

Functional Knowledge Transfer with Self-supervised Representation Learning

Prakash Chandra Chhipa^{1,*}, Muskaan Chopra², Gopal Mengi², Varun Gupta², Richa Upadhyay¹, Meenakshi Subhash Chippa¹, Kanjar De¹, Rajkumar Saini¹, Seiichi Uchida³ and Marcus Liwicki¹

¹Machine Learning Group, EISLAB, Lulea[°] Tekniska Universitet, Lulea[°], Sweden
²Chandigarh College of Engineering and Technology, Punjab University, Chandigarh, India
³Human Interface Laboratory, Kyushu University, Fukuoka, Japan

*corresponding author-prakash.chandra.chhipa@ltu.se

Problem Statement

✓ No direct human supervision to learn representations

<u>But</u>

- Need massive amount of training data (ImageNet 1.2 millions images)
- Large batch size which requires heavy parallel computing
- SSL remains inaccessible to smallscale datasets with lack of computing resources

Self-supervised Representation Learning^{1,2,3} Approach

Figure Inspired : Chhipa, Prakash Chandra. "Self-supervised Representation Learning for Visual Domains Beyond Natural Scenes." Licentiate Thesis, Luleå tekniska universitet (2023).

¹Contrastive - Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020

²Distillation- Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." Advances in neural information processing systems 33 (2020).

³Information Maximization- Zbontar, Jure, et al. "Barlow twins: Self-supervised learning via redundancy reduction." International Conference on Machine Learning. PMLR, 2021.

Hypothesis

Shifting the representational knowledge transfer paradigm to functional knowledge transfer⁴ can enable the learning of efficient self-supervised representations for small-scale data.

Joint optimization in functional knowledge transfer is the key

representational knowledge transfer

⁴Functional Knowledge - R. Vilalta, C. Carrier, P. Brazdil, C. M. Soares et al., "Inductive transfer," 2017.

Method

Joint optimization of self-supervised representation learning ans supervised learning task

Investigation Protocol

- 1. Identify small-scale datasets and task Aptos, CIFAR, Intel Images
- 2. Chose self-supervised learning method Contrastive Learning
- 3. Experimentation on Representational and Functional knowledge transfer Details on experimental configuration and parameters in paper
- 4. Performance evaluation
 - ✓ quantitative analysis
 - ✓ qualitative analysis

Datasets – from diverse domains

CIFAR10¹ Dataset

10 classes and 60,000 examples

Classes - airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks

5 classes and 3660 examples

Classes - diabetic retinopathy severity level in eye fundus images

Intel Images³ Dataset

6 classes and 25000 examples

Classes – buildings, forest, glacier, mountain, sea, street

¹CIFAR10, https://www.cs.toronto.edu/~kriz/cifar.html ²Aptos, https://www.kaggle.com/c/aptos2019-blindness-detection ³Intel Images, https://www.kaggle.com/datasets/puneet6060/intel-image-classification

Dataset	Method	Accuracy	Precision	Recall
CIFAR10	Representational Transfer ^{\$}	92.20±0.11	92.18±0.10	92.21±0.10
	Functional Transfer	93.60±0.10	93.62±0.13	93.59±0.11
Intel Image	Representational Transfer	93.18±0.15	93.15±0.18	93.17±0.20
	Functional Transfer	93.70±0.13	93.33±0.11	93.31±0.11
Aptos 2019	Representational Transfer	83.10±0.10	83.05±0.09	83.05±0.12
	Functional Transfer	83.32±0.11	83.14±0.10	83.04±0.10

Results - Comparing SoTA

Qualitative Analysis 🛞

LULEÅ TEKNISKA UNIVERSITET

Conclusions

Contribution

Introduces functional knowledge transfer to overcome the inaccessibility of SSL due to small-scale and small batch by formulating and examining joint optimization hypothesis

Achievements

Achieved improved downstream task results across diverse datasets supported by qualitative analysis

Future Work

Further investigation on adapting other SSL approaches and evaluating representational knowledge transfer capability of jointly optimized models

Thank you prakash.chandra.chhipa@ltu.se

GitHub https://github.com/prakashchhipa

Scholar https://scholar.google.com/citations?hl=en&user=AFzbRoAAAJ&view_op=list_works&sortby=pubdate

LinkedIn

https://www.linkedin.com/in/prakash-chandra-chhipa/recent-activity/all/

LTU profile https://www.ltu.se/staff/p/prachh-1.201078?l=en

