiments show that our

multi-task networks provide 37% - 80% bitrate savings on

machine vision tasks compared to relevant benchmarks, while

being comparable to state of the art image codecs in terms of

input reconstruction quality.
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• Features, not input, sent from edge to cloud 

→ potential for privacy

• Are features privacy-preserving?

• Need precise definition of privacy

• Strategies for privacy

o Resilience to model inversion

o Adding noise to features

o Information-theoretic privacy

Input

Input reconstruction from YOLOv2
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• “Privacy fan” – an information-theoretic privacy model for collaborative intelligence and multi-

task compression

• 𝑌1, …, 𝑌𝐶 - features

• 𝑇1, …, 𝑇𝑁 - tasks

• Some task outputs reveal private 

information (e.g. input reconstruction), 

some not

• Let 𝒫 be the set of “private” tasks

• Goal: identify a set of features ℬ that carry minimum 

information about private tasks, while providing sufficient

information about non-private ones
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• Privacy fan formulation

min
ℬ



𝑖∈ℬ



𝑗∈𝒫

𝐼(𝑌𝑖; 𝑇𝑗) , such that 

𝑖∈ℬ



𝑗∉𝒫

𝐼(𝑌𝑖; 𝑇𝑗) ≥ 𝑅

• Solution: define a Lagrangian ℒ𝑖 for each feature 𝑌𝑖:

ℒ𝑖 = 

𝑗∈𝒫

𝐼(𝑌𝑖; 𝑇𝑗) − 𝛽 ∙

𝑗∉𝒫

𝐼(𝑌𝑖; 𝑇𝑗)

where 𝛽 > 0 is the Lagrange multiplier controlling the privacy-accuracy trade-off

o ℬ = 𝑌𝑖 ∶ ℒ𝑖 < 0

• Special case, practically important: set ℬ is limited to 𝐶′ features: ℬ ≤ 𝐶′
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Edge Cloud

• 3-task model:    ℒ𝑖 = 𝐼 𝑌𝑖; 𝑇3 − 𝛽 ∙ 𝐼 𝑌𝑖; 𝑇1 + 𝐼 𝑌𝑖; 𝑇2

Input reconstruction (private)         Segmentation and depth est. (non-private)

• Obtain set ℬ by solving the privacy fan – call these “base” features

• Encode “base” features at high quality, other (“enhancement”) features at appropriate quality, 

depending on the application

Fig. 1: Multi-task model for collaborative intelligence.

there are three branches (Models 1-3), each responsible for

one of the following tasks: semantic segmentation [12], dis-

parity map estimation [12], and input reconstruction. All

these models consists of convolutional and transpose con-

volutional (convolution with upsampling) layers, in order to

make the resolution of their output equal to the resolution

of the input image. Model 1 maps the received features to a

semantic segmentation map, Model 2 maps the features to a

disparity map, while Model 3 tries to reconstruct the original

input image. Weselected these tasks dueto theavailability of

sufficient amount of ground truth, but the overall framework

is not dependent on these specific tasks.

One point to note is that each of the three branches in the

cloud uses thesameset of features. This is in contrast to most

of the recent work on MT models [7, 9], where features from

different layersof thenetwork areconcatenated and then sep-

arated according to the tasks to be performed. In the context

of CI, such approach would be less appropriate, since fea-

tures from multiple layers would need to be transferred to the

cloud, which would increase the bit rate. In our case (Fig. 1),

we only transfer bottleneck features obtained from the last

layer of the encoder. This may affect the performance of the

our MT model compared to state of the art on each task, but

it leads to amore practical CI solution.

Deep feature compression is accomplished following [4].

TheQ-Layer in Fig. 1 implementsuniform n-bit quantization.

Thequantized feature tensor isthen re-arranged into an image

tile (Fig. 2) and compressed using either lossless (e.g. PNG)

or lossy (e.g. JPEG) image codec. Note that quantization in

the Q-Layer is not differentiable, so during training, similar

to the method in [13], uniform noise is added to the Q-Layer

input to emulate quantization. This keeps the model differen-

tiable, and it can be trained end-to-end. In the testing phase,

quantization is applied as usual.

2.2. Deep featurecompressibility loss

Loss functions for the three tasks in Fig. 1 are well-defined.

