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ABSTRACT

Image segmentation is a difficult and challenging task be-
cause of the complex object appearance and diverse object
categories. Traditional methods directly use visual features
for segmentation but ignore the correlation between objects.
We introduce a knowledge reasoning module (KRM) for ex-
ternal knowledge aggregation and leverage a graphic neural
network to aggregate the knowledge feature, which is con-
catenated with a visual feature for semantic segmentation. To
this end, we use word embedding of category names as se-
mantic feature and establish the relationship between cate-
gories. Through iteration, the aggregated features can be en-
riched. In experiments, three well known semantic segmen-
tation methods are used as baseline. Our experiment results
outperform the baseline methods on the food dataset Food-
Seg103 and Cityscapes, and demonstrate the effectiveness of
our proposed method.

Index Terms— Knowledge reasoning, semantic segmen-
tation

1. INTRODUCTION

Semantic segmentation is a main computer vision task, most
of the existing segmentation algorithms are based on the vi-
sual features of encoder-decoder structures. These algorithms
are restricted by the limited receptive field of convolution k-
ernel. At present, the popular graph convolution network can
expand the relationship between various regions in the image.
The combination of external knowledge and graph convolu-
tion network can naturally solve the problem of insufficient
receptive fields in semantic segmentation, thus enriching the
features used in semantic segmentation.

Most semantic segmentation methods [1, 2, 3, 4, 5, 6] fol-
low the encoder-decoder architecture based on fully convolu-
tion network [7]. Previous researchers have achieved good re-
sults on general semantic segmentation datasets such as PAS-
CAL VOC2017, Cityscape and ADE20K, many of the efforts
are addressed on enlarging the receptive field.In the present
research, we aim to study semantic segmentation from a dif-
ferent perspective.

Recently GCN [8] has demonstrated its remarkable abil-
ity on computer vision tasks, which can alleviate the limited

Fig. 1. Overview of the proposed knowledge reasoning net-
work for semantic segmentation task. Our method is designed
on the basic encoder decoder framework and can be flexibly
applied to all networks based thereon. Firstly, the semantic
knowledge of the category names is extracted by word em-
bedding and visual knowledge from convolution weights as
the node feature of the graphic convolution network, then the
co-occurrence knowledge of categories in the dataset is used
as the value of the edge that connects two nodes. Finally, this
knowledge is fed into GNN and the external knowledge is ex-
tracted, and the feature is concatenated with visual feature for
the final semantic segmentation.

receptive field problem. The GCN-based algorithm exhibit-
s good performance in handling non-local regions. GAT [9]
introduces masked self-attentional layers and assigns the cor-
responding weights to different adjacent nodes to improve the
shortcomings of the GCN. Sun et al.

Work has been undertaken on the inductive knowledge
reasoning for CV tasks. Zhang et al. [10] introduces
knowledge-based reasoning network for object detection,
and leverages graphic neural network to build the knowledge
relationship between objects. Chen et al. [11] introduces KR-
Net to establish the prior semantic relationship between the
objects in segmentation task, but ignores the visual feature
relationship.

To address the difficulties of segmentation task, we pro-
pose a knowledge reasoning network for segmentation task.
Firstly, the semantic features and visual features of objects
are extracted as the nodes of the graph convolution network,
we then establish the relationship between these objects. Fi-



Fig. 2. Knowledge reasoning module process.

nally, a graph convolution network is used to aggregate the
information from the node features of these objects and the
edge to produce the external knowledge features. The exter-
nal features are optimised iteratively, and finally aggregated
with visual features for food image semantic segmentation.

The main contribution of this paper are as follows:

• A novel knowledge reasoning module is proposed for
semantic segmentation task by leveraging external in-
tuitive knowledge. GCN [8] is introduced to aggregate
the external knowledge to enhance the features for seg-
mentation task.

• The proposed module can be flexibly integrated with
other semantic segmentation framework.

• The effectiveness of the proposed method is proved by
the evaluation on the public dataset FoodSeg103 and
Cityscapes.

2. METHODOLOGY

We propose a simple yet effective module to aggregate the
external knowledge and obtain the knowledge features as an
auxiliary of visual features for semantic segmentation. Our
main framework is illustrated in Fig. 1. The supplementary
knowledge features are appended in specific layer of decoder
module, which enrich the features for final segmentation. The
representative framework SETR [6] are illustrated in Fig. 3.

2.1. External knowledge reasoning module

As described above, we target image semantic segmentation
with external knowledge reasoning. The task can be formu-
lated thus: Dt = (Xit, Lit, Sit, Eit), where Xit is the ith
input sample, Lit is the segmentation labels, Sit is the visu-
al semantic representation, and Eit is the external knowledge
representation. Ct = {C1t, C2t . . . CNt} is the set of objects
categories. In this research, we propose to use GNN to aggre-
gate the external knowledge. The inputs of GNN consist of
the nodes and edges, which are described as below:

Fig. 3. SETR plug-in: proposed knowledge reasoning mod-
ule.

