Adaptive Anchor Label Propagation for Transductive Few-Shot Learning

Michalis Lazarou¹, Yannis Avrithis², Guangyu Ren¹ and Tania Stathaki¹

¹Imperial College London, ²IARAI

IEEE International Conference of Image Processing

Kuala Lumpur, Malaysia, October 2023

Imperial College IARAI London

▲□▶▲冊▶▲플▶ 플 のQ (~ 1/14)

What is few-shot learning

• Why is it important?

?

Current approaches in few-shot learning

Relevant literature

- Meta-learning:
 - Optimization based.
 - Metric based.
 - Model based.
- Transfer learning.
- Feature adaptation.
- Data Augmentation.

Utilizing unlabeled data

- Data manifold exploitation:
 - Label propagation.
 - Embedding propagation.
- Iterative pseudo-label selection.
- Class centroid refinement:
 - Soft k-means.
 - Minimizing loss functions.

◆□▶◆冊▶◆耳▶ ヨ の久(や 3/14

Motivation

Traditional Label Propagation algorithm

- We investigate the widely popular label propagation algorithm.
- We identify a limitation of label propagation, that the labeled data are fixed and may be in sub optimal positions.

Contributions

- We propose a novel variant of label propagation algorithm named Adaptive Anchor Label Propagation (A²LP).
- A²LP outperforms significantly the traditional label propagation in transductive few-shot learning.

▲□▶▲冊▶▲国▶ 国 釣Q(や 4/14

Motivation

Traditional Label Propagation algorithm

- We investigate the widely popular label propagation algorithm.
- We identify a limitation of label propagation, that the labeled data are fixed and may be in sub optimal positions.

Contributions

- We propose a novel variant of label propagation algorithm named Adaptive Anchor Label Propagation (A²LP).
- •
- A²LP outperforms significantly the traditional label propagation in transductive few-shot learning.

▲□▶▲冊▶▲国▶ 国 釣Q(や 4/14

Problem formulation and definitions

Pre-training stage

- We use publicly available pre-trained networks from published works.
- Base class dataset: $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^I$ where $y_i \in C_{\text{base}}$.
- Network $f_{\theta} : \mathcal{X} \to \mathbb{R}^d$ is trained on D_{base} .

Inference stage

- Novel class dataset D_{novel} with C_{novel} disjoint from C_{base} .
- Assume access to f_{θ} , a support set, S, a query set, Q.
- We focus on transductive few-shot learning, where all S and Q are available at inference at the same time.

▲□▶▲□▶▲□▶ □ のQ (~ 5/14

Problem formulation and definitions

Pre-training stage

- We use publicly available pre-trained networks from published works.
- Base class dataset: $D_{\text{base}} := \{(x_i, y_i)\}_{i=1}^I$ where $y_i \in C_{\text{base}}$.
- Network $f_{\theta} : \mathcal{X} \to \mathbb{R}^d$ is trained on D_{base} .

Inference stage

- Novel class dataset D_{novel} with C_{novel} disjoint from C_{base} .
- Assume access to f_{θ} , a support set, S, a query set, Q.
- We focus on transductive few-shot learning, where all ${\cal S}$ and ${\cal Q}$ are available at inference at the same time.

▲□▶▲□▶▲□▶ □ のQ (~ 5/14

A²LP: Nearest Graph Construction

A²LP: Label Propagation

A²LP: Anchor Adaptation

▲□▶▲圖▶▲≣▶ ≣ のへで 8/14

$A^{2}LP$: Iteration

Experimental results: Implemented baselines comparisons

Algorithm	<i>mini</i> ImageNet		<i>tiered</i> ImageNet				
	1-shot	5-shot	1-shot	5-shot			
ResNet-12							
Prototypical classifier Imprinting $+L_{ce}$ LP $A^{2}LP$	$\begin{array}{c} 54.23 \pm 0.61 \\ 54.53 \pm 0.61 \\ 59.15 \pm 0.66 \\ \textbf{64.35} \pm 0.77 \end{array}$	$\begin{array}{c} 74.98 \pm 0.48 \\ 74.31 \pm 0.49 \\ 73.50 \pm 0.52 \\ \textbf{75.00} \pm 0.53 \end{array}$	$\begin{array}{c} 67.21{\scriptstyle\pm0.72}\\ 67.53{\scriptstyle\pm0.72}\\ 72.67{\scriptstyle\pm0.74}\\ \textbf{80.49}{\scriptstyle\pm0.77}\end{array}$	$\begin{array}{c} 85.19{\scriptstyle\pm 0.48}\\ 84.86{\scriptstyle\pm 0.48}\\ 84.61{\scriptstyle\pm 0.53}\\ \textbf{85.80}{\scriptstyle\pm 0.51}\end{array}$			
WIDERESNET-28-10							
Prototypical classifier Imprinting $+L_{ce}$ LP $A^{2}LP$	$\begin{array}{c} 65.35{\scriptstyle\pm0.63}\\ 66.07{\scriptstyle\pm0.62}\\ 69.50{\scriptstyle\pm0.64}\\ \textbf{76.48}{\scriptstyle\pm0.75}\end{array}$	$\begin{array}{c} 83.37 \pm 0.43 \\ 83.34 \pm 0.42 \\ 81.28 \pm 0.47 \\ \textbf{83.57} \pm 0.45 \end{array}$	$\begin{array}{c} 73.47 {\scriptstyle \pm 0.70} \\ 74.07 {\scriptstyle \pm 0.69} \\ 78.14 {\scriptstyle \pm 0.72} \\ \textbf{82.82} {\scriptstyle \pm 0.73} \end{array}$	$\begin{array}{c} 88.22{\scriptstyle\pm0.45}\\ 88.55{\scriptstyle\pm0.43}\\ 87.63{\scriptstyle\pm0.50}\\ \textbf{88.80}{\scriptstyle\pm0.46}\end{array}$			