The loss for semantic segmentation is the cross-entropy loss

in [12]. Mean Squared Error (MSE) loss is chosen for depth

prediction, and Mean Absolute Error (MAE) loss is chosen

for input reconstruction. However, to be able to accomplish

these tasks with compressible features, one needs to include

the feature compressibility loss. Such a loss should berelated

to the bit rate needed to compress the features and it should

be differentiable almost everywhere.

To be more specific, let F 2 RH ⇥W ⇥C be the feature

tensor at the output of the last layer at the encoder in Fig. 1,

where H , W , and C are the height, width, and channel depth

of the feature tensor, respectively. F is a function of both

the input image X and the weights W of the encoder model:

F = f (X ; W ). Note that f (·), being a forward mapping

of a neural network, is an (almost everywhere) differentiable

function of the weights W - otherwise the model would not

be able to train via backpropagation. What we want to con-

struct is a loss function L r = g(F) that is related to the bit

rate required for F, and is differentiable with respect to F al-

most everywhere. Then, since L r = g(f (X ; W )), this loss

term would also bedifferentiable with respect to W , which is

needed for training.

One could easily compute the entropy of F by, say, quan-

tizing its entries, creating a histogram of their values, and

then computing the entropy from the normalized histogram.

However, this process is not differentiable with respect to

the values in F, so we cannot use entropy as the loss term.

Alternative solutions have been proposed in recent image

codecs based on deep networks [14, 15, 16], where the fea-

ture value probabilities are predicted using another neural

network (hence, in a differentiable manner) such as Pixel-

CNN [17] and PixelRNN [18]. Another approach to obtain

a bit rate-related quantity is ⇢-domain analysis [19], where

the fraction of non-zero DCT coefficients (⇢) is used for this

Fig. 2: An example of the tiled quantized deep feature tensor

(enhanced for better visualization).
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Varying the rate of enhancement layer

Semantic segmentation Depth estimation Character recognition
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Input video
One feature tensor channel 
from add_3 layer of ResNet-34

Observation:

• Input motion seems to be 

preserved in the latent space

• Why?
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Understanding latent-space motion

• Consider motion in the input space between two 

consecutive frames

• Map each frame to the latent space via the model front—

end

• What is the relationship between the corresponding 

feature tensors?

LATENT-SPACE MOTION
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M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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• A popular motion model in computer vision is “optical flow”:

𝜕𝐼

𝜕𝑥
𝑣𝑥 +

𝜕𝐼

𝜕𝑦
𝑣𝑦 +

𝜕𝐼

𝜕𝑡
= 0

o 𝐼 – image intensity;    𝑡 – time

o 𝑣𝑥, 𝑣𝑦 – optical flow

• If this model describes motion in the input space, what it its 

equivalent in the latent space?

• Note: the same equation was used  to describe “surface 

flow” in PDE-based inpainting

o Can reuse that analysis, but interpretation slightly 

different

LATENT-SPACE MOTION
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M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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• When input image 𝐼 is convolved with kernel 𝑓, the resulting flow equation is

𝜕

𝜕𝑥
𝑓 ∗ 𝐼 𝑢𝑥 +

𝜕

𝜕𝑦
𝑓 ∗ 𝐼 𝑢𝑦 +

𝜕

𝜕𝑡
𝑓 ∗ 𝐼 = 0

where 𝑢𝑥, 𝑢𝑦 is the flow field after convolution

• Convolution and differentiation commute:

𝑓 ∗
𝜕𝐼

𝜕𝑥
𝑢𝑥 +

𝜕𝐼

𝜕𝑦
𝑢𝑦 +

𝜕𝐼

𝜕𝑡
= 0

LATENT-SPACE MOTION
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same flow equation as in input space  ⟹ solution to input flow is one solution to output flow 

M. Ulhaq and I. V. Bajić, ”Latent space motion analysis for collaborative intelligence," Proc. IEEE ICASSP, pp. 8498-8502, Jun. 2021.
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• When input image 𝐼 passes through nonlinear activation 𝜎(∙), the resulting flow equation is

𝜕 𝜎 𝐼

𝜕𝑥
𝑢𝑥 +

𝜕 𝜎 𝐼

𝜕𝑦
𝑢𝑦 +

𝜕 𝜎 𝐼

𝜕𝑡
= 0

where 𝑢𝑥, 𝑢𝑦 is the flow field after nonlinear activation

• Using the chain rule of differentiation:

𝜎′(𝐼) ∙
𝜕𝐼

𝜕𝑥
𝑢𝑥 +

𝜕𝐼

𝜕𝑦
𝑢𝑦 +

𝜕𝐼

𝜕𝑡
= 0
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same flow equation as in input space  ⟹ solution to input flow is one solution to output flow 
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• Following pooling operations are commonly found in deep neural networks:

o Max pooling

o Mean pooling

o Learnt pooling (strided convolution)

• Each of these pooling operations can be represented as

spatial operation followed by       spatial scale change

where spatial operation is 

o Local maximum in case of max pooling

o Local average in case of mean pooling

o Weighted local average in case of learnt pooling 

• Note: (weighted) local average is a special case of of convolution, and it was already shown 

that optical flow before convolution is one solution to the optical flow after the convolution
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• Using a linear approximation to the local maximum, it can also be shown [1, 2] that optical flow 

prior to local max is an approximate solution to the optical flow after the local max

• For the spatial scale change, define 𝐼𝑠 𝑥, 𝑦, 𝑡 = 𝐼(𝑠 ∙ 𝑥, 𝑠 ∙ 𝑦, 𝑡) to be the signal after scale 

change in 𝑥- and 𝑦-directions by a factor of 𝑠, and consider optical flow in 𝐼𝑠:

𝜕𝐼𝑠
𝜕𝑥

𝑢𝑥 +
𝜕𝐼𝑠
𝜕𝑦

𝑢𝑦 +
𝜕𝐼𝑠
𝜕𝑡

= 0

where 𝑢𝑥, 𝑢𝑦 is the flow field after spatial scale change

• Since 
𝜕𝐼𝑠

𝜕𝑥
= 𝑠 ∙

𝜕𝐼

𝜕𝑥
, 
𝜕𝐼𝑠

𝜕𝑦
= 𝑠 ∙

𝜕𝐼

𝜕𝑦
, and 

𝜕𝐼𝑠

𝜕𝑡
=

𝜕𝐼

𝜕𝑡
, the new field is

𝑢𝑥, 𝑢𝑦 =
𝑣𝑥
𝑠
,
𝑣𝑦

𝑠

• Hence, after spatial scale change, flow field scales accordingly
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Summary

• Optical flow of the input remains one (approximate) 

solution to the optical flow after common operations 

(convolution, nonlinear activation, pooling, etc.)

• Pooling with a spatial scale change causes a 

corresponding scale change in the optical flow

o For example, 2 × 2 pooling scales the flow field by a 

factor of ½

• This is why input motion is approximately preserved in 

the latent space

• Motion compensation from video coding may be a good 

strategy for compression of sequences of feature 

tensors derived from input video

LATENT-SPACE MOTION
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Questions?
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Part 3

Standardization
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• Standards are important

o Ensure interoperability

o Give device developers confidence that their products will have a large market

• There are a number of standardization activities related to collaborative intelligence and, more 

broadly, IoT

• We will briefly describe those related to compression:

o JPEG AI (Joint Photographic Experts Group – Artificial Intelligence)

o MPEG-VCM (Motion Pictures Experts Group – Video Coding for Machines)

STANDARDIZATION
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I. V. Bajić, W. Lin, and Y. Tian, ”Collaborative intelligence: Challenges and opportunities," Proc. IEEE ICASSP, pp. 8493-8497, Jun. 2021.

W. Gao et al., “Recent standard development activities on Video Coding for Machines,” arXiv:2105.12653, May 2021.
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• Scope

“The scope of the JPEG AI is the creation of a learning-based image coding standard offering 

a single-stream, compact compressed domain representation, targeting both human 

visualization, with significant compression efficiency improvement over image coding 

standards in common use at equivalent subjective quality, and effective performance for 

image processing and computer vision tasks, with the goal of supporting a royalty-free 

baseline.” [JPEG AI White Paper, 2021]

• Difference from earlier image coding standards

o Learning-based

o Support for image processing and computer vision tasks (besides human vision)

JPEG AI
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ISO/IEC JTC 1/SC29/WG1 N90049, "White Paper on JPEG AI Scope and Framework v1.0," 2021.
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• Use cases

o Cloud storage

o Visual surveillance

o Autonomous vehicles and devices

o Image collection storage and management

o Live monitoring of visual data

o Media distribution

o Television broadcast distribution and editing

JPEG AI
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.
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JPEG AI
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.

ISO/IEC JTC 1/SC29/WG1 N100190, REQ " Submission Instructions for the JPEG AI Call for Proposals," 95th Meeting, April 2022.

