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ABSTRACT

This paper proposes a multichannel method for discriminative region
localization in Camouflaged Object Detection (COD) tasks. In one
channel, processing the phase and amplitude of 2-D Fourier spectra
generate a modified form of the original image, used later for a pixel-
wise optimal local entropy analysis. The other channel implements
a class activation map (CAM) and Global Average Pooling (GAP)
for object localization. We combine the channels linearly to form
the final localized version of the COD images. Experimentation in
multiple COD datasets demonstrates that the proposed method suc-
cessfully localizes regions containing more than 80% of the cam-
ouflaged objects. Our proposed method does not require memory-
intensive devices or prior training on particular image features, mak-
ing it easily integrable into a resource-constrained environment. The
proposed approach is also applicable to non-COD images.

Index Terms— Camouflaged Object Detection, Local Entropy,
Class Activation Map

1. INTRODUCTION

Object detection has revolutionized various aspects of our daily lives,
ranging from safety in the transportation system [1], diagnosing dis-
eases (such as lung infection and polyp segmentation) [2], agricul-
ture, and arts to security and surveillance of potential threats [3]. The
state-of-the-art (SOTA) deep learning models [4, 5] that work well
for generic and salient object detection tasks [6] are impertinent if
the objects’ saliency is compromised common in camouflaged object
detection (COD) tasks. Therefore, such SOTA models experience
performance deterioration for Camouflaged Object Detection (COD)
tasks where objects appear intrinsically similar to the image back-
ground and surroundings. Besides, image features such as bright-
ness, tone, textures, etc., are disrupted in COD images [7], making
COD tasks challenging for the existing object detection models.

The success of deep neural network (DNN) models in object
detection is due to their ability to mimic human visual perception.
Humans are effortlessly good at object recognition, so mimicking
human visual cortex operations artificially to form the convolutional
neural network (CNN) and pursue deeper image features (using
DNN models) has worked well for salient and generic object detec-
tion tasks. On the contrary, camouflaged objects inherently disrupt
features to deceive their appearance and detection. For instance,
many animals in nature resort to disruptive coloration, dazzling
coloration, disruptive contrast, and edge enhancement to avoid de-
tection by the predators [8, 9]. So, SOTA object detection models,
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salient [10] or generic [11], built upon how human visual percep-
tion works, may equally be vulnerable and suffer from inadequate
accuracy in COD tasks [12]. For instance, like non-COD models,
the COD models developed are also mainly CNN-based, mimicking
deception-prone human visual perception. So, feature extraction
by the CNN-based models may exclude the necessary details for
COD images’ discerning features. Also, camouflaging in nature
is adaptive and changes over time in coloration and luminescence
[7], requiring continuous adjustment and improvement of the COD
mechanisms. An intriguing question thus arises– what an optimal
strategy would be to compensate for the performance degradation of
COD models.

An ROI-guided localization is predominant for performance im-
provement in salient and generic object detection tasks. However,
not much has been explored on its role in COD tasks. Earlier works
attempted decoder-based object localization and subsequent ranking
of objects in COD images [13]. Another work [14] relied primar-
ily on region proposal network (RPN) [11], imposing an additional
computational burden through feature training and neural network
implementation. Instead, the proposed method relies primarily on
exploring local-scale information of the low-level features and en-
hancing the COD object localization without further burdening the
computationally intensive COD models. Precisely, we design a lo-
calization pipeline that, in concert with the CAM-based GAP [15],
achieves camouflaged object localization up to around 80% of the
object area. In summary, the multichannel pipeline successfully
localizes camouflaged objects of different difficulty levels, and the
method is equally effective in non-COD localization. A set of major
contributions made in this paper is:

• developed a computationally less-expensive localization
pipeline (R2) for COD tasks with no training of features nor a
dependency on memory-intensive devices such as GPU/TPU.

• proposed a multichannel method for ROI detection combin-
ing R2 in one channel and the CAM + GAP approach in the
other channel.

• performed extensive experiments for alternative COD datasets
to demonstrate the efficacy of the proposed method.