Node representation. The node representation comes
from word embedding of the object name or visual embed-
ding of convolution transformation weights. The word em-
bedding can be obtained from pretrained text encoder, such as
GLoVe [12] or CLIP [13]. For each object category, the text
representation can be represented as Fi ∈ RdT

, dT is the vec-
tor length. Since we have N object categories, the final text
representation FT ∈ RN×dT

is determined. The visual em-
bedding is realized from convolution transformation weights
using a 1 × 1 convolution when converting the channels, it
can be denoted by FT

′

∈ RN×C , where C is the number of
channels in the penultimate convolution of the decoder mod-
ule.

Edge representation. The edge between two nodes rep-
resent the relationship of two objects in the image (e.g.,
beef and bread often appear together). A simple method is
used to measure the relationship by counting the number of
co-occurrences between different categories in the training
datasets. We thereby obtain the symmetric relationship ma-
trix MN×N . After normalization, the adjacent matrix A is
obtained and used as the edge of GCN.

The GCN is initialized with the text or visual representa-
tion H and the adjacent matrix A. Our target is to attain an
enhanced feature as a supplement of visual semantic feature.
As shown in Fig. 2, GCN provides a strategy that the node fea-
tures can be iteratively optimised through the weight calcula-
tion with related categories. The forward propagation process
can be expressed using the following formula:

h
′

i = σ(
∑

(j∈N)

aijhiωij) (1)

where aij is the correlation between hi and hj , hi is the cur-
rent head, ωij represents the weight of GCN and σ is the non-
linear activation function.

2.2. Multi-modality knowledge fusion

To enrich the features of external knowledge, three differen-
t methods are used to extract the knowledge features, NLP



semantic feature and CLIP [13] based multi-modality feature
and visual knowledge feature. NLP semantic feature use sin-
gle word of the category name to transfer the word to vector,
each text embedding is represented as f ∈ RdT

, where dT is
the length of the vector. CLIP-based feature [13] first make
a sentence using the category name(e.g., This is a picture of
tomato), then the text encoder of CLIP is employed to extract
the text feature, the pretrained CLIP has already made a good
alignment between the real-world images and the description
sentences, which is auxiliary information for our knowledge
reasoning module. The visual knowledge feature use con-
volutional weights from visual features transformation in the
decoder module. All the three modules use the same N ×N
adjacent matrix as the the edges of GCN. The features extract-
ed by the three modules are supplement to the visual features
and effectively reduce the data deviation. We will show the
influences of different knowledge embedding modules in the
section describing the experimental work.

2.3. Feature enhancement for the semantic segmentation

As shown in Fig.1, after obtaining the feature from the knowl-
edge reasoning module, we add these knowledge features to
the visual features as in [10]. Because the knowledge features
represent the relationship between the objects which belong
to high-level features, the knowledge features are added to
the penultimate decoder layer.

The knowledge feature can be denoted by Fk ∈ RN×D

, where N is the number of the categories including back-
ground, D is the size of the feature vector in each catego-
ry. While the last layers feature of the decoder is F l ∈
RB×N×W×H , where B denotes the batch size, N is the num-
ber of categories including background, and the penultimate
layers feature is F l−1 ∈ RB×C×W×H , where C represents
the number of channels in the penultimate decoder layer. We
make the transformation as follows, each of image features in
the batch is iterated, where F li is ith sample feature F l. The
enhanced feature can be denoted thus:

Fcmb = µ(ϕ(F li, γ(F k)), F (l−1)i) (2)

where F cmb ∈ R(D+C)×W×H , γ is the repeat operation
(H times), ϕ is the multiplication operation and µ is concate-
nate operation.

After all features are iterated with the above operations in
the batch, finally we obtain the F batch ∈ RB×(D+C)×W×H

featuresand make a 1 × 1 convolution to change the channels
to Fnew ∈ RB×N×W×H , the generated new features will
participate in the loss calculation.

3. EXPERIMENTS

Our experiments are conducted with three popular baseline
methods sem-FPN [3], CCNet [4] and SeTR [6] on food

Method mIoU Model size
FPN [3](ResNet50) 27.3 218M
FPN-KRM(CLIP+GCN) 28.3 227M
CCNet [4](ResNet50) 35.1 381M
CCNet-KRM(CLIP+GCN) 36.4 399M
SETR [6](Vit-16/B) 44.6 776M
SETR-KRM(CLIP+GCN) 45.7 805M

Table 1. Segmentation evaluation results of MIou on Food-
Seg103 dataset

Method mIoU Model size
FPN [3](ResNet50) 74.5 218M
FPN-KRM(CLIP+GCN) 76.4 227M
CCNet [4](ResNet50) 79.3 381M
CCNet-KRM(CLIP+GCN) 80.5 399M
SETR [6](Vit-16/B) 78.1 776M
SETR-KRM(CLIP+GCN) 79.7 805M

Table 2. Segmentation evaluation results of MIou on C-
ityscapes(test), training schedule with 80k

segmentation dataset FoodSeg103 and Cityscapes, and the
knowledge reasoning module is implemented to demonstrate
the effectiveness of the proposed method.

