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A HIGH PERFORMANCE BASEBAND INSTRUMENT

Testing complex digital signal processors (DSPs), such as the Asynchronous Array of Simple Processors (AsAP),
requires a development platform with sufficient signal bandwidth and system performance to provide and consume data
to and from the DSP. Without a development platform, verification of DSPs would be limited to monitoring test output
signals for an indication of performance and successful operation. This document describes the design of a General Purpose
Instrument which will simplify the testing and characterization of the AsAP processor when performing real world DSP
tasks. The General Purpose Instrument is a flexible platform capable of targeting a wide variety of applications, such as
signal generation and signal analysis.

Project Goals
e Signal generation and analysis frequency range from DC to 110 MHz.
e A 334-processor platform with real-time 1/0.

e Flexible waveform generation, loading, and capture.

e A 50 Q input and output impedance to simplify interconnection with standard test and measurement equipment.

Project Contributions
e General Purpose Instrument system architecture design.
e Measurement board design, layout, and characterization.
e Data Path field programmable gate array (FPGA) system architecture design and SystemVerilog HDL development.

e Control FPGA embedded soft-core processor software architecture design.

Conclusion The General Purpose Instrument, shown in Figures 1 and 2, is a successful development platform that can
be used for a wide variety of AsAP DSP software prototyping. This platform can be used to target applications from
software defined radios to cognitive radio. The signal bandwidth of the front end designs exceeded my initial design goals
of a frequency range from DC to 110 MHz by 15 MHz.

The General Purpose Instrument is a flexible platform capable of targeting a wide variety of applications, such as signal
generation and signal analysis, and includes: a 12-bit, 500 MS/s analog-to-digital converter (ADC) input, a dual-channel,
16-bit, 1 GS/s digital-to-analog converter (DAC) output, a Xilinx Virtex-5 SX50T data path field programmable gate array
(FPGA), a Xilinx Spartan-3A XC3S1400A control FPGA, a 36-Mbit QDR-II static random access memory (SRAM), a
2 GB DDR2 synchronous dynamic random access memory (SDRAM), a 512 Mbit DDR SDRAM, and two 2 GB microSD
cards. The signal analyzer input operates with a —3 dB frequency of 134 MHz, and has a noise floor of —98 dBm. The
signal source output operates with a —3 dB frequency of 138 MHz, a spurious-free dynamic range (SFDR) of 68.49 dBc
at a power level of —6 dBF'S, and a signal-to-noise ratio (SNR) of 101.02 dBc.
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Abstract

Testing complex digital signal processors (DSPs) requires a development platform with sufficient
signal bandwidth and system performance to fully exercise the DSP. Without a development plat-
form, verification of DSPs would be limited to monitoring test output signals for an indication of
performance and successful operation. In addition, a development platform with high-speed analog
input and output interfaces to the DSP system allows it to be used directly in many sophisticated
real-time applications. Presented here is a 334-processor development platform for testing of the
Asynchronous Array of Simple Processors (AsAP). This platform, known as the General Purpose
Instrument, is capable of generating and analyzing baseband signals. The General Purpose Instru-
ment simplifies the testing and characterization of the AsAP processor when performing real world
DSP tasks. The General Purpose Instrument is a flexible platform capable of targeting a wide vari-
ety of applications, such as signal generation and signal analysis, and includes: a 12-bit, 500 MS/s
analog-to-digital converter (ADC) input, a dual-channel, 16-bit, 1 GS/s digital-to-analog converter
(DAC) output, a Xilinx Virtex-5 SX50T data path field programmable gate array (FPGA), a Xilinx
Spartan-3A XC3S1400A control FPGA, a 36-Mbit QDR-II static random access memory (SRAM), a
2 GB DDR2 synchronous dynamic random access memory (SDRAM), a 512 Mbit DDR SDRAM, and
two 2 GB microSD cards. The signal analyzer input operates with a —3 dB frequency of 134 MHz,
and has a noise floor of —98 dBm. The signal source output operates with a —3 dB frequency of
138 MHz, a spurious-free dynamic range (SFDR) of 68.49 dBc at a power level of —6 dBFS, and a
signal-to-noise ratio (SNR) of 101.02 dBc.
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Chapter 1

Introduction

Testing complex digital signal processors (DSPs), such as the Asynchronous Array of Sim-
ple Processors (AsAP), requires a development platform with sufficient signal bandwidth and system
performance to provide and consume data to and from the DSP [1-4]. Without a development plat-
form, verification of DSPs would be limited to monitoring test output signals for an indication of
performance and successful operation. This thesis describes the design of a General Purpose Instru-
ment which will simplify the testing and characterization of the AsAP processor when performing
real world DSP tasks. The General Purpose Instrument is a flexible platform capable of targeting a

wide variety of applications, such as signal generation and signal analysis.

1.1 Project Goals

e Signal generation and analysis frequency range from DC to 110 MHz.

A 334-processor platform with real-time I/0.

Flexible waveform generation, loading, and capture.

A 50 Q input and output impedance to simplify interconnection with standard test and mea-

surement, equipment.

1.2 Project Contributions

e General Purpose Instrument system architecture design.

e Measurement board design, layout, and characterization.
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¢ Data Path field programmable gate array (FPGA) system architecture design and SystemVer-

ilog HDL development.

e Control FPGA embedded soft-core processor software architecture design.

1.3 Organization

The remainder of this thesis is divided as follows: Chapter 2 provides an overview of the
signal source design, verification, and the achieved performance. Chapter 3 discusses the signal
analyzer design. Chapter 4 describes the design and turn-on process of the measurement board.
Chapter 5 concludes with possibilities for future work. Supporting chapters are included in the

appendix.
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Chapter 2

Signal Source

A signal source is a common component of a measurement setup, and is used to stimulate a
device under test (DUT) with a continuous wave (CW) signal of known frequency and amplitude. In
addition to CW waveforms, the following waveforms are also useful when measuring the performance

of a DUT including:
e Triangle Waveform

e Square Waveform

Arbitrary Waveform

OFDM symbols

CDMA symbols

The AsAP processor is well-suited for all types of signal generation applications, from arbitrary
waveform generation to communication signals. The General Purpose Instrument provides a high-
speed digital-to-analog converter (DAC) along with a field programmable gate array (FPGA) to
demonstrate the signal generation capabilities of the two on-board AsAP DSP processors.

The requirements used for the signal source design are covered in Section 2.1. Section 2.2
describes the design of the signal source and each component in the signal path. The methods
used to verify the performance of the signal source are describe in Section 2.3. And finally the

performance of the signal source is summarized in Section 2.4.
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DIGITAL-TO-ANALOG ~ LOW-PASS
CONVERTER FILTER AMPLIFIER  PAD
N
DAC
DSP
CLK/M

Fs

Figure 2.1: Common Signal Source Block Diagram

Figure 2.1 shows the basic block diagram of a signal source.

2.1 Requirements

A signal source can have an impact on the measurement results of a DUT. When performing
measurements on a DUT, it is important to understand the capabilities of the signal source. The
following parameters are typically specified for signal sources by test and measurement equipment

manufacturers, and were addressed by the General Purpose Instruments signal source:

Bandwidth

Dynamic Range

Distortion

e Accuracy

The baseband signal source output is intended to generate waveforms in the frequency range of
DC to 120 MHz. Given the wide range of applications in this frequency range, and the desire to
transmit data at several frequencies simultaneously, a wide bandwidth filter is required. The design
complexity of the anti-image or reconstruction filter will be determined by the sample rate of the
DAC. The goal is to provide the maximum amount of signal bandwidth (B) without violating the

Nyquist sampling theorem. As the filter’s cut-off frequency approaches the Nyquist frequency (%)7
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the cost and complexity will increase. One possible solution is to oversample the DAC by a factor
of two and set the filter’s cut-off frequency to FT The benefit of this type of architecture is that
common and inexpensive inductors and capacitors can be used along with a filter topology that is
simple to design and debug.

Some signal generation applications may require signals that are closely spaced in the fre-
quency domain. As such, these applications require excellent dynamic range performance. Dynamic
range is affected by several factors including: noise present in the signal path, filter cut-off frequency,
and amplifier performance. The measurement board of the General Purpose Instrument employs
board level shields to enclose the signal source circuitry. The board level shields help minimize the
effects of unwanted signals such as power supply switching frequencies and harmonic frequencies of
the various clock sources on the board. The use of an oversampled system for the signal source de-
sign should also improve the dynamic range by further attenuating alias frequencies of the sampled

system.
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2.2 Design

The General Purpose Instrument signal source was designed to operate in the first Nyquist

zone with a signal bandwidth of 120 MHz. Figure 2.2 shows a high-level block diagram of the signal

source.

FPGA

16

The main building blocks of the signal source are:

o Passive low-pass reconstruction filter

CLK/5

DAC

f =500 MHz

Reconstruction
Filter

7th Order

Chebyshev
fc = 141 MHz
BW =120 MHz

Figure 2.2: High-Level Signal Source Block Diagram

High-speed digital-to-analog converter

Clock generation and distribution

High-speed amplifier output stage

Digital signal processing, implemented in an FPGA

Each of the building blocks listed above is described in Subsections 2.2.1 to 2.2.6.
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2.2.1 Digital Signal Processing

The digital signal processing sub-system of the signal source is made up of a high-performance
field programmable gate array and two AsAP digital signal processors. The DSP sub-system is re-
sponsible for generating and transmitting digital signals to the high-speed DAC. The signal source

can generate or playback signals from several sources including;:

32-Mbit QDR-II SRAM

2-Mbit Block RAM

128-bit Static Register

AsAP DSPs

FPGA logic

A direct digital synthesizer (DDS) is an example of a signal source which could be implemented
in FPGA logic. The current implementation of the signal source design supports only playback
of signals from QDR-II SRAM, Block RAM, or a 128-bit register. Figure 2.3 shows the major
components of the DSP sub-system, and Figure 2.4 shows a detailed view of the FPGA data path.

Several key design areas were addressed during the development of the DSP sub-system

including:

Waveform storage and playback

Waveform scale, invert, and offset

High-speed DAC interface

Multiple clock domains

Each of the design areas listed above is described in Subsections 2.2.1.1 to 2.2.1.2.
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2.2.1.1 Waveform Storage and Playback

The signal source was designed to play back arbitrary waveforms, which include sinusoid
waveforms. The amount of storage required for a sinusoid waveform of frequency F, can be calculated
using Equation 2.1, where F is the sample frequency of the DAC and R is the resolution of the
DAC.