2. METHODS

An image’s tonal and textural information capture its spatial varia-
tion and can identify discriminative details of an image by measur-
ing the smoothness, fineness, irregularity, etc. [16]. For instance, in
radar applications, the captured images’ fine and coarse texture ac-
curately correlates to whether the images of rocks in remote regions
are fine-grain or coarse-grain [17]. Besides other textural traits, the
Shannon entropy [18] also predicts image background complexity.
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Fig. 1. a) Block diagram of the proposed multichannel localization method. b) The histogram analysis of the local entropy of the I(a, b)Mod

is used for the ROI selection process. c) Choosing γ through a comparison object vs. surrounding pixel ratio and DSC score. As the DSC
score falls after γ = 0.95, the optimal γ for the chosen 100 COD10K images is fixed at γ = 0.9.

In COD images, disruptive coloration, for instance, high contrast
colors in object borders, works as concealment of the object [8],
contributing to disorder in a neighborhood of image pixels. We re-
sort to local entropy measurement as it quantifies fine-grained pixel
intensity variation in a neighborhood of image pixels and provides
useful textural information on the camouflaged object. Also, the
phase of Fourier spectra extracts vital details on the texture in radar
imaging [16], and the phase discrepancy at the pixel level possesses
additional information as exploited earlier in object motion detec-
tion [19]. In short, the proposed method harnesses the ability of
local entropy and Fourier phase and amplitude spectra for COD ob-
ject localization. All the experiments are done on a machine with
configuration as CPU - intel(R) Core (™) i5-7200U, Core - 4, Max
TDP - 15W.

2.1. Off-the-shelf Approach

We revisited several image segmentation techniques, alone or in
combination (see Table 3), to identify an optimal stack of Off-the-
shelf segmentation techniques applicable for COD tasks [20]. The
screen used the Dice Similarity Coefficient (DSC) and Structural
Similarity Index Measure (SSIM) of a few COD images to differ-
entiate between the competing candidates or the stack of multiple
methods, as in Table 3. As found, the stack Fourier Transform →
Denoiser → (Phase spectra, High-pass of amplitude spectra) →
Local Entropy pipeline is superior to others on the COD tasks. As
observed, the Fourier phase of the original image improves both
DSC and SSIM scores (rows 3 and 5), reiterating the intriguing role
of phase alone in image retrievability. The inclusion of High-pass
(HP) filter for the amplitude spectra preserves (Canny Edge: CE
improves further) the object’s edge, which is often high-contrasted
as an effective camouflaging strategy [7]. Analytically, the proposed
R2 pipeline proceeds as outlined in the subsequent sections.

2.2. Processing Phase and Amplitude Spectra

Consider I(a, b) is an image with width of M and N pixels, where
a = 0, 1, . . .M − 1 and b = 0, 1, . . . N − 1, respectively. The 2D
discrete Fourier transform (DFT) of the image I(a, b), denoted as

F (u, v), is:

F (u, v) =

M−1∑
a=0

N−1∑
b=0

I(a, b)e−j2πua/Me−j2πvb/N

= |F (u, v)|e−jϕ(u,v) , in polar form (1)

where |F (u, v)| and ϕ(u, v) are the amplitude spectra and phase
spectra, respectively. The object localization approach, as in Chan-
nel 2, uses the 2-D DFT (Eq. 1) and produces the modified version
I(a, b)Mod of the original grayscale image I(a, b). Precisely, we ob-
tain I(a, b)Mod by performing an Inverse Discrete Fourier Transform
(IDFT) of the point-wise product of the |F (u, v)|High and ϕ(u, v)
both:

I(a, b)Mod = F−1(|F (u, v)|High ⊙ ej(arctan(ϕ(u,v)))) (2)

where |F (u, v)|High represents the High-pass refinement of the
Fourier amplitude spectra I(a, b) evaluated using Eq. 1.

