

¹ Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece ² School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK {apostolid, mpalaourg, bmezaris}@iti.gr, i.patras@qmul@ac.uk

Video thumbnail selection

Motivation

- Tremendous growth of videos over the Web
- How to easily **find what we are looking for**?
- Video sharing platforms & social networks represent videos using thumbnails
- Manual thumbnail selection is a **tedious &** time-consuming process

Proposed method: RL-DiVTS

Thumbnail Selector (used during training & inference)

- Aesthetic Estimator: scores frames based on their aesthetic quality (pretrained FCN on AVA)
- **Importance Estimator**: scores frames by modeling their temporal dependence (pretrained CNN on ImageNet & trainable bi-directional LSTM)
- Frame Picking Mechanism: picks frames sequentially by sampling from a categorical distribution & demoting the selection of frames similar to the already picked ones

Experimental results

Experimental setting

- Datasets: OVP (50 videos) & YouTube (50 video
- **Data spit:** 80% training & 20% testing
- **Ground-truth:** 3 most selected keyframes by h
- Evaluation approach: "top-3 matching" (overla between ground-truth & selected thumbnails)
- Similarity with ground-truth thumbnails: meas by SSIM (declare a "match" if SSIM > 0.7)

Software available at: <u>https://github.com/e-apostolidis/RL-DiVTS</u>

Selecting a Diverse Set of Aesthetically-Pleasing and Representative Video Thumbnails Using Reinforcement Learning

Evlampios Apostolidis^{1,2}, Georgios Balaouras¹, Vasileios Mezaris¹, Ioannis Patras²

Goal

"Given a video, select one or a few video frames that provide a representative & aesthetically-pleasing overview of its content'

	Comparison of RL-DiVTS with other approaches			OVP	YouTube
_		Baseline (Ra	andom)	8.63 ± 2.50	4.41 ± 1.77
SS)	 Performs consistently well on both datasets 	AC-SUM-G	AN	7.87 ± 3.41	7.33 ± 0.70
	(best & second best-performing one)	CA-SUM		7.60 ± 2.85	8.00 ± 3.56
		Hecate-VTS		11.72	16.47
umans	 Is more effective compared to methods for 	ReconstSum	1	12.18	18.25
	video summarization (AC-SUM-GAN, CA-SUM)	ARL-VTS		12.50 ± 3.37	7.83 ± 1.49
ар		RL-DiVTS (proposed)		25.33 ± 3.97	17.50 ± 2.57
	 Is significantly better than AKL-VIS (our 		Training time (sec/epoch)		# Param.
sured	previous method) in terms of performance,		OVP	YouTube	(in Millions)
	training time 8 memory footnrint	ARL-VTS	38.41	62.43	28.36
	training time & memory rootprint	RL-DiVTS	2.33	2.70	12.60

The average reward across all episodes formulates its feedback for the current training sample

This work was supported by the EU Horizon 2020 programme under grant agreement H2020-951911 AI4Media

Existing (visual-based) solutions

Early approaches: use rules about the thumbnail & extract low-level (luminance) & mid-level features (faces) to assess frames' alignment with them

Recent approaches: focus on the aesthetic quality &

representativeness of frames, & are based on: i) feature

extraction & clustering, or ii) deep networks

Thumbnail Evaluator (used only during training)

• Assesses the selected thumbnails in terms of **aesthetic** quality, representativeness & diversity, using three tailored reward functions

• The overall reward per episode is formed by: $R_e = a \cdot R_{aes_e} + \beta \cdot D \cdot R_{rep_e} + \gamma \cdot R_{div_e}$ (D projects) R_{rep_e} in the same scale with the other rewards)

Ablation study

• Removal of either of the **used criteria** & the Frame Picking mechanism leads to reduced **performance** in, at least, one of the datasets

	OVP	YouTube
RL-DiVTS w/o AES	14.13 ± 2.96	10.33 ± 1.73
RL-DiVTS w/o REP	20.53 ± 1.91	13.17 ± 1.09
RL-DiVTS w/o DIV	26.40 ± 1.30	14.33 ± 1.49
RL-DiVTS w/o CDS	24.67 ± 3.16	15.00 ± 1.44
RL-DiVTS (proposed)	25.33 ± 3.97	17.50 ± 2.57

HORIZON **2020**