• Examples of image processing tasks

o Super-resolution

o Denoising

o Low-light enhancement, exposure compensation, color correction

o Inpainting

• Examples of computer vision tasks

o Image classification

o Object/face detection, recognition, identification

o Semantic segmentation

o Event detection, action recognition
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• Timeline

o January 2022 – Final Call for Proposals

o February 2022 – Proposal registration

o April 2022 – Proposal submission

o ...

o October 2023 – Draft standard

o April 2024 – Final standard

JPEG AI
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ISO/IEC JTC 1/SC29/WG1 N92014, REQ "JPEG AI Second Draft Call for Proposals," 92nd Meeting, July 2021.
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an efficient compressed domain representation useful not only for visualization, but also for machine image 

processing and computer vision tasks. Figure 1 shows the high-level JPEG AI framework, which is fully 

described in the JPEG AI Use Cases and Requirements document (WG1N91014); it includes three pipelines: 

standard image reconstruction, compressed domain computer vision processing and compressed domain 

image processing, all from the latent representation that is obtained after entropy decoding.  

 

Fig. 1:  JPEG AI learning-based image coding framework. 

 

Considering this context, this Call for Proposals (CfP) on JPEG AI Learning-based Image Coding 

Technologies solicits technical contributions that demonstrate efficient compression of images as well as 

effective performance for image processing and computer vision tasks. 

3. Use Cases and Requirements 

This Call for Proposals addresses several use cases: 

• Cloud storage 

• Visual surveillance 

• Autonomous vehicles and devices 

• Image collection storage and management 

• Live monitoring of visual data 

• Media distribution 

• Television broadcast distribution and editing 

 

Detailed information on these use cases and derived requirements are contained in the JPEG AI Use Cases 

and Requirements document (WG1N91014). 

JPEG AI coding framework

JPEG AI
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• Scope

“MPEG-VCM aims to define a bitstream from compressing video or feature extracted from 

video that is efficient in terms of bitrate/size and can be used by a network of machines 

after decompression to perform multiple tasks without significantly degrading task 

performance. The decoded video or feature can be used for machine consumption or 

hybrid machine and human consumption.

The differences between VCM and video coding with deep learning are:

1. VCM is used for machine consumption or hybrid machine and human consumption, while 

current video coding aims for human consumption;

2. VCM technologies could be but is not required to be based on deep learning

3. VCM can achieve analysis efficiency, computational offloading and privacy protection as 

well as compression efficiency, while traditional video coding pursues mainly on 

compression efficiency. ” [VCM m57648 , 2021]

MPEG-VCM
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• Use cases

o Surveillance

o Intelligent transportation

o Smart city

o Intelligent industry

o Intelligent content

o Consumer electronics

o Smart retail

o Smart agriculture

o Autonomous vehicles / UAV

MPEG-VCM
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MPEG-VCM
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Y. Zhang et al., "[VCM] Updates to use cases and requirements for video coding for machines", m57648, July 2021.

ISO/IEC JTC 1/SC 29/WG 2, “Evaluation Framework for Video Coding for Machines ,” N0193, Apr. 2022.

• Examples of image processing tasks

o Image/video enhancement 

o Stereo/Multiview processing

• Examples of computer vision tasks

o Object detection, segmentation, masking, tracking, measurement

o Event search, detection, prediction

o Anomaly detection

o Crowd density estimation

o Pose estimation and tracking
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• Track 1 – Feature extraction and compression

o Focus on machine vision

o Call for Evidence: July 2022

• Track 2 – Image and video compression

o Both human and machine vision

o Call for Proposals: April 2022

MPEG-VCM
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M. Rafie et al., "AhG on report on video coding for machines," m59226, April 2022.



112

Coding pipelines under consideration

MPEG-VCM
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113

Questions?
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• Collaborative intelligence – a perfect fit for IoT

o Enables lower latency and better energy efficiency at the edge

o Still take advantage of computing resources in the cloud

• What we have learned:

o Features produced by neural networks are more compressible than the input

o They have their own structure, which allows recovering missing data

o Approximate invariance to flow PDE – enables data recovery and explains why motion is 

preserved in the latent space

o Privacy fan model for privacy protection in collaborative intelligence

o Various methods for single- and multi-stream feature compression – more to come in the 

near future

o Related standardization activities: JPEG AI and MPEG-VCM

SUMMARY
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Thank you!
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