Fy
NumBits = 7 R (2.1)

C

The waveform storage and playback sub-system uses a 128-bit data bus to transport data from each
source to the high-speed DAC interface sub-system. The internal data path width places several

constraints on the waveform stored in memory.
o Waveform must be a multiple of 128 in terms of bits.
o Waveform must be a multiple of 16 in terms of bits.

e Waveform must meet minimum length requirements, which vary depending on the storage

memory used.

o Waveform must meet maximum length requirements, which vary depending on the storage

memory used.

In the event that NumBits does not meet the length or modulo requirements, it must be replicated
N times until the requirements are met. Special care must be taken when replicating waveforms,
since some waveforms will require more than a single cycle to be replicated based on the starting and
stopping points of the waveform. See Appendix Chapter A for a detailed description of waveform
file generation.

The internal data bus width is essentially made up of eight 16-bit data samples, which lends

itself to polyphase or parallel DSP operations. The data bus operates at a clock rate of 62.5 MHz.

Static Register The static register provides a means to generate either DC values or limited

8-sample waveforms with the signal source.

Block RAM The block RAM memory is capable of playing back waveforms up to 128-kSamples,

and is arranged as 16-kwords x 128-bits.

QDR-II SRAM The QDR-II SRAM memory is capable of playing back waveforms up to 2-

MSamples, and is arranged as 256-kwords x 128-bits.
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2.2.1.2 Waveform Scale, Invert, and Offset

The baseband signal source allows the user to adjust the power level, invert the waveform,
and change the offset voltage. All three of these features are implemented using a DSP48 slice in the
Xilinx Virtex-5 FPGA, and take advantage of the properties of the two’s complement numbering

scheme. A DSP48 slice can perform a combination of 25-bit x 18-bit multiplies and 48-bit additions.

Scale A waveform signal can be scaled in increments of —6 dB by right-shifting the waveform
data 1-bit for each desired attenuation setting as shown in Table 2.1. The baseband signal source
implements an arithmetic shifter, or dynamic shifter, to achieve the desired scaling of the waveform
data [5]. The scaling operation is performed by multiplying a one-hot encoded 18-bit value by the
waveform data. Equation 2.2 describes the relationship between the attenuation power level and the

scale parameter K.

2K
Scale = 20 - logy, (216> (2.2)

The waveform data is shifted right by (16 — K) bits resulting in a ((16 — K) - —6 dB) attenuation

for K in the range of 0 to 16.

One-Hot Value | One-Hot Encoded Value (hex) | Attenuation (dB)
216 0x10000 0
215 0x08000 -6
214 0x04000 -12
213 0x02000 -18
212 0x01000 -24
211 0x00800 -30
210 0x00400 -36
20 0x00200 -42
28 0x00100 -48
27 0x00080 -04
26 0x00040 -60
25 0x00020 -66
24 0x00010 =72
23 0x00008 -78
22 0x00004 -84
2! 0x00002 -90
20 0x00001 -96

Table 2.1: Attenuation versus one-hot scale values
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The internal data bus is scaled by employing a bank of eight DSP48 slices configured as dynamic
shifters in right-shift mode, which means the scaled waveform data is available in bits 31 to 16 of

the 43-bit product.

Invert In some measurement cases, it can be useful to either delay by 180 degrees or invert the
waveform signal. When using two’s complement numbers, a negation is performed by inverting
the hexadecimal value and adding one. For example, the process of negating +5 is achieved by

performing the following steps:
1. Invert positive 5: 000101 — 061010
2. Add one to the result: 061010 + 060001 = 001011

While this procedure for inverting a two’s complement number is straightforward, it requires two
operations to achieve the desired result. Rather than using both an inverter and an adder, the
inversion can be achieved by the use of a single multiplier. The baseband signal source implements
a two’s complement inversion by multiplying the waveform data by —1. The internal data bus is
either inverted or passed to the offset stage by changing the scale value from —1 (0xFFFF) to 1
(0x0001). A bank of eight DSP48 slices configured as 16-bit x 16-bit multipliers are used to invert

the waveform signal.

Offset Depending on the DUT being stimulated, the input signal may require an offset voltage
other than ground, or 0 Volts. A waveform signal can be offset by adding an offset value to the
waveform data. The baseband signal source output typically swings about ground. An offset voltage
is introduced to the waveform data by adding a two’s complement 16-bit value, which represents

every integer in the range —2'% to (+2' —1). In order to adjust the offset voltage such that the

Vampt

524, the waveform data can be summed with a value of (215 — 1) or

waveform signal swings about
0x7FFF. The waveform signal is offset in the baseband signal source by employing a bank of eight

DSP48 slices configured as 17-bit adders, which provide a 16-bit result and a 1-bit overflow flag.
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2.2.2 High-Speed Digital-to-Analog Converter

A Texas Instruments DAC56827Z dual-channel, 16-bit, 1 GS/s digital-to-analog converter
is used to generate the analog waveforms for the baseband signal source. While this DAC is capable
of 1 GS/s, a sample rate of 500 MS/s was used instead. Sampling the DAC at the same frequency
of the high-speed analog-to-digital converter (ADC) allowed the signal source and signal analyzer
DSP designs to coexist in the same FPGA. This capability is especially important when the signal
source is used to stimulate a DUT and measure its performance with the same system.

The high-speed DAC digital interface is made up of 16-bits of double data rate (DDR)
data. The digital interface of the DAC operates at 250 MHz, which corresponds to a data rate of
500 Mb/s for each data bit. The Xilinx Virtex-5 SX50T FPGA core logic is only capable of operating
at frequencies up to 450 MHz, so a straightforward 16-bit data path could not be implemented.
Instead, the width of the data path was extended from 16-bits to 128-bits in order to use the built-
in output serializer/deserializer (OSERDES). The OSERDES facilitate higher external data rates,
while keeping the internal data bus at a more manageable rate.

In the case of the signal source, the internal data rate is operating at 250 Mb/s divided by
4, which is equivalent to 62.5 Mb/s. The OSERDES are used in an 8:1 DDR, configuration, which
requires a high-speed clock of 250 MHz and a low-speed clock of 62.5 MHz. The internal data is
running at a single data rate, and the external data is running at a double data rate.

The high-speed DAC has two analog outputs, which are capable of sinking a full-scale
output current up to 20 mA [6]. A resistor bias network, consisting of a 62 Q pull-up and 270 Q
pull-down resistor on each half of the differential pair, is required to achieve the maximum output
current of 20 mA. The analog outputs expect to see a load 25 €2, which is achieved by a combination
of the resistor bias network and the reconstruction filter. As a result, the maximum voltage on each
half of the differential pair will be 500 mV,,,. The current sink structure of the DAC also requires

a DC common mode of +3.3 V.



CHAPTER 2. SIGNAL SOURCE 15

2.2.3 Clock Generation and Distribution

A key element of the baseband signal source is the clock generation and distribution scheme.
The successful generation of high performance waveforms depends on synchronous clocks. An Analog
Devices AD9516-3 14-output clock generator is responsible for generating all clocks for the baseband
signal source. A Universal Microwave Corp UMX Series 1 GHz voltage controlled oscillator (VCO)
is used to drive the AD9516-3 external RF clock input. Using the external 1 GHz VCO, the output
frequency range of the AD9516-3 is 15.625 MHz to 1 GHz. Figure 2.5 describes the clock relationship
between the various DSP components of the baseband signal source. The AD9516-3 clock generator

is responsible for generating two clocks:
e 100 MHz data path FPGA clock

e 500 MHz high-speed DAC sample clock

Data Path FPGA Clock Generation The data path FPGA uses an internal phase-locked
loop (PLL) primitive to generate several clocks from the 100 MHz clock input. The PLL primitive

generates the following clocks:
e 250 MHz OSERDES high-speed clock
e 62.5 MHz internal core low-speed clock

The digital clock input (DCLK) of the high-speed DAC is generated by driving a static “10101010”
sequence into the OSERDES. Using an OSERDES device to drive the DCLK input of the high-speed
DAC allows the DCLK to be precisely aligned with the 16-bit DAC data bus. An alternative and
equally acceptable solution to the OSERDES would have been to use an output DDR (ODDR)
primitive clocked on both edges of the 250 MHz clock with the D1 input tied to a logic high and the
D2 input tied to a logic low. Either solution provides a precise relationship between the clock and

data because of their location in the input/output bank (IOB) of the Virtex-5 SX50T FPGA.

High-speed DAC Sample Clock Generation The high-speed DAC is sampled by the 500 MHz
clock generated by the AD9516-3 clock generator. The DCLK of the high-speed DAC is driven into
an internal delay-locked loop (DLL) to generate two 500 MHz clocks at 0 and 180 degree phase. The
16-bit DDR data is clocked into a FIFO using the two clocks from the internal DLL, and clocked
out of the FIFO by the 500 MHz sample clock.
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2.2.4 Reconstruction Filter

In general, wide-band passive filters are difficult to implement with sufficient ripple and
stop-band performance [7]. The role of a reconstruction filter is to attenuate harmonic and alias
frequencies to a sufficient power level before they fold back into the pass band of the filter. In a
typical sampled system operating in the first Nyquist zone, the cut-off frequency of the reconstruction
filter would be set to a frequency slightly less than % As the filter’s cut-off frequency approaches
the Nyquist frequency the steepness of the transition band increases. Figure 2.6(a) highlights the

shape of the reconstruction filter when sampling at twice the Nyquist Frequency.

Amplitude (dB)

f,/2 fs 3f,/2 2f, 5,2
Frequency

f.J4 f/2 3f./4 f 5f./4
Frequency

Figure 2.6: (a) Example of Nyquist sampling and the requirements for the reconstruction filter.
(b) Example of reconstruction filter constraint relaxation as a result of oversampling by 2.

The baseband signal source takes advantage of oversampling to greatly simplify the implementation
of the reconstruction filter. Figure 2.6(b) shows the effects of oversampling on the reconstruction
filter. The high-speed DAC was oversampled by a factor of two, which allowed a —3 dB frequency
well within the first Nyquist zone. As a result, the signal source can cleanly pass sinusoid waveforms
up to 120 MHz with relative ease.

The reconstruction filter was designed using Agilent Technologies’ Genesys Filter Synthesis

software. The first step in designing the filter involved setting the desired specifications including:
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e -3 dB frequency: 130 MHz
e Passband ripple: 0.5 dB
e Stopband attenuation: 60 dB

The second step was to select a filter type, filter shape, and filter topology. The baseband signal
source uses a 7"-Order Chebyshev low-pass differential filter topology. Upon defining the filter
specifications and topology, the Genesys Filter Synthesis software generated the filter schematic and
simulated frequency response shown in Figures 2.7 and 2.8, respectively. The simulated frequency

response was evaluated to ensure the desired specifications would be met by the filter design.

