

IEEE International Conference on Image Processing 2023

-Resolution for bmotive Radar letection

Asish Kumar Mishra‡

Kanishka Tyagi[†]

Deepak Mishra*

[‡]U. R. Rao Satellite Centre, ISRO, Bangalore, Karnataka, India [†]Aptiv Advance Research Center, Agoura Hills, California, USA ^{*} Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India

What's this paper about ? 🤔

Camera can lead to poor perception quality. Can you trust a self-driving car with no radar at night?

Can you count the number of people ?

Poor visibility in rain, fog, night, snow.

Image Credit : <u>https://www.reddit.com/r/motorcycles/comments/16m8gyr/yall_watch_out_for_selfdriving_cars_out_therei/</u>

Why you should read this paper ? 🤷

- \succ Radar-ML for autonomous driving systems.
 - ➢ Radar is all you need. Avoid problems in sensor fusion.
 - Easily deployable on low cost edge devices.
 - > A redundant separate independent radar-based object detection system.

The Giants Supporting Our Weight 💁

- Vision-based object detection
- Radar Super-Resolution
- Data generation through simulation

Two Contributions of the Paper

Three Dataset Generation a) Simulated Radar data for LR-HR pair. b) LR-HR pair of the CRUW dataset.

c) Segmented image patches from CRUW dataset (CRUW-Seg dataset)

Simulate and Generate: Data in a Digital Disco!

Polar radar images generated from the simulation. **Left** - Ground truth (GT)/HR radar image **Right** - LR radar image with added noise

Simulation Parameters	Values	
Range span	[0, 100] m	
Azimuth span	$[-5^{\circ}, 5^{\circ}]$	
Range Resolution	0.097 m	
Azimuth Resolution (LR,HR)	3.5°, 0.0097°	
Original Pixel Resolution	512×512	
Original Object Shape(HR)	20×20	
Smearing Function Used	Sinc Square	
Main Lobe Width of Smearing Function	3.5° (179 pixels)	
Total Number of Side lobes taken	4	
Number of objects (Sparse, Dense)	4,10	

Values for the simulation parameters

Our Secret Ingredient

Results: Where science meets surprise endings V

Two examples : Top - Camera image of the corresponding scene, Left bottom - Original CRUW Low-resolution Image. Right bottom - Final CRUW high-resolution images as predicted by the Super-resolution model.

Tables: Images are just pixels in comparison! 🥲

Network	Val Acc(%)	Parameter Count
Ours(3-class)	80.0	14.7k
Ours(4-class)	75.0	14.8k
RaDICaL(linear)* [18]	83.1	1.7 M
RaDICaL(log)* [18]	80.0	1.7M
MobileNetv2* [19]	85.1	2.23M
ResNet50* [20]	84.08	23.5M
VGG16* [21]	50.0	33.6M

*Implemented as a 2-class classifier [18]

Comparison of accuracy and number of parameters for the object classification stage

Novel framework using super-resolution for radar based object detection.
Object detection using a combination of simulated and real radar data.
Ideal candidate for low cost embedded applications.

Limitations.

X It's a two-stage framework rather than an end-to-end trainable network.

X It's not yet implemented on a hardware platform.

 \mathbf{X} Since the radar data is sparse, the dataset is highly imbalanced.

Code, dataset and supplementary material are on:

https://github.com/kanishkaisreal/DLSR_CRUW