2.3. Local Entropy Analysis of I(a, b)Mod

The local entropy calculation at any pixel (a, b) of the modified
grayscale image I(a, b)Mod uses the Shannon entropy [21]. Suppose,
number of pixels in window W of gray scale intensity k is nk, so, the
probability pk becomes pk = nk/N

2, with k = 0, 1, . . . 255. The
local entropy H(Ia,b) formulation of an image pixel I(a, b) over a
window W of dimension N ×N is

H(Ia,b) =

N−1∑
k=0

pklog2
1

pk
=

N−1∑
k=0

nk/N
2log2(N

2/nk) (3)

where pk is the probability of kth gray scale intensity in the neigh-
borhood window W . The window W slides over a stride of a single
pixel size to produce a fine-grained local entropy map of the entire
IMod. Later, a histogram analysis over 0 to 255 bins produces the
entropy distribution and identifies the decision boundary for the re-
gion of interest (ROI) selection in channel 2 (shown in Figure 1b).
A low value of H(Ia,b) in local entropy analysis represents less tex-
tural variability in a neighborhood, which suggests COD objects’
presence in the surroundings to be less likely.



Table 1. Point-wise linear and nonlinear merge of the multichannel
outputs for 100 COD10K images.

Point-wise Formulation DSC(%): HP DSC(%): Canny Edge

Addition R1 +R2 83.0 87.0
Product R1⊙R2 40.0 45.0
Minimum min(R1, R2) 40.0 45.0
Maximum max(R1, R2) 83.0 87.0

Local entropy calculation in a given neighborhood depends on
the chosen window size (W) around the neighborhood [22]. So, it is
imperative to identify an optimal window size that maximizes mean
local entropy and COD area localization. To resolve the optimality
choice, we screened window size variations with a range between 3
to 27, as demonstrated in Fig. 2.

2.4. Region of Interest (ROI) Selection

The ROI selection process uses the normalized histogram of the lo-
cal entropy analysis of I(a, b)Mod at the neighborhood of window
W . A perpendicular line on the x-axis drawn at γHMax intersects
at α, corresponding to the starting point of the local entropy of the
ROI region. The ROI retrieval steps uses the pixel range from α
to 255, as schematically shown in Fig. 3b. For a multimodal local
entropy distribution, as for the green, blue, and black peaks at the
left, the α calculation considers multimodality if the second peak
is larger than a threshold β. For a multimodal distribution, among
the competing local-entropy peak, for instance, HMax1 and HMax2 ,
the local-entropy peaks producing a greater distance max(d1, d2)
from the zero-intensity pixel selects the position of HMax. Subse-
quently, a perpendicular line drawn on the x-axis for γHmax decides
α for the ROI selection. The ROI process is schematically shown in
Fig. 1b. Here, β and γ are optimizable and are fixed at 0.4 and 0.9,
respectively. Algorithm 1 summarizes the underlying steps 1.

Fig. 2. a) Mean entropy vs. window size for 20 images from
COD10K dataset. b) Window size vs. normalized SSIM, DSC, and
MAE scores.

2.5. Combining the Multichannel Outputs

This study applies both linear and non-linear merging of the chan-
nel outputs, considering that optimal merging often appears highly
context-dependent in other areas [23]. For instance, a generic merger
G(R1, R2), as in Fig. 1, merges the two localized image versions
R1 and R2 obtained from the alternative localization channels. The

1https://github.com/MohammadRakiburRahman/Multichannel-
Localization-.git

merging processor G(R1, R2) considers point-wise addition, multi-
plication, minimum, and maximum between pixels.

2.6. Datasets and Metrics

We consider COD10K [24] datasets that include CHAMELEON,
CAMO, and NC4K. The DSC score, used as a metric, assesses
the segmentation quality by measuring the overlap between the pre-
dicted (P) and ground (G) truth regions as DSC = 2(P ∩G)/P +G.
The DSC value ranges between 0 and 1, and values close to 1 rep-
resent better localization of the COD object. Another metric used
for comparison is the widely used mean absolute error (MAE) that
assesses the pixel-level differences between the predicted (P) and
ground-truth (G) map. The other metric used here is the SSIM,
ranging between 1 (very similar) and −1 (very dissimilar).

Algorithm 1 ROI Selection Steps for COD images
N images: {I224×224}, γ, Metrics = {DSC, SSIM, MAE }, Wopt

while (i ≤ N ) do
Calculate CAM + GAP for image Ii as in [15] for channel R1

Evaluate 2D-DFT of Ii using Eq. 1

Filter |F (u, v)| using either HP (or CE) and obtain |F (u, v)|High

Perform point-wise merging, IDFT (Eq. 2) to obtain I(a, b)Mod

Calculate local entropy H(Ia,b) of I(a, b)Mod using Eq. 3 for
Wopt evaluated using Metrics.

