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Background (©) NTT

« Deep neural networks degrade accuracy when the training and
test distributions are different (a.k.a distribution shift)
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— Distribution shift often occurs in the real world

» e.g., weather, brightness, image quality, -
— Adjusting data pre-processing by hand highly costs

— Retaining accuracy in the target domain is necessary
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Existing Approaches

« Fine-tuning
— Re-trains models on data collected

from the target domain
after training on the source domain

— Needs to make a new labeled dataset
in the target domain

« Domain adaptation

— Uses the datasets of both domains during training
to learn invariant features

— Does not require labels for the target dataset

— Requires the both datasets simultaneously
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Problem ©) NTT

« Fine-tuning and domain adaptation are not suitable
In some situations:

— Annotation for target data highly costs

— Obtaining target data in advance during the source-training phase can
be difficult

— Bringing the source data to the target domain can be prohibited

» Security, privacy, or storage limitations

« Model adaptation with only target data is needed
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Test-time Adaptation (TTA)

« Given: a source-pretrained model

« Goal: adapt the model with unlabeled target data
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Key Idea ©) NTT

« Insight of domain adaptation:

— Closing the source and target feature distributions is important
to learn invariant features (feature alignment)

Source feature

Target feature

« Existing TTA methods mainly focus on refining model outputs

« Can we improve TTA by feature alignment?
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Proposed Method (©) NTT

« Covariance-aware Feature Alignment (CAFe)
— Pre-computes the statistics of source features in the source domain

— Aligns the statistics of target features during TTA
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Experiment ©) NTT

Compare accuracy under distribution shifts

Defocus Blur Frosted Glass Blur

Source data: ImageNet

Target data: ImageNet-C

— Corrupted ImageNet images
In various ways

— 15 corruptions x 5 levels of severity

Model: ResNet-50
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Result

O) ntT

« CAFe improved the accuracy especially when multiple

types and severity levels of corruptions are mixed

« CAFe can adapt to more complex distribution shifts
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ImageNet-C

Method Separated Severity-mixed  All-mixed
Source 39.14 39.43+0.00 39.16+0.01
AdaBN [4] 50.28+0.02 48.00+0.17 39.8540.18
T3A [9] 39.05+0.01 39.2810.03 37.461+0.09
Tent [7] 58.97+0.03 57.15+0.05 44.4410.22
BACS [8] 57.01+0.19 55.054+0.29 33.07+1.38
FR [21] 53.5440.01 50.38+0.20 40.52+0.16
Infomax [23] 60.20+0.05 57.5210.23 46.52+0.08
CAFe (w/o infomax) | 57.35+0.02 54.431+0.14 43.83+10.16
CAFe (dimwise) 60.29+0.08 58.60+0.36 47.1940.24
CAFe 60.77+0.00 59.04410.22 48.5510.26




Thank you for watching!

Poster: TA.PA.2
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