

Covariance-aware Feature Alignment with Pre-computed Source Statistics for Test-time Adaptation

Session: TA.PA.2

<u>Kazuki Adachi</u>, Shin'ya Yamaguchi, and Atsutoshi Kumagai NTT Computer and Data Science Laboratories

Copyright 2023 NTT CORPORATION

- Deep neural networks degrade accuracy when the training and test distributions are different (a.k.a distribution shift)
- ٠

Cat

Training data

Training

(Source domain)

Background

- Distribution shift often occurs in the real world
 - e.g., weather, brightness, image quality, ... >
- Adjusting data pre-processing by hand highly costs
- <u>Retaining accuracy in the target domain is necessary</u>

Test data

Existing Approaches

- Fine-tuning
 - Re-trains models on data collected from the target domain after training on the source domain
 - Needs to make a new labeled dataset in the target domain
- Domain adaptation
 - Uses the datasets of both domains during training to learn invariant features
 - Does not require labels for the target dataset
 - Requires the both datasets simultaneously

Copyright 2023 NTT CORPORATION

- Fine-tuning and domain adaptation are not suitable in some situations:
 - Annotation for target data highly costs
 - Obtaining target data in advance during the source-training phase can be difficult
 - Bringing the source data to the target domain can be prohibited
 - > Security, privacy, or storage limitations

• Model adaptation with only target data is needed

Test-time Adaptation (TTA)

- Given: a source-pretrained model
- Goal: adapt the model with unlabeled target data

- Insight of domain adaptation:
 - Closing the source and target feature distributions is important to learn invariant features (feature alignment)

- Existing TTA methods mainly focus on refining model outputs
- Can we improve TTA by feature alignment?

Proposed Method

- Covariance-aware Feature Alignment (CAFe)
 - Pre-computes the statistics of source features in the source domain
 - Aligns the statistics of target features during TTA

Experiment

• Compare accuracy under distribution shifts

- Source data: ImageNet
- Target data: ImageNet-C
 - Corrupted ImageNet images in various ways
 - 15 corruptions \times 5 levels of severity
- Model: ResNet-50

- CAFe improved the accuracy especially when multiple types and severity levels of corruptions are mixed
- CAFe can adapt to more complex distribution shifts

		ImageNet-C	
Method	Separated	Severity-mixed	All-mixed
Source	39.14	$39.43_{\pm 0.00}$	$39.16_{\pm 0.01}$
AdaBN [4]	$50.28_{\pm 0.02}$	48.00 ± 0.17	$39.85_{\pm 0.18}$
T3A [9]	$39.05_{\pm 0.01}$	39.28 ± 0.03	37.46 ± 0.09
Tent [7]	58.97 ± 0.03	57.15 ± 0.05	44.44 ± 0.22
BACS [8]	$57.01_{\pm 0.19}$	$55.05_{\pm 0.29}$	$33.07_{\pm 1.38}$
FR [21]	$53.54_{\pm 0.01}$	$50.38_{\pm 0.20}$	40.52 ± 0.16
Infomax [23]	$60.20_{\pm 0.05}$	57.52 ± 0.23	46.52 ± 0.08
CAFe (w/o infomax)	$57.35_{\pm 0.02}$	$54.43_{\pm 0.14}$	$43.83_{\pm 0.16}$
CAFe (dimwise)	$60.29_{\pm 0.08}$	$58.60_{\pm 0.36}$	$47.19_{\pm 0.24}$
CAFe	$\overline{60.77_{\pm0.09}}$	$\overline{59.04_{\pm 0.22}}$	$\overline{48.55_{\pm 0.26}}$

Thank you for watching!

Poster: TA.PA.2

Copyright 2023 NTT CORPORATION