Do a histogram analysis of H(Ia,b) on grayscale and evaluate α
for γ = 0.9 for ROI range [α, 255] in R2 channel

Combine R1 and R2 as R1 + R2: Final ROI

Use Final ROI to produce the Image-mask and cut Ii

3. EXPERIMENTAL RESULTS

3.1. Optimal Window Size Improves Localization Accuracy

We hypothesize that localizing COD objects is facilitated by a statis-
tical measure of disorder in a local region. The high contrast in the
object-boundary neighborhood is typical for a camouflaging strat-
egy. Hence, a comparatively higher local entropy is relatable to the
existence of a COD object in a given locality. Interestingly, our anal-
ysis reveals that neighborhood size affects the local entropy calcula-
tion and the localization performance. As shown in Fig. 2b, a higher
DSC score occurs for smaller window sizes (say, 3 × 3, 5 × 5),
whereas the mean entropy is the smallest for the window size 3× 3
(see Fig. 2a). The proposed method performs a histogram analy-
sis of the local entropy of the modified grayscale image I(a, b)Mod

and uses local entropy-based thresholding to determine the ROI. A
higher local entropy threshold may discard the object area, whereas
a comparatively smaller local entropy-based threshold may include
a large unwanted area reducing the DSC score. Also, neither a too-
small W nor a too-large W is optimal for a local entropy analysis.
[25]. Thus, an optimal window size is set at 5 × 5 for the efficacy
study of the proposed method.

3.2. Localization Performance in COD Datasets

A localization scheme’s effectiveness depends on whether the local-
ized area accurately includes the COD object. The inadequacy of



Table 2. Performance evaluation of the multichannel localization for CHAMELEON, CAMO, NC4K, and COD10K standard COD datasets
using DSC, MAE, and SSIM scores.

Method
Performance Evaluation: Datasets

CHAMELEON (75) NC4K (106) CAMO (50) COD10K (500)
DSC% (↑) MAE (↓) SSIM (% ↑) DSC MAE SSIM DSC MAE SSIM DSC MAE SSIM

R1 0.43 23.53 0.88 0.37 31.26 0.85 0.50 28.87 0.86 0.57 22.65 0.89
R2 0.69 15.07 0.91 0.67 20.18 0.88 0.75 16.15 0.90 0.70 16.53 0.90
R1 + R2 0.73 14.69 0.92 0.71 19.93 0.89 0.81 15.57 0.92 0.83 11.88 0.93

Table 3. Off-the-shelf techniques for 10 COD10K images: Sobel
(S), FT: Fourier Transform, D: Denoiser, HP: Highpass, CE: Canny
Edge, E: Entropy. HP + S, S + Phase, and others do not produce
useful information (data not shown).

Method DSC SSIM

1. S → HP → E 0.59 0.81
2. S → LP → E 0.41 0.79
3. S → D → HP → E 0.63 0.89
4. S → D → LP → E 0.44 0.84
5. FT → D → (Phase, HP) → E 0.70 0.90
6. FT → D → (Phase, LP) → E 0.69 0.89

For 100 Images
5A. FT → D → (Phase, HP) → E 0.67 0.90
6A. FT → D → (Phase, LP) → E 0.64 0.89
7A. FT → D → (Phase, CE) → E 0.76 0.92

the salient and generic object detection localization approach is evi-
dent from the low DSC scores obtained over 500 COD10K images.
The CAM + GAP method (R1) captures about 57% of the ground
truth (GT) object area ( Table 2), leaving a significant part of the
COD object. In comparison, about 83% (see Table 2) of the GT area
of the COD object falls within the localized region obtained via the
multichannel (R1 + R2) approach, whereas the proposed R2 channel
alone localizes about 70% of COD object. The superior performance
of R2 over R1 in COD tasks remains preserved for other datasets
(CHAMELEON, NC4K, CAMO). The experimentation considers
four alternative datasets measuring three performance metrics MAE,
SSIM, and DSC. As in Table 2, the proposed localization channel
R2 achieves better DSC, MAE, and SSIM scores than the salient
object localization approach implemented in R1 Channel (Fig. 1a).
As observed, the multichannel system incorporating R1 and R2 for
COD object localization further enhances the DSC, MAE, and SSIM
scores. We also estimated energy and carbon emission calculation
using the formula available in [26] and compared the proposed R2
channel with other alternative approaches, such as the CAM + GAP
[15] (pre-trained) and SINet [12] (requires feature training). The R2
channel is independent of any feature training through a neural net-
work or other means, so it appears lightweight against pre-trained
R2 and SINet (see Table 4).