> antialias_filter_Design

Port_1 L 77 02nH L 82 29nH L 77 02r|H .

C:42,539pF C=64 601pF I C=64 6[]1pF I C=42! 539pF

Kl | _‘lz‘

Partlist {>--Schematic

Figure 2.7: Genesys Filter Synthesis 7*"-Order Chebyshev low-pass filter schematic

» antialias_filter_Response H[=] B3

Lowpass [Chebyshev], Order 7

. ™
4
\

Gain (¢B)

. N
N

=70
1e-6 50 100 150 200 250 300 350 400 450 500
Freguency (MHz)
—— Gain

"

Figure 2.8: Genesys Filter Synthesis simulated frequency response for 7!"-Order Chebyshev low-pass
filter
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The inductor and capacitor values shown in the Figure 2.7 were generated by the Genesys Filter
Synthesis software, and were used as a starting point to select practical component values. When
choosing component values for the reconstruction filter, it was necessary to use multiple components
to achieve the correct values. In the case of inductance, the inductors were placed in series; in the

case of capacitance, the capacitors were placed in parallel.

Reference Designator | Calculated | Practical Series/Parallel
L1 77.02 nH 71 nH 22 nH+27 nH+22 nH
L2 82.29 nH 76 nH 27 nH+22 nH+27 nH
L3 77.02 nH 71 nH 22 nH+27 nH+22 nH
C1 42.539 pF 39.6 pI' | 1.8 pF'+18 pF+18 pF+1.8 pF
C2 64.601 pF 59.9 pF 15 pF+15 pF+15 pF+15 pF
C3 64.601 pF 59.9 pF 15 pF+15 pF+15 pF+15 pF
C4 42.539 pF 39.6 pF' | 1.8 pF'+18 pF+18 pF+1.8 pF

Table 2.2: A comparison of calculated and practical component values for the reconstruction filter

In addition to choosing practical component values, the differential nature of the high-speed DAC
output required the single-ended filter design to be converted to a balanced differential topology.
This transformation was performed by mirroring the single-ended design about a wirtual ground
reference. The wvirtual ground creates a circuit made up of two series capacitors which results in the
capacitance value being cut in half. The value of the series inductors are identical to that of the

single-ended design. The schematic shown in Figure 2.9 represents the differential low-pass filter

that was simulated using LTSpice.

Figure 2.9: LTSpice 7**-Order Chebyshev differential low-pass filter schematic
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The simulated frequency response of the Chebyshev filter, shown in Figure 2.10, has a
cut-off frequency of 141 MHz, which is different from that specified in the Genesys Filter Synthe-
sis software. However, the increased cut-off frequency provides for more signal bandwidth in the

reconstruction filter.

~ 3dB point
f= 141 MHz

=20

Power (dBm)

-60

-80

-100

il

i il i P i | i | i P
10k 100k M 10M 100M 1G
Frequency (Hz)

Figure 2.10: LTSpice 7*"-Order Chebyshev differential low-pass filter simulated frequency response.
The measured performance of the 7**-Order Chebyshev differential low-pass filter is shown in Fig-
ure 2.29.

Table 2.3 outlines the estimated performance of the 7*"-Order Chebyshev low-pass reconstruction

filter.
PARAMETER VALUE
-3 dB Frequency 141 MHz
Bandwidth 120 MHz
Passband Ripple 0.5 dB
Signal Attenuation 2.4 dB
Stopband Attenuation 60 dB

Table 2.3: Estimated reconstruction filter specifications
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Figure 2.11: Detailed schematic of the signal source reconstruction filter

The final implementation of the reconstruction filter used in the signal source is shown in Figure 2.11.

The bill of materials for the reconstruction filter is shown in Table 2.4.



Reference Designator

Manufacturer

Part Number

Description

C49, C50 Murata Electronics | GRM1885C1H1IR8CZ01D | 1.8 pF, 50 V Ceramic Capacitor
C28, C29 Murata Electronics | GRM1885C1H180JA01D | 18 pF, 50 V Ceramic Capacitor
C18, C19, C23, C24 Murata Electronics | GRM1885C1H150JA01D | 15 pF, 50 V Ceramic Capacitor

182, 187, L88, L9,

L90, 191, L92, 193, Coilcraft 0603CS-22NXJL 22 nH, 700 mA Ceramic Chip Inductor
L94, L95
L61, L75, L76, L
61, L75, L76, L77, Coilcraft 0603CS-27NXJL 27 nH, 600 mA Ceramic Chip Inductor

L78, 179, L80, L81

Table 2.4: Reconstruction filter bill of materials
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2.2.5 High-Speed Amplifier Output Stage

A Texas Instruments OPA695 ultra-wideband, current-feedback operational amplifier with
a gain bandwidth of 1400 MHz is used to convert the differential current output of the DAC56827Z
high-speed DAC into a single-ended signal [8]. The baseband signal source was designed to drive a
DUT with an input impedance of 50 €.

The OPA695 amplifier was configured to have a gain of +14 dB, or 2.2 times the gain of the
input signal. Using a gain of approximately 2 allows the OPA695 amplifier to achieve its maximum
bandwidth of 1400 MHz. The input of the OPA695 amplifier has an effective input impedance of
25 Q on a 20 mA AC signal.

The baseband signal source output stage was designed to have a maximum gain of +10 dB.
The combined signal gain of the reconstruction filter and the OPA695 amplifier equates to approxi-
mately +12 dB. A —3 dB PAD, or attenuator, was used to limit the output signal power to no more
than +10 dBm. The attenuator was designed using a pi-pad configuration with discrete resistors.

Figure 2.12 shows the OPA695 amplifier and attenuator circuits of the baseband signal source.

Termination _ 3dB PAD
226 Ohm
(O——e—
5 17.4 Ohm
o
o)
226 Ohm 500 Ohm g g =
O—+—e— ® 13 L3

Figure 2.12: High-speed amplifier and attenuator output stage schematic
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2.2.6 Waveform Generation Examples

A detailed block diagram of the baseband signal source is shown in Figure 2.14. The signal
source was designed to generate both CW and arbitrary waveforms, examples of which are listed

below:

A comb signal consisting of tones across the entire Nyquist bandwidth (Figure 2.13).

A CW signal operating at 100 MHz in the frequency domain (Figure 2.15).

A CW signal operating at 100 MHz in the time domain (Figure 2.16).

A chirp signal consisting of multiple sinusoid waveforms of increasing frequencies from 10 MHz

to 150 MHz in 10 MHz steps (Figure 2.17).

A sawtooth signal (Figure 2.18).

A burst of single sinusoid cycles with a DC interval of fixed length (Figure 2.19).

A symmetric ramp waveform at 1 MHz (Figure 2.20).

e A square waveform at 1 MHz with a 50 % duty-cycle (Figure 2.21).

Power (dBm)

50 100 150 200 250
Frequency (MHz)

Figure 2.13: Comb Signal Frequency Response with a VBW of 3 kHz and a RBW of 3 kHz. Captured
with an HP/Agilent 8562E Spectrum Analyzer.
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Figure 2.15: Single Tone Sine Wave at a frequency of 100 MHz with a power level of 0 dBFS, a
VBW of 3 kHz, and a RBW of 3 kHz. Captured with an HP/Agilent 8562E Spectrum Analyzer.
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Figure 2.16: Sine Waveform at a frequency of 100 MHz with a power level of 0 dBFS. Captured
with an HP/Agilent 83480A Digital Communications Analyzer and an HP/Agilent 83485A 20 GHz
Electrical/Optical Plug-In Module.
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Figure 2.17: Chirp Waveform swept frequency from 10 MHz to 150 MHz in 10 MHz steps. Captured
with a Tektronix TDS3054 Digital Phosphor Oscilloscope.
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Figure 2.18: Sawtooth Waveform. Captured with a Tektronix TDS3054 Digital Phosphor
Oscilloscope.
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Figure 2.19: Burst Sine Waveform with 20 ns pulse width and 64 ns interval. Captured with a
Tektronix TDS3054 Digital Phosphor Oscilloscope.
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Figure 2.20: Ramp Waveform at a frequency of 1 MHz. Captured with a Tektronix TDS3054 Digital
Phosphor Oscilloscope.
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Figure 2.21: Square Waveform at a frequency of 1 MHz with a duty-cycle of 50 %. Captured with
a Tektronix TDS3054 Digital Phosphor Oscilloscope.
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2.3 Verification

The General Purpose Instrument signal source was designed to be used in test and mea-
surement applications. However, before it can be used its performance must be evaluated and shown
to meet the intended specifications. The performance of the signal source was evaluated in both
the frequency and the time domain using an assortment of test and measurement equipment. In

addition, the performance was evaluated across multiple boards.

2.3.1 Time Domain Measurements

The goal of the time domain measurements was to verify the waveform quality of the
signal source when generating a variety of waveform types including: sinusoid, arbitrary, square,
and triangle. The signal source time domain characterization was performed using the following

equipment:
e HP/Agilent 83480A Digital Communications Analyzer (DCA)
e HP/Agilent 83485A Optical/Electrical Plug-In with a bandwidth of 20 GHz
e 20 dB Attenuator
e HP/Agilent E2050A /B LAN-to-GPIB Gateway

Time domain data is extracted from the HP/Agilent 83480A DCA by use of an HP/Agilent E2050A
LAN-to-GPIB gateway. A GPIB connection is made between the HP/Agilent E2050A and the
HP/Agilent 83480A DCA. The HP/Agilent 83480A DCA is then controlled via a Perl script over a
LAN connection made between the HP/Agilent E2050A and the controlling computer. In addition
to control, the Perl script also performed data collection and waveform extraction. The basic mea-
surement block diagram used to collect data is shown in Figure 2.26. The HP/Agilent 83480A DCA

was used to collect the following waveform data:

RMS Voltage

Duty Cycle

e Frequency

Period

The above waveform data was used to evaluate the —3 dB frequency.
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2.3.1.1 Time Domain Test and Measurement Setup

The HP/Agilent 83480A DCA is an equivalent time sampling oscilloscope, or sampling
scope, which measures the instantaneous amplitude of the input waveform at the sampling point. A
DCA samples the input signal once per trigger, and adjusts the sample point by a small delay before
each sample is taken [9]. The trigger used with the sampling scope must be synchronous with the
input waveform in order to properly sample the data. The channel A input of the 83485A Plug-In
was driven by the signal source output of the General Purpose Instrument through a 20 dB fixed
attenuator. DCA plug-in modules are very sensitive and cannot tolerate signals larger than + 3 V;

the fixed attenuator helps to prevent accidental amplitudes that exceed the recommended limits.