• A²LP is significantly outperforming all implemented baselines.

Experimental results: PLC pre-processing

Algorithm	<i>mini</i> ImageNet		<i>tiered</i> ImageNet		
	1-shot	5-shot	1-shot	5-shot	
	WIDERESNET-28-10				
Prototypical classifier	$69.64{\scriptstyle \pm 0.60}$	84.61±0.42	77.26±0.65	$89.22{\scriptstyle\pm0.42}$	
$Imprint + L_{ce}$	$68.77{\scriptstyle \pm 0.60}$	$84.24{\scriptstyle\pm0.42}$	$76.13{\scriptstyle \pm 0.66}$	$88.95{\scriptstyle \pm 0.42}$	
LP	$74.24{\scriptstyle \pm 0.66}$	$84.59{\scriptstyle \pm 0.44}$	82.48±0.70	$90.07{\scriptstyle \pm 0.45}$	
$A^{2}LP$	$\textbf{75.94}_{\pm 0.72}$	$\textbf{85.67}{\scriptstyle \pm 0.42}$	$\textbf{83.68}{\scriptstyle \pm 0.72}$	$90.53{\scriptstyle \pm 0.43}$	

- PLC: power transform, ℓ_2 -normalization, centering.
- Even when PLC pre-processing is used A²LP is outperforming all baselines.

Experimental results: State of the art

Algorithm	<i>mini</i> ImageNet		<i>tiered</i> ImageNet				
	1-shot	5-shot	1-shot	5-shot			
ResNet-12							
LR+ICI	66.80	79.26	80.79	87.92			
CAN+Top- <i>k</i>	$67.19{\scriptstyle \pm 0.55}$	$80.64{\scriptstyle \pm 0.35}$	$73.21{\scriptstyle \pm 0.58}$	$84.93{\scriptstyle~\pm 0.38}$			
DPGN	$67.77{\scriptstyle\pm0.32}$	$84.60{\scriptstyle \pm 0.43}$	$72.45{\scriptstyle \pm 0.51}$	$87.24{\scriptstyle \pm 0.39}$			
WIDERESNET-28-10							
EP	$70.74{\scriptstyle \pm 0.85}$	$84.34{\scriptstyle \pm 0.53}$	78.50±0.91	88.36±0.57			
SIB	$70.00{\scriptstyle \pm 0.60}$	$79.20{\scriptstyle \pm 0.40}$	72.90	82.80			
SIB+E ³ BM	$71.40{\scriptstyle \pm 0.50}$	$81.20{\scriptstyle \pm 0.40}$	$75.60{\scriptstyle \pm 0.60}$	$84.30{\scriptstyle \pm 0.40}$			
LaplacianShot	$74.86{\scriptstyle \pm 0.19}$	$84.13{\scriptstyle \pm 0.14}$	$80.18{\scriptstyle \pm 0.21}$	$87.56{\scriptstyle \pm 0.15}$			
$A^{2}LP$	76.48±0.75	$83.57{\scriptstyle\pm0.45}$	82.82±0.73	$88.80{\scriptstyle \pm 0.46}$			
$\mathbf{A^{2}LP}{+}PLC$	$75.94{\scriptstyle \pm 0.72}$	$\textbf{85.67}{\scriptstyle \pm 0.42}$	$\textbf{83.68}{\scriptstyle \pm 0.72}$	$90.53{\scriptstyle \pm 0.43}$			

• Outperforming several state of the art methods.

Conclusion

◆□▶ ◆□▶ ◆ □ ▶ □ • • ○ < ○ 13/14

- We propose a novel variant of label propagation.
- Our algorithm iteratively adapts the labeled anchors.
- Significantly outperforms the traditional algorithm.
- Outperforms several state of the art methods.
- Future directions:
 - Different loss functions.
 - Beyond few-shot learning.

Imperial College IARAI London

Thank you!

https://github.com/MichalisLazarou
 https://avrithis.net
http://www.commsp.ee.ic.ac.uk/~tania/

(ロト (同) (三) (○) (/ 14/14)