3.3. Ablation Study of the Proposed Method

The impact of the proposed R2 localization channel is evident from
an exhaustive comparison done in the ablation study (shown in Ta-
ble 2). The R2 channel considerably improves DSC, MAE, and
SSIM metrics if compared to the localization performance of R1
alone. Also, the image portion produced from the localization re-
flects its ability to include the COD object in challenging surround-
ings (see Fig. 3). Besides, ablation of the submodule performing the

Main

R1

R1 + R2

GT

R2

Fig. 3. Visual inspection of the performance of the localization chan-
nels for a few COD10K images.

Table 4. Estimated energy and carbon emission comparison: SINet
cost is calculated for 6K COD10K images. The R1, R2, and R1 +
R2 cost were initially calculated for 100 images and later linearly
extrapolated for 6K images.

Method Total Power(kWh) CO2e

R1 0.36 0.34
R2 0.03 0.03
R1 + R2 0.39 0.37
SINet [12] 1869 1783

local entropy of I(a, b)Mod reduces the DSC score, as evident from a
reduction of DSC 0.70 to 0.48 and the SSIM from 0.90 to 0.87 for a
randomly chosen ten images (data not shown).

4. CONCLUSION

The proposed method requires no training of features yet can lo-
calize camouflaged objects with comparable accuracy and reduces
the searchable area of the original COD images. It localizes about
80% of the total GT of the COD object. Many COD mechanisms
reported in earlier works are context-dependent, whereas the pro-
posed approach equally applies to non-COD images. Moreover,
the proposed is amenable further to enhance its performance, for
instance, by optimizing how disruptive coloration can be tackled
and how they interrelate with other camouflaging strategies (recur-
sive canny-edge, Gabor filter, etc.) [27]. Our immediate improve-
ment study demonstrates potential accuracy improvement by adding
a canny-edge instead of an edge-preserving high-pass filter (Fig.1a)
as reported in Table. 3. Intriguingly, the proposed work requires no
memory-intensive devices common for other mechanisms of COD
tasks, staying computationally inexpensive.



5. REFERENCES

[1] Shuo Yang, Huimin Lu, and Jianru Li, “Multifeature fusion-
based object detection for intelligent transportation systems,”
IEEE Transactions on Intelligent Transportation Systems,
2022.

[2] Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu
Fu, Jianbing Shen, and Ling Shao, “Pranet: Parallel reverse
attention network for polyp segmentation,” in Medical Im-
age Computing and Computer Assisted Intervention–MICCAI
2020: 23rd International Conference, Lima, Peru, October 4–
8, 2020, Proceedings, Part VI 23. Springer, 2020, pp. 263–273.

[3] Carlos R Del-Blanco, Fernando Jaureguizar, and Narciso
Garcı́a, “An efficient multiple object detection and tracking
framework for automatic counting and video surveillance ap-
plications,” IEEE Transactions on Consumer Electronics, vol.
58, no. 3, pp. 857–862, 2012.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al., “Imagenet large scale
visual recognition challenge,” International journal of com-
puter vision, vol. 115, pp. 211–252, 2015.

[6] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár, “Panoptic segmentation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9404–9413.

[7] D Osorio and MV Srinivasan, “Camouflage by edge enhance-
ment in animal coloration patterns and its implications for vi-
sual mechanisms,” Proceedings of the Royal Society of Lon-
don. Series B: Biological Sciences, vol. 244, no. 1310, pp. 81–
85, 1991.

[8] Innes C Cuthill, Martin Stevens, Jenna Sheppard, Tracey Mad-
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