Trigger Sensitivity The trigger input of the DCA plug-in module was driven by the trigger
output of the General Purpose Instrument in pattern trigger mode. The optimum trigger point of
the DCA is at the 50 % point. The trigger output of the General Purpose Instrument was designed
to provide a high level of 750 mV and a low level of 350 mV. The optimum trigger point was

calculated using Equation 2.3.

Vg =V, 750 mV — 350 mV

Using this trigger level, the signal source output was initially evaluated at 25 MHz, 50 MHz, and
100 MHz. The results of these initial time domain measurements indicated that the DCA was
not triggering properly. Further investigation showed that the trigger output of the General Pur-
pose Instrument was suffering from a high capacitance load caused by the electro-static discharge
(ESD) protection diode attached at the output (see Figure 2.23). Refer to Section 4.3.1.4 for more
information regarding the trigger output verification results.

The ESD protection diode caused a plateau in the center of the rise time of the trigger signal,
as seen in Figure 4.25, which is located at the optimum trigger point of the DCA. Upon removing
the ESD protection diode, the trigger signal, shown in Figure 4.26, was sufficient to trigger the DCA.
Figure 2.24 shows an example of two 100 MHz sine waveform whose X- and Y- data were extracted
from the DCA. The blue dashed-line waveform was captured by the DCA using the trigger with
the ESD protection diode removed. The red waveform was captured by the DCA using the trigger
with the ESD protection diode present. The red waveform, shown in Figure 2.24, shows signs of

waveform distortion, whereas the blue waveform represents a clean sinusoid waveform.
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Figure 2.23: Signal source trigger output circuit showing the ESD protection diode and its parasitic
capacitance, which caused the reflections on the rise time of the trigger signal shown in Figure 4.25.
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Figure 2.24: Two Sine Waveforms at a frequency of 100 MHz. The blue dashed-line waveform was
triggered without the ESD protection diode on the General Purpose Instrument trigger output.
The red waveform was triggered with the ESD protection diode on the General Purpose Instrument
trigger output. Captured with an HP/Agilent 83480A Digital Communications Analyzer and an
HP/Agilent 83485A 20 GHz Electrical/Optical Plug-In Module.
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2.3.1.2 —3 dB Frequency Measurements

The —3 dB frequency can be estimated by analyzing the frequency response of the signal
source output. The frequency response can be determined by sweeping the signal source from DC
to the Nyquist frequency. As the signal source output is swept from DC to the Nyquist frequency,
the generated signal will become attenuated. When the signal frequency approaches and passes
through the stop band of the reconstruction filter, it will be further attenuated to the point that
it becomes distorted. In this condition, the DCA will have difficulty distinguishing the frequency
of the generated sine wave. As a result, the DCA will provide only a rough estimate of the —3 dB
frequency and the frequency response. Data was collected from DC to the Nyquist frequency, but
the data is only useful up to a frequency of 141 MHz. The RMS voltage level of each frequency
point is recorded. Using the RMS voltage data, the frequency response can then be displayed using
an x versus y plot, where the x-axis is plotted in a logarithmic scale. To plot the frequency response
the RMS voltage was first converted to a power level in units of decibels relative to 1 mW (dBm).
Equation 2.4 defines the relationship between power in units of Watts and the RMS voltage.

P = (‘%) W (2.4)

The power can be converted from units of Watts to units of dBm using Equation 2.5.

P W

Rather than converting the measured RMS voltage data to power in units of Watts for use in
Equation 2.5, I chose to convert the RMS voltage data directly to units of dBm by manipulating
Equations 2.4 and 2.5. First, the power level of 1 mW was converted to the equivalent RMS voltage
as shown in Equation 2.6. The DCA plug-in provides a load impedance (Rp) of 50 Q. Equation 2.6

was determined by solving for Vs in Equation 2.4.

Vimw = /P - Rr, = V0.001W - 50Q ~ 0.224 V RMS (2.6)

Next Equation 2.4 was substituted for P and 1 mW was substituted with its equivalent RMS voltage

into Equation 2.5. The equation was then simplified resulting in Equation 2.7.

V V
Pigm = 20 -log, (Vf”’;) =20 -log,, (0 2’*21215\/) dBm (2.7)
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The measurement Perl script used Equation 2.7 to convert the RMS voltage to a power level in units
of dBm, and to plot the frequency response in order to determine the —3 dB frequency. Figure 2.25
shows the resulting frequency response curve created by measuring the RMS voltage of the signal at
each frequency from DC to a frequency of 141 MHz. The measured —3 dB frequency was 137 MHz,

which is 4 MHz less than the target cut-off frequency.
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Figure 2.25: Signal Source Frequency Response. Captured with an HP/Agilent 83480A Digital
Communications Analyzer and an HP/Agilent 83485A 20 GHz Plug-In module.

2.3.2 Frequency Domain Measurements

The goal of the frequency domain measurements was to verify the quality of the signal
source when generating CW signals. The signal source frequency domain characterization was

performed using the following equipment:
e HP/Agilent 8562E Spectrum Analyzer (30 Hz to 13.2 GHz)
e Fairview Microwave, Inc. SD3239 DC Blocking (5 kHz to 23 GHz)
o HP/Agilent E2050A LAN-to-GPIB Gateway

Frequency domain data is extracted from the HP/Agilent 8562E Spectrum Analyzer by use of an
HP/Agilent E2050A LAN-to-GPIB gateway. A GPIB connection is made between the HP/Agilent
E2050A and the HP/Agilent 8562E Spectrum Analyzer. The HP/Agilent 8562E Spectrum Analyzer
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is then controlled via a Perl script over a LAN connection made between the HP/Agilent E2050A
and the controlling computer. In addition to control, the Perl script also performed data collection
and waveform extraction. The basic measurement block diagram used to collect data is shown in
Figure 2.26.

The HP/Agilent 8562E Spectrum Analyzer was used to collect data in order to calculate

the following parameters:

—3 dB frequency

Signal-to-noise ratio (SNR)
e Spurious-free dynamic range (SFDR)

e Two-tone third-order intermodulation distortion (IMD3)

Third-order intercept point (TOI)

2.3.2.1 -3 dB Frequency Measurements

Two methods are commonly used to analyze the frequency response of a signal generator
and, in turn, determine the —3 dB frequency. The simplest and least accurate method is to generate
a comb signal, also known as a bed of nails, which contains signal tones from DC to the Nyquist
frequency. The comb signal used to stimulate the low-pass filter is shown in Figure 2.27. The
resulting signal received by the HP/Agilent 8562E Spectrum Analyzer will have the shape of a low-
pass filter’s frequency response. From this information the —3 dB frequency of the signal source
output can be roughly estimated. Figure 3.30 shows the resulting frequency versus power level
data extracted from the HP/Agilent 8562E Spectrum Analyzer with a —3 dB frequency between
137.5 MHz and 140 MHz, which is 10 MHz above the target —3 dB frequency. The increased —3 dB
frequency results in more signal bandwidth.

A more accurate method to analyze the frequency response is to sweep the signal source
from DC to the Nyquist frequency. The power level of each each frequency point is recorded. Using
the power level information, the frequency response can then be displayed using an x versus y plot,
where the x-axis is plotted in a logarithmic scale. Figure 2.29 shows the resulting frequency response
curve created by measuring the power level of the fundamental signal tone at each frequency from
DC to the Nyquist frequency. The measured —3 dB frequency was 138 MHz, which is 8 MHz more

than the target cut-off frequency.
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Figure 2.27: Comb input signal used to stimulate the signal source to evaluate the filter’s frequency
response.
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Figure 2.28: Comb Signal Frequency Response with a VBW of 3 kHz and a RBW of 3 kHz. Captured
with an HP/Agilent 8562E Spectrum Analyzer.
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Figure 2.29: Signal Source Frequency Response. Captured with an HP/Agilent 8562E Spectrum
Analyzer.

2.3.2.2 Signal-to-Noise Ratio

SNR is the ratio of the power of the fundamental signal tone (Pg) to the noise floor power

(Pn), excluding the power at DC and in the first nine harmonics.

P
SNR = 10 - log, (PS> (2.8)
N

SNR is typically specified in units of dBc, or dB to carrier, when the absolute power of the funda-
mental signal tone is used as the reference. Figure 2.30 shows the resulting SNR performance when

measured from DC to the —3 dB frequency.
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Figure 2.30: Signal-to-Noise Ratio

2.3.2.3 Spurious-Free Dynamic Range

The spurious-free dynamic range is typically measured at three power levels: 0 dBFS,
—6 dBFS, and —12 dBFS. As a result, the frequency response extraction routine was performed
three times, once for each power level. A measure of a signal’s power level in decibels relative to
full scale is referred to in units of dBFS. A power level of 0 dBF'S represents the maximum possible
level of a device. A power level of —6 dBF'S represents a 2x reduction in signal power, as shown in
Equation 2.9.
214
20 - logy (215) = —6.0206 dBF'S (2.9)
Likewise, a power level of —12 dBFS represents a 4x reduction in signal power, as shown in Equa-
tion 2.10.
213
20 - logy (215> = —12.0412 dBFS (2.10)
The SFDR performance of the signal source was measured by modifying the frequency response

extraction routine. A power level measurement was recorded for each harmonic and alias frequency

as the signal source is swept from DC to the Nyquist frequency. An alias and harmonic algorithm
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was used to determine which harmonic frequencies fold back into the passband of the reconstruction
filter. Each signal frequency was measured out to the 25" harmonic frequency. The power level
of the fundamental signal tone (P,) along with the power level of the next largest spurious signal
(P,,) were used to calculate the spurious-free dynamic range (Psppr). Equation 2.11 describes the

relationship between P,, P,, and Psgpr.

Psppr =P, — P, (2.11)

The average SFDR performance of the signal source, shown in Figure 2.31, represents measurements
performed on three measurement boards. The frequency and power level data was extracted from

an HP/Agilent 8562E Spectrum Analyzer.
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Figure 2.31: Spurious-Free Dynamic Range
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2.3.2.4 Two-tone Third-order Intermodulation Distortion Measurement

The presence of multiple signals in a system is sometimes desired; for example, the gen-
eration of multi-tone signals or comb signals. However, undesired signals (e.g., noise) are typically
present in a signal system, and can mix with the desired signal to generate distortion products.
Understanding the effects of distortion is important when evaluating the measurement results of a
DUT.

