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ABSTRACT

The attribute of signal sparsity is widely used to sparse representation. The existing nuclear
norm minimization and weighted nuclear norm minimization may achieve a suboptimal in
real application with the inaccurate approximation of a rank function. This paper presents
a novel denoising method that preserves fine structures in the image by imposing L1 norm
constraints on the wavelet transform coefficients and low rank on high-frequency com-
ponents of group similar patches. An efficient proximal operator of Truncated Weighted
Nuclear Norm (TWNN) is proposed to accurately recover the underlying high-frequency
components of low-rank patches. By combining a wavelet domain sparse preservation
prior with TWNN, the proposed method significantly improves the reconstruction accu-
racy, leading to a higher PSNR/SSIM and visual quality than the state of the art approaches.

Introduction

Image denoising is an important pre-processing step that has a broad range of applications
in computer vision and graphics. Formally, image denoising can be defined as the task of
recovering the original image « from its underlying noisy observation y = x + v, where v
represents additive noise typically assumed to be zero mean Gaussian with standard devia-
tion 0. Most denoising methods exploit the fact that small patches of pixels in an image are
similar to other, possibly distant patches of the same image. Approaches using this princi-
ple, known as non-local self-similarity(NSS), have obtained state of the art results on many
denoising tasks. Moreover, it has been shown that matrices of non-local similar patches
have a low rank, and that exploiting this concept can improve the reconstruction of images.
In this work, we propose to apply low rank on the high-frequency components of the ma-
trices of non-local similar patches. Nuclear norm minimization (NNM) is the well known
convex surrogate function, which aims at finding the lowest rank approximation X of an
observed matrix Y:

1
argmnin [V = X[} + XX 1)
X

where [ X||« = }>_;0;(X) is the nuclear (or trace) norm of X, corresponding to the sum
of its singular values ¢,;(X). The nuclear norm of a matrix is known as the widely used
convex approximation of its rank. The truncated nuclear norm regularization (ITNNR)
method well approximates the rank of matrix with truncated nuclear norm, but ignores
that each singular value should be shrunk adaptively. In this paper, we proposed a novel
Truncated Weighted Nuclear Norm Minimization. In this paper, we propose a novel and
high-performance denoising method by imposing /1 norm sparsity constraints on wavelet
domain and effective truncated weighted nuclear norm (TWNN) minimization stratege on
the high-frequency components of matrices stacked by non-local similar patches. The main
contributions of this work are as follows:

1 A novel method is proposed, which combines denoising prior based on the wavelet do-
main /; norm sparse prior with non-local truncated weighted nuclear norm (TWNN) min-
imization on high—frequncy components. Allowing the method to preserve image details
corresponding to fine structures and textures.

2 A new proximal operator truncated weighted nuclear norm (TWNN) minimization is
proposed to recover the non-local low rank patches in an flexiable and accurate way.

3 The proposed method outperforms state-of-the-art methods in both PSNR SSIM and vi-
sual performance on texture images, standard widely used images and real noise images.

Methods

The standard low rank model for non-local patch-based denoising is as follows. Let y € R
be the observed noisy image, and € R" the denoised image that needs to be recovered
from y. The main assumption of the model is that the patch of pixels surrounding a pixel in
x is similar to other patches in this image, and that the groups of similar patches have a low
rank. Let p; € R be the patch of M denoised pixels centered on a pixel 4, and R; a pixel
selection matrix such that p; = R;z. Moreover, let P € RM*Y be the matrix of patches,
ie. P = [pl ...py]- For each pixel ¢, we define as Q); € RMXK the matrix containing the
K patches most similar to p;. (); can be defined as @); = Qg; + f1 ® Q¢;, where (g, is the
high-frequncy component and (), is the constant component, f;, is low pass filter of size
3 X 3, ® is convolution operator.

