A MULTICHANNEL LOCALIZATION METHOD FOR CAMOUFLAGED OBJECT DETECTION (COD)

by

Md. Rakibur Rahman Department of Electrical and Computer Engineering North South University, Dhaka, Bangladesh

IEEE ICIP 2023

Camouflaged Object Detection (COD)

- Why is it difficult to detect camouflaged objects?
 - Camouflaged objects blend into their surroundings, so objects and background appear astonishingly similar
 - They have variability in patterns and lighting conditions
 - They employ occlusion technique to create challenges or obstacles
 - They lack distinctive features for detection algorithms
 - Scarce training data available for deep learning models

Fig: Camouflaged objects from COD10K Dataset

- Search Identification Network SINet [1]: SiNet uses search and identification module to find the exact location of camouflaged objects and identify them.
- Texture-Aware Network- TANet [2]: TANet focuses on a texture-aware refinement module(TARM) to extract the texture information and amplifies the texture difference and predicts a detection map. It uses deep learning model.
- Boundary-Guided Network- BGNet [3]:
 BGNet uses boundary-guided network that forces the deep learning model to generate features that highlight object structure promoting COD of accurate boundary localization.

Motivation For The Work

- Challenges in COD with SOTA methods:
 - Memory intensive process:
 - Requires higher computation power and time, leading to high power consumption and CO₂ emission.

- Requires large data for mode of training:
 - For instance, SiNet uses Intel i9-9820X CPU @3.30GHz × 20 and TI-TAN RTX, with a training time around 70 minutes

- To reduce the enormous computational burden, we design a multichannel image analysis pipeline to localize camouflaged objects in an image
- Our specific contributions are made by
 - Algorithm design:

Developing an algorithm tuned to localize the camouflaged objects, capable of narrowing down the region of interest (ROI) in the image

Maximizing efficiency:

Comparatively, a fewer pixels are needed to be analyzed, resulting in a less memory and computation requirement

Models and Methods

DSC

Off-the-self Approach

- Initially, we screened 28 different filters and combinations to assess their roles in COD tasks:
 - 2D Fourier transform (FT)■ Laplacian
 - High pass (HP)
 - Low pass (LP)
 - Canny edge (CE)
 - Hough transformation
 - Local Shannon entropy (E)
 - Gaussian blur as de-nosier (D)
- Metrics used: Dice Similarity Coefficient (DSC), Structural Similarity Index Measure (SSIM)

Note: The amplitude of HP and LP is used

Sobel (S)
Water-shed

Thinning

Saliency

	FT→D→	0.69
ding	FT→D→ (Phase, HP) →E	0.70
	$S \rightarrow D \rightarrow LP \rightarrow E$	0.44
	$S \rightarrow D \rightarrow HP \rightarrow E$	0.63
	S→LP→E	0.41

(Phase, LP)

→F

Method

 $S \rightarrow HP \rightarrow E$

Table: Combination of the filters and relevant DSC and SSIM 7 scores.

SSIM

0.84

0.90

0.89

- FT→D→(Phase, Amplitude of HP)→E combination showed prominent results.
- So, we consider this for subsequent analysis found FT→D→(Phase, Amplitude of CE) →E shows better result

Replacing HP with the Amplitude of CE further improves the performance

Method	DSC	SSIM
FT→D→ (Phase, HP) →E	0.67	0.90
$FT \rightarrow D \rightarrow$ (Phase, LP) $\rightarrow E$	0.64	0.89
FT→D→ (Phase, CE) →E	0.76	0.92

Table: Combination of the selected filters and relevant DSC and SSIM scores.

Block Diagram of the Proposed Multi Channel Localization Method

Fig: Block diagram of the proposed multi channel localization method

- Applied global average pooling layer in ResNet50 model to localize object(R1)
- 2D Fourier transform → (pixel-wise addition of phase Spectrum and High Pass) → Local Entropy, to localize camouflaged object
- Merge R1 + R2 to identify the ROI

A higher DSC score occurs for smaller window sizes (such as, 3 × 3, 5 × 5), whereas the mean entropy is the smallest for the window size 3 × 3.

Histogram Analysis of Local Entropy

- γ 90% of the maximum pixel intensity level of grayscale local Shannon entropy of their moditual image I_{(a, b)Mod}
- β 40% of the max pixel intensity level of grayscale local Shannon entropy of their moditual image I_{(a, b)Mod}
- Do not count pixels less than value of β
- Now, select all the pixels of intensity from γ to 255

Channel 2: ROI Selection

Fig: The histogram analysis of the local entropy of the $I_{(a, b)Mod}$ is used for the ROI selection process.

- Process for selecting the value of $\gamma\%$
 - To find the best γ% cut we plot DSC vs γ% cut.
 - The plot shows the score starts to drop after 95% so we took 90%

Fig: DSC vs γ % cut

Point-wise	Formulation	DSE(%): HP	DSC(%): Canny Edge
Addition	R1+R2	83.0	87.0
Product	R1⊙R2	40.0	45.0
Minimum	min(R1,R2)	40.0	45.0
Maximum	max(R1,R2)	83.0	87.0

Table: Alternative merging techniques of R1 and R2 channel

 Point-wise addition and maximum (R1, R2) appear as better performing techniques

ROI Selection Method

Implemented Steps for ROI selection

COD10K (500 images)			
Method DSC% (↑) MAE(↓) SSIM%(
R1	0.57	22.65	0.89
R2	0.70	16.53	0.90
R1+R2(ROI)	0.83	11.88	0.93

NC4K (106 images)			
Method	DSC% (†)	MAE(↓)	SSIM%(≜)
R1	0.37	31.26	0.85
R2	0.67	20.18	0.88
R1+R2 (ROI)	0.71	19.93	0.89

- Similar results obtained for CHAMELEON (75 images) and CAMO (50 images)
- R2 increases the overall performance of R1 after merging

Results

- R1 fails to detect a camouflaged object, and the proposed R2 by an improvement in performance by R2.
- The identified ROI includes the object of interest, thereby reducing the search area.

[4]

Power consumption:	

$$pt = \frac{1.58t(p_c + p_r + gp_g)}{1000}$$
[4]

Carbon emission.

$$CO_2 e = 0.954 \ pt$$

The proposed R2 has a low carbon footprint.

Method	Total Power(KWh)	CO ₂ e
R1	0.36	0.34
R2	0.03	0.03
R1+R2	0.39	0.37
SINet	1869	1783

Table: Power consumption and CO₂ emission comparison

- The proposed COD localization approach
 - reduces the search area in COD images by about 80%
 - can localize both COD and non-COD images
 - is computationally efficient and does not require any memory-intensive devices such as GPU, TPU, etc.
 - results in less CO₂ emission

Reference

[1] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, and Ling Shao, "Camouflaged object detection," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2777–2787.

[2] J. Ren et al., "Deep Texture-Aware Features for Camouflaged Object Detection," in IEEE Transactions on Circuits and Systems for Video Technology, doi: 10.1109/TCSVT.2021.3126591.

[3] Yijie Zhong, Bo Li, Lv Tang, Senyun Kuang, Shuang Wu, Shouhong Ding; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 4504-4513

[4] Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. *arXiv preprint arXiv:1906.02243*.

[5] Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.

Thank You

Questions?

mohammad.rahman2@northsouth.edu