Intermodulation distortion is a type of distortion caused by the presence of two or more
signal tones at the input of a non-linear device [10]. This distortion causes spurious signals to be
generated, which are related to the original signal tones. The complexity of the distortion increases
as the number of signal tones present in the system increases beyond two. As such, the distortion
performance of signal systems are typically analyzed with two signal tones. The relationship of the

two original signal tones and the generated spurious signal tones is described by Equation 2.12.

M-fi£N-f,, where M, N = 0, 1, 2, 3, ... (2.12)

The order of the distortion product is represented by the sum of M + N. For example, the third-order

intermodulation products of two signals at f; and fy would be:

2-fi+ fa
2-fi—fa
fi+2-fa

J1—=2f2

Third-order two-tone intermodulation distortion is a metric used to describe the distortion
performance of a transmitter or receiver when multiple signal tones are present in the data stream.
It is measured by driving two spectrally pure sine waves through the DUT at frequencies f; and
fs, where the difference in frequency is small. The amplitude of each tone is generally attenuated
by 6 dB to avoid clipping in the signal system. It is typically specified in dBc relative to the value
of either of the two input tones [11]. Figure 2.32 shows the test setup used to measure third-order

two-tone intermodulation distortion.
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Figure 2.32: Two-tone third-order intermodulation distortion measurement block diagram

The IMD3 performance of the signal source was measured using two signal tones at frequencies:
o f; = 107.7 MHz
o f5 = 107.9 MHz

Figure 2.33 shows the resulting IMD3 measurement performed with an HP/Agilent 8562E Spectrum
Analyzer. The IMDg3 parameter was determined by measuring the power level of a fundamental
signal tone, f; or fa, (P,) and one of the spurious tones (P,,) in units of dBm. Equation 2.13

describes the relationship between P, and P,, when calculating IMDs3.
IMDs =P, — P,, =—7.5 dBm — (—75.66 dBm) = 68.16 dBc (2.13)

An additional parameter, known as the third-order intercept (TOI) point, can be used to quantify
the distortion performance of a signal source. TOI can be calculated using the power level of the
fundamental tones along with the third-order two-tone intermodulation distortion, and is typically

specified in dB. Equation 2.14 describes the relationship between P, and IMDs3.

IMD 16 dB
TOI = — 3+PO:%

+ (7.5 dBm) = 26.58 dB (2.14)
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Figure 2.33: Two-tone third-order intermodulation distortion (IMDj3) plot for Signal Source with a
attenuation factor of 30 dB, a VBW of 1 kHz, a RBW of 1 kHz, a SPAN of 1 MHz. Tone frequencies:

f; = 107.7 MHz, fy = 107.9 MHz. Captured with an HP/Agilent 8562E Spectrum Analyzer.
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2.3.2.5 Frequency Domain Test and Measurement Methodology

The frequency domain data necessary to calculate SFDR, SNR, and the frequency response
of the signal source output was collected simultaneously. The data collection was performed by an
automated measurement Perl script, which controlled both the spectrum analyzer and the measure-
ment board via remote GPIB and USB interfaces. The measurement data took an average of 60
hours to collect for a single measurement board, and the signal source output of four measurement
boards was characterized to determine the average performance. As a result, it was critical to outline
the test procedure and determine the spectrum analyzer settings required to make the best possible

measurement early on in the characterization stage.

Frequency Bands The spectrum analyzer settings and test procedure were empirically deter-
mined over the frequency range from DC to 250 MHz. Given the wide bandwidth of operation for
the signal source, the measurements were divided into eight frequency bands. The eight frequency

bands used by the measurement script are listed below:

DC to 100 kHz

100 kHz to 500 kHz

500 kHz to 1 MHz

1 MHz to 15 MHz

15 MHz to 30 MHz

30 MHz to 60 MHz

60 MHz to 85 MHz

85 MHz to 250 MHz

The final frequency band is the widest because it encompasses the transition band and stop band of

the signal source reconstruction filter.

Signal on Screen As the generated signal passes through the reconstruction filter of the signal
source output, the signal amplitude will attenuate as the frequency is increased from DC to 250 MHz.
Some frequency domain specifications require the generated signal to be further attenuated by fixed

amounts in reference to the full scale output. In the case of SFDR, the attenuation of the generated
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signal is varied by 0 dBFS, —6 dBFS, and —12 dBFS. In addition, SEFDR requires the power level
of each alias and harmonic signal tone to be measured.

When performing frequency domain measurements with a spectrum analyzer, it is impor-
tant to keep as much of the signal on the screen, and preferably in the upper half of the screen,
without clipping the signal. This was achieved by adjusting the following spectrum analyzer param-

eters for each measurement frequency band:

e Start Frequency

Stop Frequency

Sweep Time

¢ Reference Level (RL)

Marker Peak Excursion (MKPX)

Marker Peak Threshold (MKPT)

Resolution Bandwidth (RBW)

Video Bandwidth (VBW)

For a more detailed description of these spectrum analyzer parameters, and how they affect frequency
domain measurements, refer to application note 150 entitled “Spectrum Analyzer Basics” provided
by Agilent Technologies [12].

In addition to varying the spectrum analyzer settings in each measurement frequency band,
the reference level of the spectrum analyzer front end is further adjusted for the SFDR measurement
in the presence of known attenuation. The fundamental and second harmonic frequency tones are
assigned a unique reference level, and the remaining harmonic tones are assigned identical frequency
tones.

In the case of the fundamental tone of each signal frequency, the displayed signal was large
and required an adjustment of the reference level in the range of —5 dBm to 20 dBm, depending
on the frequency of the tone. Signals less than 1 MHz required a larger adjustment of reference
level. For the second harmonic frequency, the signal required an adjustment of the reference level
in the range of —60 dBm to —30 dBm. For all remaining harmonic and alias frequencies, the signal

required an adjustment of the reference level in the range of —70 dBm to —30 dBm.
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Harmonic and Alias Frequencies The algorithm for determining the location of alias frequen-
cies in the first Nyquist zone, as described below, was leveraged from the Maxim Integrated Products

application note 3716 entitled “Folded-Frequency Calculator” [13].

1. Calculate the harmonic frequencies out to the 25" harmonic based on the current signal
frequency ($fin) and store the values in an array of arrays (@fharmAoA). The index of the

harmonic frequencies is stored along with the harmonic frequency.
2. Determine in which Nyquist zone ($zone) the harmonic frequency is located.
3. Determine if the Nyquist zone containing the harmonic frequency is odd or even ($zonecheck).

4. Determine the location of the alias frequencies for those harmonic frequencies based on the

Nyquist zone in which they reside ($fodd and $feven).

5. Store the alias frequencies ($floc) in an array of arrays (@QflocAoA) for later use in the mea-
surement Perl scripts. The Nyquist zone, harmonic frequency index, and harmonic frequency

are stored along with the alias frequency location.

The Perl code, shown in Listing 2.1, describes the algorithm in detail. This sub-routine was used by
the measurement Perl script responsible for characterizing the signal source in the frequency domain.
For CW, or sinusoid signals, harmonic frequencies will be present both in-band and out-of-band.
The signal source operates in the first Nyquist zone, therefore all out-of-band harmonic frequencies
will alias or fold back into the passband of the reconstruction filter. Any out-of-band harmonic
signals that fold back onto in-band signals of the same frequency will add together, resulting in
an increased power level. Fortunately, the resulting alias signals will be attenuated. For example,
a signal operating within the first Nyquist zone at a frequency of 100 MHz will have harmonic
frequencies that fold back into the first Nyquist zone. In this case, the 4", 6t 9" 11th 14th
16t7, 19t", 215, and 24" harmonic signals are located at a frequency of exactly 100 MHz. While
the larger harmonic orders still land at the same exact frequency, their signal power level is heavily
attenuated by the reconstruction filter. In addition, the 2"¢ harmonic is located at 200 MHz,
which has corresponding alias frequencies at the 37, 7th gth 12th 13th 17th 18th 227d and 2374
harmonics. Unfortunately, a significant number of harmonic signals also alias back to DC or 0 MHz,
but these are filtered out by the DC block attached to the Spectrum Analyzer front end. The receiver
of a Spectrum Analyzer can be damaged by a DC signal [12]; therefore, a DC blocking capacitor is

often employed to prevent any unexpected damage while measurements are performed.
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Listing 2.1: Perl sub-routine for Calculating Harmonic and Alias Frequencies

2L

# Calculate Harmonic Frequencies:

s

my (@fharmAoA);

my ($N) = 40;

for (my $i=1; $i <= $N; Si++) {
my ($tmp) = $fin=$i;
push (@QfharmAoA , [ $i ,$tmp]);

# Calculate Locations of Alias and Harmonic Frequencies:

my (QflocAoA);

my ($fs) = 500e6; # Sample Frequency

my ($fnyq) = $fs/2; # Nyquist Frequency

my (3$floc) = 0;

for (my $j=0; $j < scalar (@fharmAoA); $j++) {
my ($fharm) = $fharmAoA[$j][1]; # Harmonic Frequency
my ($fratio) = $fharm/$fnyq; # Ratio of Harmonic to Nyquist Frequency
my ($zone) = floor ($fratio); # Nyquist Zone
my ($zonecheck) = $zone % 2; # Determine if Nyquist Zone is Odd (0) or Even (1)
my ($fodd) = $fharm % $fnyq; # Alias Frequency (odd zone)
my ($feven) = $fnyq — $fodd; # Alias Frequency (even zone)

if ($zonecheck == 0) {
$floc = $fodd;
} else {

$floc = $feven;

}
push (@flocAoA , [ $zone , $tharmAoA[$j][0] , $fharm , $floc]);
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A summary of the signal source specifications are shown in Table 2.5. These specifications

were determined by characterizing the signal source outputs of four General Purpose Instruments.