3.1. Implementation details

FoodSeg103 contains 7118 food RGB images, including
4983 training images and 2135 testing images, the dataset
has 103 food ingredient categories, all the images come from
dataset Recipe1M. 4983 images are used as training samples
and 2135 images are used as validation samples. Cityscapes
contains 19 object categories of urban scenes. It includes
5000 finely annotated images, with 2975, 500 and 1525 for
training, validation and testing respectively.

Encoder decoder settings: the baseline methods on
Food-Seg103 are conducted based on the MMSegmentation
platform [14]. We all use the pretrained model to improve the
performance. FPN and CCNet use Resnet-50 as backbone,
while SeTR use ViT-16/B. In the decoder part of SeTR, the
five-layer up-sampling structure is selected as the decoder to
facilitate the experiment of adding knowledge features.

Training strategy settings: to allow fair comparison, the
same batch size and pretrained model are used for both pro-
posed method and baseline method with a batch size 4, four
GPUs. We use 0.01 as the initial learning rate for each base-
line method. For our proposed knowledge reasoning method-
s, the initial learning rate is set as 0.0004 to ensure network
converge.

Knowledge reasoning module setting: we use two dif-
ferent graph network GCN and GAT to aggregate the external



Method mIoU
FPN+CLIP+GCN 28.3
FPN+CLIP+GAT 27.9
CCNet+CLIP+GCN 36.4
CCNet+CLIP+GAT 36.1
SETR+CLIP+GCN 45.7
SETR+CLIP+GAT 44.9

Table 3. Influcences of Graphic networks on FoodSeg103

knowledge features to compare the performance.

3.2. Results and evaluation metrics

For all the categories, mIoU (mean of all categories IoU) and
mAcc (mean of all categories Acc) are used to evaluate the
performance of each segmenter. The experiments are con-
ducted on three popular baseline methods (FPN, CCNet and
SeTR). In our knowledge module, CLIP based knowledge ex-
traction module performs best and GCN performs better than
GAT for knowledge feature generation.

Results on FoodSeg103 Table 1 Compares the segmen-
tation results on FoodSeg103, our proposed knowledge rea-
soning module achieves a better performance (mIoU: +1.0%,
+1.3%, +1.1%).

Results on Cityscapes Table 2 Compares the segmenta-
tion results on Cityscapes, SETR-Naive structure is adopted
and our proposed method significantly outperforms the base-
line with a large margin (mIoU: +1.9%, +1.2%, +1.6%), prov-
ing the effectiveness of the proposed method.

3.3. Influence of different GNN models

In this section, different graphic networks such as GCN and
GAT are used to examine the influences of GNN models.

3.4. Ablation study

GCN aggregation module can achieve better performance and
the CLIP-based multi-modality is better than other knowl-
edge embedding methods. In this section, we select SETR
and GCN model as baseline and use different combinations of
knowledge embedding to evaluate the performance. Experi-
mental results (Table 4) shows that a combination of CLIP-
based module and visual knowledge module can achieve the
best mIoU performance.

3.5. Visualization

In Fig. 4, some visualization examples are demonstrated.
SETR is used as the baseline method in the third column, the
fourth column is proposed method. From the visualization
observations, the SETR-knowledge reasoning module (KRM)
achieves better performance and more detailed results. The

Method mIoU
SETR[6](Vit-16/B) 44.6
SETR-KRM(GCN+CLIP) 45.7
SETR-KRM(GCN+CLIP+GLOVE) 45.3
SETR-KRM(GCN+CLIP+VISUAL) 45.8
SETR-KRM(GCN+CLIP+GLOVE+VISUAL) 45.2

Table 4. Results of different modules on FoodSeg103

Fig. 4. Visualization of testing samples in FoodSeg103:
SETR with knowledge achieves better performance.

SETR-KRM method also focuses on macroscopic relation-
ships between objects in one image, which help improve the
segmentation performance of objects that visually have large
intra-class variance.For example, in the first row the green
leaves belong to the strawberry, our SETR-KRM model can
recognize the green leaves as part of a strawberry.

4. CONCLUSION

In this paper, a semantic segmentation framework that incor-
porates the KRM for image segmentation task is introduced.
The category name text semantic feature and visual feature
are used as auxiliary information, and the relationship be-
tween the objects is established, then GCN is used to aggre-
gate the external knowledge. Three popular baseline methods
are selected for comparisons with our proposed method with
plug-in KRM module. Experiments show that our proposed
method outperforms the baseline methods on the FoodSeg103
and Cityscapes datasets. We hope our proposed method can
contribute to the community in semantic segmentation tasks.
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