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BACKGROUND
• Under unfavorable low brightness environment, camera will ineluctably capture low-light color images, which greatly limits the visibility of 

human and machine, while the performance of Color-Guided Depth map Super-Resolution (CGD-SR) task is also affected by low-light color 

images. 

• Most existing methods only consider low-light image enhancement problem or depth map super-resolution problem, which  leads to two-stage 

processing. Obviously, these two problems can simultaneously solved to benefit each other.

• Besides, most of the CGD-SR methods only design deep black-box networks, which lack sufficient network interpretability. 

Fig. 1 The diagrams of the degraded low-quality color-depth images enhancement
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Fig. 2 The diagram of the proposed method

• Inspired by multi-task learning, degraded low-quality color-depth images enhancement tasks are transformed as a joint color-depth 

optimization model by using maximum a posteriori estimation. 

• This model is optimized alternatively in an iterative way to get the solutions of Color-Guided Depth map Super-Resolution (CGD-SR) 

task and Low-Brightness Color Image Enhancement (LBC-IE) task. The whole iterative optimization procedure is expanded as a joint 

model-driven unfolding network. 
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Fig. 3 The network structure of depth-map optimization module
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Fig. 4 The network structure of reflection-map optimization 
module and brightness-map optimization module
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 Table 1. The comparison of quantitative low brightness enhancement results in terms of PSNR and SSIM on LLRGBD synthetic dataset. 
(The higher the PSNR and SSIM value, the better the performance)

Method PSNR SSIM

DLN 19.163 0.8069

KinD 16.352 0.7274

Retinex 16.257 0.7040

SCI 23.121 0.8098

URetinex 18.667 0.7712

Zero[ 23.487 0.8499

Our-4× 25.073 0.8665

Our-8× 25.282 0.8705

Our-16× 25.148 0.8649
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 Table 2. The comparison of quantitative depth SR results in terms of RMSE and MAD on LLRGBD synthetic dataset. 
(The lower the RMSE and MAD value, the better the performance)

Method 4× 8× 16×

DLN+JGF 1.7715/0.4647 2.4843/0.6840 3.7760/1.1572

Zero+JGF 1.7964/0.4816 2.5268/0.7086 3.8661/1.1838

KinD+JGF 1.8020/0.4815 2.5393/0.7069 3.8458/1.1909

Retinex+JGF 1.7972/0.4761 2.5409/0.7006 3.8349/1.1847

SCI+JGF 1.8047/0.4854 2.5378/0.7137 3.9109/1.1923

Our 1.4960/0.3237 2.3441/0.5493 3.3144/1.0502
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 Table 2: The comparison of quantitative depth SR results (in terms of RMSE and MAD) on LLRGBD synthetic dataset. 
(The lower the RMSE and MAD value, the better the performance)

Method 4× 8× 16×

DLN+PMBANet 1.7994/0.4079 2.5035/0.5999 3.7657/1.0952

Zero+PMBANet 1.7994/0.4079 2.5040/0.6005 3.7551/1.0895

KinD+PMBANe 1.7994/0.4079 2.5055/0.6013 3.7797/1.1016

Retinex+PMBANet 1.7994/0.4079 2.5096/0.6014 3.7560/1.0891

SCI+PMBANet 1.7994/0.4079 2.5026/0.6001 3.7560/1.0891

URetinex+PMBANet 1.7994/0.4079 2.5062/0.6006 3.7648/1.0987

Our 1.4960/0.3237 2.3441/0.5493 3.3144/1.0502
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