Table 2.5: Signal Source Specifications

PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
Frequency Domain Specifications

SFDR fpacperxe = 250 MHz, fpac., . = 500 MHz, | 58.00 68.49  76.06 dBc
Single Tone, Sine Wave Power Level -6 dBFS,
First Nyquist Zone < FDAC#

SNR fpacpere = 250 MHz, fpac.,, = 500 MHz, | 99.50 101.02 102.06 dBc
Single Tone, Sine Wave Power Level -6 dBFS

IMDg fpacpone = 250 MHz, fpacy, . = 500 MHz, 68.16 dBc
f; = 107.7 MHz, f; = 107.9 MHz, Power level
of each tone -6 dBFS

TOI fpacponre = 250 MHz, fpacy, . = 500 MHz, 26.58 dB
f; = 107.7 MHz, f; = 107.9 MHz, Power level
of each tone -6 dBFS

Time Domain Specifications

Period fpacpore = 250 MHz, fpacy, . = 500 MHz, le6 8 ns
Sine Wave Power Level 0 dBFS
fpacpone = 250 MHz, fpacs, . = 500 MHz, | 0.001 125 MHz
Sine Waveform Power Level 0 dBFS
fpacpone = 250 MHz, fpacy, . = 500 MHz, | 0.001 25 MHz

Frequency Square Waveform
fpacpone = 250 MHz, fpacy, . = 500 MHz, | 0.001 10 MHz
Ramp Waveform

Amplitude fpacpone = 250 MHz, fpacy, . = 500 MHz, | -300 300 mV
Sine Wave Power Level 0 dBFS

Duty Cycle fpacpere = 250 MHz, fpac.,,. = 500 MHz, 50 %

Sine Wave Power Level 0 dBFS
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Chapter 3

Signal Analyzer

A receiver is a common component of a measurement setup and is used to characterize the
performance of a DUT. Several types of test and measurement equipment act as a receiver (or signal

analyzer) including:
e Spectrum Analyzer
e Network Analyzer
o FFT Analyzer
e Oscilloscope

The AsAP processor is well-suited for signal analysis in both the frequency domain and the time
domain. Frequency domain analysis is performed using a fast Fourier transform (FFT) hardware
accelerator [14]. The AsAP can perform an FFT ranging from 16 points to 4096 points. The
General Purpose Instrument provides a high-speed analog-to-digital converter (ADC) along with
a field programmable gate array to demonstrate the signal analysis capabilities of the AsAP DSP
Processor.

The requirements used for the signal analyzer design are covered in Section 3.1. Section 3.2
describes the design of the signal analyzer and each component in the signal path. The methods
used to verify the performance of the signal analyzer are describe in Section 3.3. And finally the

performance of the signal analyzer is summarized in Section 3.4.
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Figure 3.1: Common Signal Analyzer Block Diagram

Figure 3.1 shows the block diagram of a common receiver used in several types of test and

measurement equipment.

3.1 Requirements

A signal analyzer can have a noticeable impact on the measurement results of a DUT. For
example, a signal which is either too large, or has an incorrect offset level, can clip, resulting in an
incomplete waveform in the time domain and additional spurious signals in the frequency domain.
As such, it is important to understand the capabilities of the signal analyzer when characterizing a
DUT. The following parameters are typically specified for signal analyzers by test and measurement

equipment manufacturers, and were addressed by the General Purpose Instrument signal analyzer:
¢ Bandwidth
e Dynamic Range
e Distortion
e Accuracy

The signal analyzer of the General Purpose Instrument is intended to analyze waveforms in the
frequency range of DC to 120 MHz. Given the wide range of applications in this frequency range,

and the desire to digitize multi-tone waveforms, a wide bandwidth filter is required. The design
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complexity of the anti-alias filter will be determined by the sample rate of the ADC. The goal is
to provide the maximum amount of signal bandwidth (B) without violating the Nyquist sampling
theorem. As the filter’s cut-off frequency approaches the Nyquist frequency (%)7 the cost and
complexity will increase. One possible solution is to oversample the ADC by a factor of two and
set the filter’s cut-off frequency to %. The benefit of this type of architecture is that common and
inexpensive inductors and capacitors can be used along with a filter topology that is simple to design
and debug.

Some signal analysis applications may require signals that are closely spaced in the fre-
quency domain. These applications require excellent dynamic range performance. Dynamic range
is affected by several factors including noise present in the signal path, filter cut-off frequency, and
amplifier performance. The measurement board of the General Purpose Instrument employs board
level shields to enclose the signal analyzer circuitry. The board level shields help minimize the effects
of unwanted signals, such as power supply switching frequencies and harmonic frequencies of the
various clock sources on the board. The use of an oversampled system for the signal analyzer de-
sign should also improve the dynamic range by further attenuating alias frequencies of the sampled

system.
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The General Purpose Instrument signal analyzer was designed to operate in the first

Nyquist zone with a signal bandwidth of 120 MHz. Figure 3.2 shows a high-level block diagram of

the signal analyzer.

Anti—Alias Distortion
Filter Filter
7th Order fc =126 MHz
Chebyshev BW = 120 MHz
fc = 140 MHz
BW = 120 MHz

12
ADC

e CLK/5

O

f =500 MHz

Figure 3.2: Signal Analyzer High-Level Block Diagram

The main building blocks of the signal analyzer

Passive low-pass anti-alias filter

High-speed analog-to-digital converter

are:

Wideband, fixed gain operational amplifier

Digital signal processing, implemented in an FPGA

Wideband, low-noise, low-distortion, differential operational amplifier

Each of the building blocks listed above is described in Subsections 3.2.1 to 3.2.8.

FPGA
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3.2.1 Signal Analyzer IF Design

The design of the General Purpose Instrument signal analyzer began with an investigation
of the contribution of each component in the signal analyzer intermediate frequency (IF) chain. The
goal of this investigation was to determine the power level at the input of the high-speed ADC given
an input impedance of 200 €2 and a peak-to-peak voltage of 2 V,,,. An Excel spreadsheet was used

to determine the following parameters at each component of the signal analyzer IF chain.
o CW Signal Level
e System Gain
e System Noise Figure

The gain, noise figure (NF), and input TOI contribution for each component in the signal analyzer
IF chain were entered into the spreadsheet. An initial input power of —10 dBm was assumed. A
summary of the input values and associated results are shown in Table 3.1. The spreadsheet uses
macros to generate two plots. Figure 3.3 shows a plot of the gain, noise figure, and TOI. Figure 3.4
shows a plot of the excess noise and TOI. The values in Table 3.1 were determined by monitoring
the data in Figures 3.3 and 3.4. In Figure 3.3, the goal was to adjust the parameters such that the
noise figure data does not intersect with the gain data. In Figure 3.4, the goal was to adjust the
parameters such that the vertical bars are approximately centered around the noise figure of the
ADC (18.98980 dB) represented by the dotted horizontal line.

The values listed in Table 3.1 were used to design the signal analyzer. Based on Table 3.1,
the signal power level at the high-speed ADC is +3.00 dBm. The signal analyzer IF chain has a

system gain of +13 dB.



BLOCK NAME TLA Gain NF Input TOI | CW Signal Level | System Gain | System NF
(dB) (dB) (dBm) (dBm) (dB) (dB)
Input Input -10.00
-3dB PAD VA1l -3.00 3.00 -13.00 -3.00 3.00
Amp (THS4302) Ampln 14.00 16.00 30.00 1.00 11.00 -11.00
-1dB PAD Pad -1.00 1.00 0.00 10.00 -10.00
Anti-Alias Filter AAF -2.40 2.40 -2.40 7.60 -7.60
-1dB PAD Pad -1.00 1.00 -3.40 6.60 -6.60
Amp (THS4509) DiffAmp || 8.00 17.10 38.00 4.60 14.60 10.50
Distortion Filter FLTR -1.60 1.60 3.00 13.00 10.51
TT ADS5463 ADC 18.98980 44.80 3.00 13.00 11.81

Table 3.1: Estimated signal analyzer IF performance
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3.2.2 Low Noise Amplifier Design

A Texas Instruments THS4302 wideband, fixed gain amplifier with a signal bandwidth of
2.4 GHz is used to drive the input signal into the anti-alias filter [15]. The baseband signal analyzer
front-end was designed to terminate the input signal into a 50 €2 impedance and amplify the signal
by +11 dB. A —3 dB PAD, or attenuator, precedes the THS4302 amplifier, which was internally
configured to have a gain of +14 dB. The attenuator was designed using a pi-pad configuration with
discrete resistors. Figure 3.5 shows the THS4302 fixed-gain amplifier and attenuator circuits of the

baseband signal analyzer.

3 dB PAD Low Noise Amplifier

17.4 Ohm 50 Ohm

THS430, —@

wyo /8¢
wyo /8¢
wyo 0s

Figure 3.5: Amplifier Schematic

3.2.3 Anti-Alias Filter Design

In general, wide-band passive filters are difficult to implement with sufficient ripple and
stop-band performance [7]. The role of a anti-alias filter is to attenuate harmonic and alias frequen-
cies to a sufficient power level before they fold back into the pass band of the filter. In a typical
sampled system operating in the first Nyquist zone, the cut-off frequency of the anti-alias filter would
be set to a frequency slightly less than % As the filter’s cut-off frequency approaches the Nyquist
frequency the steepness of the transition band increases. Figure 3.6(a) highlights the shape of the
anti-alias filter when sampling at twice the Nyquist frequency.

The baseband signal analyzer takes advantage of oversampling to greatly simplify the im-
plementation of the anti-alias filter. Figure 3.6(b) shows the effects of oversampling on the anti-alias
filter. The high-speed ADC was oversampled by a factor of two, which allowed a —3 dB frequency
well within the first Nyquist zone. As a result, the signal analyzer can cleanly pass sinusoid wave-

forms up to 120 MHz with relative ease.
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Amplitude (dB)

fs 3f,/2 2f, 5f,/2
Frequency

fJl4 f,/2 3f,/4 fs 5f,/4
Frequency

Figure 3.6: (a) Example of Nyquist sampling and the requirements for the anti-alias filter. (b) Ex-
ample of anti-alias filter constraint relaxation as a result of oversampling by 2.

The anti-alias filter was designed using Agilent Technologies’ Genesys Filter Synthesis software. The

first step in designing the filter involved setting the desired specifications including:

—3 dB frequency: 130 MHz

Passband ripple: 0.5 dB

Stopband attenuation: 60 dB

¢ Input impedance: 50 2

Output impedance: 50 €2

The second step was to select a filter type, filter shape, and filter topology. The baseband signal
analyzer uses a 7/"-Order Chebyshev low-pass differential filter topology. Upon defining the filter
specifications, the Genesys Filter Synthesis software generated the filter schematic and simulated
frequency response shown in Figures 3.7 and 3.8, respectively. The simulated frequency response

was evaluated to ensure the desired specifications would be met by the filter design.



CHAPTER 3. SIGNAL ANALYZER

> antialias_filter_Design

CTE BN

K|
Parilist [ Schematic

Pori_1 L 77 02nH L=! 82 29nH L 77 02r|H

C=42 539pF C=64 601pF I C=64 601pF I C=42 539pF

Lo

Figure 3.7: Genesys Filter Synthesis 7*"-Order Chebyshev low-pass filter schematic
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The inductor and capacitor values shown in the Figure 3.7 were generated by the Genesys Filter
Synthesis software, and were used as a starting point to select practical component values. When
choosing component values for the anti-alias filter, it was necessary to use multiple components to
achieve the correct values. In the case of inductance, the inductors were placed in series; in the case

of capacitance, the capacitors were placed in parallel.