The denoising task can then be formulated as the following optimization problem:

xr
st.p, = Rix, Qi =Qpmi + L ®Qc;, t=1...N. (2)

The first term of this formulation minimizes the difference between the denoised image x
and the observed image y. The second term imposes the group of similar patches (); with
its high-frequncy component ();7; to be much low rank, where the rank is approximated
using the nuclear norm. This term can be seen as a prior on . Parameter A controls the
trade-off between these two terms.

Let Y € RVXM be an observed data matrix and denote as w € RY, T = min{M, N}, a vector
of weights such that 0 = wji—1 < wj < ... < wr The truncated weighted nuclear norm
proximal problem consists in finding an approximation X of Y, minimizing the following
cost function:
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where || X ||« = Z{_l 0;(X)+ ZJT w;o (X)) is the truncated weighted nuclear norm, which
means doing soft-thresholding from the j-th biggest singular value. Based on the experi-
ments, j = 2 for image denoising. Denote as UXV | the SVD decomposition of Y, and let
(#) . = max{x,0}. The optimal solution to this problem is given by the truncated weighted
singular value thresholding operator:

SwoalY) = U(Z )\ Diag(w))+VT. (4)
We use the truncated weighted nuclear norm to impose low rank constraints on the high-
frequncy components of groups of similar patches () r7;. We define the thresholding weights
asw; = oV K/ (0j +¢€), where o > 0 is a user supplied constant and ¢ = 10716,

To well preserve the image global structure, we apply /1 norm sparse on LH and HL sub-
bands of 2D Haar DWT in the first level image decomposition. Denote as D;x the image
haar DWT operator, where d can be LH or HL subbands. To modeling the Wavelet coet-
ficients more sparsity, the mean coefficients (u,;) of D x are abstracted. Then the wavelet
domain /1 norm sparse prior can be formulated as:
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Considering the proposed truncated weighted nuclear norm on high-frequncy components
of matrices with non-local similar patches and wavelet domain /; norm sparse prior, the
denoising model becomes:
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The Complete optimi7.a’ri(m process is stimmarized in Aleorithm 1.

Algorithm 1: TWNN and sparsity denoising

Input: The noisy image y, (0) = y. §(0) = y:
Input: Parameters A\, u, 77, « and Tihax:
Output: The denoised image x;

Set © = Titer = Y,

fort =1,...,1nax do
Iterative Regularization: y(*) = na!=Y + §(y — y(t=1) ;
Update noise variance o2,

Update patches: p, = R;x,i=1,..., N;
Update similar patches groups Q;, 2 = 1,..., N:

Update low rank patches Q);, 2 = 1,..., N, using Eq. (12);

Update histogram mapping functions Fy; using Eq. (8);
Reconstruct image @ from low rank patches using Egs. (14) and (15):

return x ;

Results

Table I: PSNR (dB) and SSIM obtained by the tested methods on the 10 high definition images for various noise levels.
Best results for each image are highlighted in bold font.
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Table II: Parameter setting used for our method

Noise level (o) (,20) (20,40) (40, 60) (60, )
A 0.54 0.56 0.58 0.59
Max. iter. (Tmax) 8 12 15 20
Patch number (K) 70 90 120 140
Patch size (M) 6 X 6 7T x 7 8 X 8 9 x 9
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Fig. 1: Mean PSNR obtained by different methods on 11
benchmark images for noise level o = 30, 40, 50, 75.

Summary

A new method was proposed for the problem of image denoising. This method integrates
the prior based on the wavelet domain global sparsity into an exploited non-local low rank
denoising model, allowing it to preserve image details corresponding to fine structures
and textures. A new proximal operator of truncated weighted nuclear norm (TWNN) is
proposed to recover the high-frequency components of matrices with non-local low-rank
patches. This adaptive and flexible operator, which applies less shrinkage to the larger sin-
gular values and does thresholding from the ith larger singular value, leads to a higher
reconstruction accuracy. An efficient iterative algorithm was also proposed to compute
the denoised image, under low rank and wavelet domain sparsity constraints. Experi-
ments showed our method to provide better denoising performance than state-of-the-art
approaches.
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