DESIGNING STRONG BASELINES FOR TERNARY NEURAL NETWORK QUANTIZATION THROUGH SUPPORT AND MASS EQUALIZATION

Edouard Yvinec^{1,2}, Arnaud Dapogny², Kevin Bailly^{1,2}

Sorbonne Université¹, CNRS, ISIR, f-75005, 4 Place Jussieu 75005 Paris, France Datakalab², 114 boulevard Malesherbes, 75017 Paris, France

The chat GPT slide + some green washing $\sqrt{(\nu)}$

- training GPT-3 requires **1,300MWh** (320 homes/year), or **552 tons of CO2**
- one instance of GPT-3 generates **8.4 tons of CO2 per year** (5 homes/year)
- initially the price to run GPT-3 with **100,000\$** per month
- It is reported that OpenAI currently uses **700,000\$** worth of resources per day

no sources as I do not want to give too much credit to these whispers.

How do we compress models for deployment?

Pruning

- remove operations or computations
- granularity level: structure⁴ of the removal
- usage of data: pruning at initialization¹, pruning post-training³, iterative pruning²
- paradigm: importance based⁴ or similarity based³

Quantization

- simplify the individual computations (e.g. from fp32 to int4)
- granularity level⁵: • per-tensor, per-channel, per-group
- usage of data⁶: data-free, gptq, or qat
- mixed-precision⁷: use the adequate precision (RL, heuristics)
- quantization space⁸: • uniform, log, power,...

NAS and Distillation

- Use the adequate architecture to begin with
- Search for efficient architectures⁹
- Use adapters and distillation to compress models (very trending on LLMs)¹⁰

[1] Tanaka, Hidenori, et al. [2] Frankle, Jonathan, and "Pruning neural networks without any data by iteratively conserving Sparse, Trainable Neural synaptic flow." NIPS 2020 Networks." ICLR 2018

Michael Carbin. "The Lottery Looking for redundancies for Ticket Hypothesis: Finding data-free structured compression of deep neural networks " NIPS 2021

[3] Yvinec, Edouard, et al. "Red: [4] Yvinec, Edouard, et al. [5] Yvinec, Edouard, et [6] Nagel, Markus, et al. [7] Wang, Kuan, et al. "SInGE: Sparsity via Integrated"SPIQ: Data-Free Gradients Estimation of Neuron Relevance," NIPS Quantization," WACV 2022 2023

"Data-free guantization "Hag: Hardware-aware Per-Channel Static Inputthrough weight equalization and bias correction." ICCWith mixed precision." 2019 CVPR 2019.

[8] Yvinec, Edouard, et al. "Powerguant: Automorphism search for non-uniform

[9] Tan, Mingxing, and Quoc Le. "Efficientnet: for convolutional neural guantization." ICLR 2023 networks." ICML 2019.

[10] Hu, Edward J., e al. "LoRA: Low-Rank Rethinking model scaling Adaptation of Large Language Models." **ICLR 2023**

Ternary quantization has a specificity: the zero value is assigned many more values as compared to 1 and -1. To fight this phenomenon, we propose two novel ternary quantization operators.

A little bit of Maths

- When we equalize the mass (top right), we minimize the expected error introduced by quantization
- When we equalize the support (bottom right), we minimize the maximum error introduced by quantization.

Evaluation with data-free quantization

Evaluation with gradient-based post-training quantization

PTQ method	operator	accuracy	Processing Time
-	-	89.100	-2
AdaRound	native	11.790 ± 3.210	5m01
	MQuant	$\textbf{42.910} \pm 0.620$	5m18
	TQuant	40.490 ± 0.250	5m18
BrecQ	native	25.780 ± 2.440	3m45
	MQuant	$\textbf{63.540} \pm 0.850$	3m50
	TQuant	58.000 ± 1.120	3m50

Evaluation with quantization aware training

	Baseline	MQuant	TQuant
accuracy	42.910 ± 14.61	68.250 ± 6.26	82.620 ± 2.43