Reference Designator | Calculated | Practical Series/Parallel
L1 77.02 nH 71 nH 22 nH+27 nH+22 nH
L2 82.29 nH 76 nH 27 nH+22 nH+27 nH
L3 77.02 nH 71 nH 22 nH+27 nH+22 nH
C1 42.539 pF 39.6 pF 3.6 pF+36 pF
C2 64.601 pF 59.9 pF 3.9 pF+56 pF
C3 64.601 pF 59.9 pF 3.9 pF+56 pF
C4 42.539 pF 39.6 pF 3.6 pF+36 pF

Table 3.2: A comparison of calculated and practical component values for the anti-alias filter

The schematic shown in Figure 3.9 represents the single-ended low-pass filter that was simulated

using LTSpice.

Figure 3.9: LTSpice 7**-Order Chebyshev differential low-pass filter schematic
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The simulated frequency response of the Chebyshev filter, shown in Figure 3.10, has a
cut-off frequency of 141 MHz, which is different from that specified in the Genesys Filter Synthesis
software. However, the increased cut-off frequency provides for more signal bandwidth in the anti-

alias filter.

0 —
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Figure 3.10: LTSpice 7*"-Order Chebyshev low-pass filter simulated frequency response. The mea-
sured performance of the 7¢"-Order Chebyshev low-pass filter is shown in Figure 3.26.

Table 3.3 outlines the estimated performance of the 7t"-Order Chebyshev low-pass anti-alias filter.

PARAMETER VALUE
-3 dB Frequency 141 MHz
Bandwidth 120 MHz
Passband Ripple 0.5 dB
Signal Attenuation 2.4 dB
Stopband Attenuation 60 dB

Table 3.3: Estimated anti-alias filter specifications
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7th Order Chebyshev Low Pass Filter

71 nH 76 nH 71 nH

SO TR AU SIS S
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Figure 3.11: Detailed schematic of the signal analyzer anti-alias filter

The final implementation of the anti-alias filter used in the signal analyzer is shown in Figure 3.11.

The bill of materials for the anti-alias filter is shown in Table 3.4.



Reference Designator

Manufacturer

Part Number

Description

C16, C17 Murata Electronics | GRM1885C1H3R6CZ01D | 3.6 pF, 50 V Ceramic Capacitor

C143, C144 Murata Electronics | GRM1885C1H3R9CZ01D | 3.9 pF, 50 V Ceramic Capacitor

C21, C22 Murata Electronics | GRM1885C1H360JA01D | 36 pF, 50 V Ceramic Capacitor

€26, C27 AVX Corporation 06035A560JAT2A 56 pF, 50 V Ceramic Capacitor
L121, L122, 1123, L124, L125 Coilcraft 0603CS-22NXJL 22 nH, 700 mA Ceramic Chip Inductor
L71, L72, L73, L74 Coilcraft 0603CS-27TNXJL 27 nH, 600 mA Ceramic Chip Inductor

Table 3.4: Anti-alias filter bill of materials
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3.2.4 Differential Amplifier Design

A Texas Instruments THS4509 wideband, low-noise, low-distortion fully-differential am-
plifier with a signal bandwidth of 1.9 GHz is used to drive the high-speed ADC input [16]. The
amplifier is used to convert the anti-alias filter output signal (AIN) from single-ended to differential.
The THS4509 is configured to amplify the anti-alias filter output signal by a gain of +8 dB. Fig-
ure 3.12 shows the THS4509 fully-differential amplifier and the high-speed ADC input filter circuits

of the baseband signal analyzer.

Differential Amplifier Distortion
- Filter

100 Ohm

| ' /AOUT
5.1 pF

I AOUT
100 Ohm

50 Ohm CM
O

0.1uF

€ AIN

ONO)

wyo 189

el
1

i

Figure 3.12: Differential Amplifier Schematic

The common mode (CM) input is driven by the high-speed ADC and is used to set the common
mode of the differential amplifier output to +2.4 V. The high-speed ADC input signal will swing at
most 2.2 Vi, about the +2.4 V common mode voltage. The output resistors and 5.1 pF capacitor
create a low-pass filter, also known as a distortion or interface filter. The role of the distortion filter
is to provide adequate rejection of harmonic aliasing and noise folding in the second Nyquist zone,
which starts at 380 MHz (Fs — F,4.). The distortion filter was designed using a single-pole, RC
filter topology, with a —3 dB frequency of 123 MHz. Figure 3.13 shows the simulated frequency

response of the distortion filter.
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Figure 3.13: Tina-TI differential low-pass distortion filter simulated frequency response. The mea-
sured performance of the differential low-pass distortion filter is shown in Figure 3.33.

3.2.5 High-Speed Analog-to-Digital Converter

A Texas Instruments ADS5463 12-bit, 500 MS/s analog-to-digital converter is used to
digitize the analog waveforms for the baseband signal analyzer. The ADC is sampled at 500 MS/s,
the same rate as the DAC, which allowed the signal source and signal analyzer DSP designs to
coexist in the same FPGA. This capability is especially important when the signal source is used to
stimulate a DUT and measure its performance with the signal analyzer.

The high-speed ADC digital interface is made up of a single out-of-range signal and 12-bits
of double data rate data in bipolar offset binary (BOB) format. The digital interface of the ADC
operates at 250 MHz, which corresponds to a data rate of 500 Mb/s for each data bit. The Xilinx
Virtex-5 SX50T FPGA core logic is only capable of operating at frequencies up to 450 MHz, so
a straightforward 12-bit data path could not be implemented. Instead, the 12-bit ADC data was
first sign-extended to 16-bits and then extended to 128-bits in order to use the built-in input serdes
(ISERDES). The ISERDES facilitate higher external data rates, while keeping the internal data bus
at a more manageable rate.

In the case of the signal analyzer, the internal data rate is operating at 250 Mb/s divided
by 4, which is equivalent to 62.5 Mb/s. The ISERDES are used in an 1:8 DDR configuration, which

requires a high-speed clock of 250 MHz and a low-speed clock of 62.5 MHz. The internal data is
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running at a single data rate, and the external data is running at a double data rate.

The differential analog input of the high-speed ADC was inverted as a result of the differ-
ential operational amplifier package pinout. The goal of the signal analyzer PCB layout was to keep
the signal path traces on the top layer therefore, avoiding the use of vias. As a result, the digitized
data must also be inverted in the FPGA to achieve the correct representation of the signal data.

The DSP sub-system requires the high-speed ADC data to be represented in bipolar two’s
complement (BTC) format. The high-speed ADC data is converted to BTC at the same time as
the inversion is performed. Typically, when converting from BOB to BTC coded formats, the most-
significant bit (MSB) of the data word would be inverted. However, since the high-speed ADC data
must be inverted, the least significant bits (LSB) of the data word are inverted instead of the MSB
data bit. Table 3.5 highlights the relationship between the bipolar offset binary and bipolar two’s
complement coded formats relative to full scale (F'S) high-speed ADC output data. When converting
between coded formats it is important to know that the digital zero 0000 corresponds to the bipolar

zero (BPZ).

Table 3.5: Bipolar Offset Binary to Bipolar Two’s Complement Conversion

MNEMONIC | PIGITAL CODE
BOB BTC
-FS 0000 1000
0001 1001
0010 1010
0011 1011
1.FS 0100 1100
0101 1101
0110 1110
BPZ -1V sp | 0111 1111
BPZ 1000 0000
BPZ + 1Vpsp | 1001 0001
1010 0010
1011 0011
3+FS 1100 0100
1101 0101
1110 0110
+FS 1111 0111
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3.2.6 Digital Signal Processing

The digital signal processing sub-system of the signal analyzer is made up of a high-
performance field programmable gate array and two AsAP digital signal processors. The DSP
sub-system is responsible for digitizing and capturing analog signals from the high-speed ADC. The

signal analyzer can digitize and transfer data to several locations including:

2-Mbit Block RAM

32-Mbit QDR-II SRAM

AsAP DSPs

FPGA logic

The current implementation of the signal analyzer design supports only the storing of signals to
QDR-IT SRAM and Block RAM. Figure 3.14 shows the major components of the DSP sub-system,
and Figure 3.15 shows a detailed view of the FPGA data path.

Several key design areas were addressed during the development of the DSP sub-system

including:

High-speed ADC interface

Waveform DC offset

Waveform capture

Multiple clock domains

Each of the design areas listed above is described in Subsections 3.2.6.1 to 3.2.6.2.
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3.2.6.1 Waveform Capture

The signal analyzer was designed to capture digitized waveforms from the high-speed ADC.
The amount of storage required for a sinusoid waveform of frequency F. can be calculated using

Equation 3.1, where Fj is the sample frequency of the ADC and R is the resolution of the ADC.

F
NumBits = 7 R (3.1)

C

The waveform capture sub-system uses a 128-bit data bus to transport data from the ADC sub-
system to each data consumer. The signal analyzer will capture a minimum of sixteen 16-bit wave-
form samples. The internal data bus width is essentially made up of eight 16-bit data samples,
which lends itself to polyphase or parallel DSP operations. The data bus operates at a clock rate of

62.5 MHz. The digitized data can be routed to one of two sources:
e 2 Mbits Block RAM

e 32 Mbits QDR-II SRAM

Block RAM The block RAM memory is capable of storing waveforms up to 128-kSamples, and

is arranged as 16-kwords x 128-bits.

QDR-II SRAM The QDR-II SRAM memory is capable of storing waveforms up to 2-MSamples,

and is arranged as 256-kwords x 128-bits.
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3.2.6.2 Waveform DC Offset

The baseband signal analyzer allows the user to adjust the DC offset voltage of the digitized
data. This feature is implemented using a DSP48 slice in the Xilinx Virtex-5 FPGA, and takes
advantage of the properties of the two’s complement numbering scheme. A DSP48 slice can perform

a combination of 25-bit x 18-bit multiplies and 48-bit additions.

Offset Depending on the DUT, the input signal of the signal analyzer may require an offset voltage
other than ground, or 0 Volts. A waveform signal can be offset by adding an offset value to the
digitized waveform data. The baseband signal analyzer input typically swings about ground. An
offset voltage is introduced to the waveform data by adding a two’s complement 12-bit value, which

represents every integer in the range —2'2 to (+2'2 — 1). In order to adjust the offset voltage such

Vampl
2

that the waveform signal swings about , the waveform data can be summed with a value of
(212 — 1) or 0xO7TFF. The waveform signal is offset in the baseband signal analyzer by employing
a bank of eight DSP48 slices configured as 17-bit adders, which provide a 16-bit result and a 1-bit

overflow flag. The offset parameter is sign-extended to 16-bits before the add operation is performed.

The same offset value is used for all eight DSP48 slices.
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3.2.7 Clock Generation and Distribution

A key element of the baseband signal analyzer is the clock generation and distribution
scheme. The successful analysis of arbitrary waveforms depends on synchronous high performance
clocks. Several schemes were used to generate and distribute synchronous clocks throughout the
DSP sub-system. Figure 3.16 describes the clock relationship between the various DSP components

of the baseband signal analyzer.

3.2.7.1 High-Speed Clock Generation

An Analog Devices AD9516-3 14-output clock generator is responsible for generating all
clocks for the baseband signal analyzer. A Universal Microwave Corp UMX Series 1 GHz voltage
controlled oscillator is used to drive the AD9516-3 external RF clock input. Using the external
1 GHz VCO, the output frequency range of the AD9516-3 is 15.625 MHz to 1 GHz. The AD9516-3

clock generator is responsible for generating two clocks:
e 100 MHz data path FPGA clock
e 500 MHz high-speed ADC sample clock
Data Path FPGA Clock Generation The data path FPGA uses an internal phase-locked loop

primitive to generate several clocks from the 100 MHz clock input. The PLL primitive generates

the following clocks:
e 250 MHz high-speed clock
e 62.5 MHz internal core low-speed clock
The 62.5 MHz internal core low-speed clock is used to clock the waveform capture logic. The 250 MHz

high-speed clock is used to clock the 32-Mbit QDR-II SRAM memory device and controller.

High-speed DAC Sample Clock Generation The high-speed ADC is sampled by the 500 MHz
clock generated by the AD9516-3 clock generator. The high-speed ADC uses both edges of the clock
for the data conversion process. In addition, the sample clock is used to generate the data ready

signal.
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3.2.7.2 High-Speed ADC Data Ready

The high-speed ADC generates a data ready (DRY) signal that operates at half the sample
clock frequency; as such, it can be used as a half-rate DDR clock. The data ready signal is source-
synchronous to the 12-bit data and over-range indicator outputs. The data path FPGA receives the
data ready signal on a clock capable pin, and drives it into special clock buffers, BUFIO and BUFR,
designed to clock the ISERDES devices of a Virtex-5 SX50T FPGA. The BUFIO clock buffer drives
a dedicated clock net within the I/O column, which contains the ISERDES devices. The BUFR is
a regional clock buffer capable of driving a dedicated clock net within a clock region. Unlike the
BUFIO clock buffer, the BUFR clock buffer can drive both I/0 logic and regular logic resources. In
addition, the BUFR clock buffer is capable of dividing its input clock by an integer value between
one and eight [17]. The data path FPGA uses the ISERDES devices in a 1:8 DDR mode, which
requires a half-rate clock to drive its high-speed clock input and a divide-by-4 clock to drive its
divided clock input. Figure 3.16 highlights the clock buffer configuration used by the data path
FPGA.
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3.2.8 Digitized Waveform Examples

A detailed block diagram of the baseband signal analyzer is shown in Figure 3.18. The

signal analyzer was designed to digitize both CW and arbitrary waveforms, examples of which are

listed below:

e A sawtooth signal (Figure 3.17).

A CW signal operating at 100 MHz in the frequency domain (Figure 3.19).

A CW signal operating at 100 MHz in the time domain (Figure 3.20).

A three tone sine waveform operating at 80 MHz, 90 MHz, and 100 MHz in the frequency

domain (Figure 3.21).

A three tone sine waveform operating at 80 MHz, 90 MHz, and 100 MHz in the time domain
(Figure 3.22).

A ramp signal operating at 5 MHz in the time domain (Figure 3.24).

e A ramp signal operating at 5 MHz in the frequency domain (Figure 3.23).

amplitude (V)
o
D

0.2t 4

[ I | | ]
20 30 40 50 60 70 80 90 100
time

1 1 1 1

Figure 3.17: Sawtooth Waveform. Stimulated with a General Purpose Instrument Signal Source.
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Figure 3.19: Single Tone Sine Wave at a frequency of 100 MHz with a power level of —5 dBm.
Stimulated with an Anritsu MG3692A RF /Microwave Signal Generator.
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Figure 3.20: Sine Waveform at a frequency of 100 MHz with a power level of —5 dBm. Stimulated
with an Anritsu MG3692A RF/Microwave Signal Generator.
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Figure 3.21: Three Tone Sine Wave at frequencies of 80 MHz, 90 MHz, and 100 MHz. Stimulated
with a General Purpose Instrument Signal Source.
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Figure 3.22: Three Tone Sine Wave at frequencies of 80 MHz, 90 MHz, and 100 MHz. Stimulated
with a General Purpose Instrument Signal Source.
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Figure 3.23: Ramp Waveform at a frequency of 5 MHz. Stimulated with a General Purpose Instru-
ment Signal Source.
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Figure 3.24: Ramp Waveform at a frequency of 5 MHz. Stimulated with a General Purpose Instru-
ment Signal Source.
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3.3 Verification

The General Purpose Instrument signal analyzer was designed to be used in test and
measurement applications. However, before it could be utilized its performance had to be evaluated
and shown to meet the intended specifications. The performance of the signal analyzer was evaluated
in both the frequency and the time domain using an assortment of test and measurement equipment.

In addition, the performance was evaluated across multiple boards.

3.3.1 Frequency Domain Measurements

The goal of the frequency domain measurements was to verify the quality of the signal
analyzer when receiving both CW and arbitrary waveform signals. Receiver tests are typically
performed using signal generators and arbitrary waveform generates to stimulate the receiver signal
path and DSP sub-systems. However, test paths were provided in the baseband signal analyzer for
characterizing the performance of individual signal path elements with a network analyzer. The

signal analyzer frequency domain measurements were split up into two areas:
o Anti-alias filter characterization

e Receiver characterization

3.3.1.1 Anti-Alias Filter Frequency Measurements

The signal analyzer anti-alias filter frequency domain characterization consisted of analyz-
ing its frequency response and identifying the —3 dB frequency. The frequency domain characteri-

zation was performed using the following equipment:
o Agilent E8358A Performance Network Analyzer (300 kHz to 9 GHz)

e HP/Agilent E2050A LAN-to-GPIB Gateway

Frequency domain data is extracted from the Agilent E8358A Performance Network Analyzer by
use of an HP/Agilent E2050A LAN-to-GPIB gateway. A GPIB connection is made between the
HP/Agilent E2050A and the Agilent E8358A Performance Network Analyzer. The Agilent ES358A
Performance Network Analyzer is then controlled via a Perl script over a LAN connection made
between the HP /Agilent E2050A and the controlling computer. In addition to control, the Perl script
also performed data collection and waveform extraction. The basic measurement block diagram used

to collect data is shown in Figure 3.25.
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—3 dB Frequency Measurements A network analyzer is used to analyze the frequency response
of an anti-alias filter and to determine the —3 dB frequency. The Agilent E8358A Performance
Network Analyzer sweeps its CW signal source from DC to 1 GHz. The S-parameters of the two-
port network are recorded at each frequency point in real and imaginary format, including S11, S21,
S12, and S22. The frequency response of the anti-alias filter is represented by the S21 S-parameter

data. The real and imaginary data was converted to a power level in decibels using Equation 3.2.

Pipm = 20 -logy, (|s21_real + i - s21_imagl|) (3.2)

Using the power level information, the frequency response is displayed using an x versus y plot, where
the x-axis is plotted in a logarithmic scale. Figure 3.26 shows the resulting frequency response curve
created by measuring the power level of the fundamental signal tone at each frequency from DC to
the Nyquist frequency. The measured —3 dB frequency was 135 MHz, which is 5 MHz more than
the target cut-off frequency.

The noise floor of the S21 measurement is limited by the noise level of the Agilent ES358A

Performance Network Analyzer.
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Figure 3.26: Signal Analyzer Anti-Alias Frequency Response. Captured with an Agilent E8358A
Performance Network Analyzer.
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3.3.1.2 Receiver Characterization

Receiver characterization encompasses the entire signal analyzer IF chain. The signal
analyzer input is stimulated with a variety of signals and the digitized waveform data is then analyzed
using Matlab. The digitized data is captured directly from the high-speed ADC via the Control and
Data Path FPGAs on the measurement board. The receiver characterization for the signal analyzer
consisted of evaluating the DC performance, the two-tone third-order intermodulation distortion

performance, and the frequency response to determine the —3 dB frequency.

DC Measurements A desired feature of a receiver is sensitivity, thus it is helpful to first under-
stand the performance of a receiver under DC conditions. The basic measurement block diagram
used to collect data is shown in Figure 3.27. A 50 €2 load was attached to the signal analyzer input to
provide a DC signal. The measurement was performed with the lid of the board level shield removed

to provide a worst case analysis. The noise floor can be affected by many factors, including:
e Power supply noise
¢ Electromagnetic interference (EMI)
e ADC dynamic range and resolution

Figures 3.28 and 3.29 show the signal analyzer performance when terminated with a 50 2 load in
the time and frequency domain, respectively. As shown in Figure 3.29, the noise floor of the signal

analyzer is —98 dBm.
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Figure 3.29: DC Waveform shown in the frequency domain. Stimulated with a 50 2 attached to the
input of the General Purpose Instrument Signal Analyzer.
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—3 dB Frequency Measurements Two methods are commonly used to analyze the frequency
response of a signal analyzer and determine the —3 dB frequency. The simplest and least accurate
method is to generate a comb signal, also known as a bed of nails, which contains signal tones from
DC to the Nyquist frequency. The comb signal used to stimulate the low-pass filter is shown in
Figure 2.27. The resulting signal received by the baseband signal analyzer will have the shape of
a low-pass filter’s frequency response. From this information the —3 dB frequency of the signal
analyzer output can be roughly estimated. Figure 3.31 shows the resulting frequency versus power
level data extracted from the baseband signal analyzer with a —3 dB frequency between 133 MHz
and 135 MHz, which is 5 MHz above the target —3 dB frequency. The increased —3 dB frequency
results in more signal bandwidth.

A more accurate method to analyze the frequency response is to sweep the signal analyzer
from DC to the Nyquist frequency. The power level of each each frequency point is recorded. Using
the power level information, the frequency response can then be displayed using an x versus y plot,
where the x-axis is plotted in a logarithmic scale. Figure 3.33 shows the resulting frequency response
curve created by measuring the power level of the fundamental signal tone at each frequency from
DC to the Nyquist frequency. The measured —3 dB frequency was 134 MHz, which is 4 MHz more
than the target cut-off frequency. The basic measurement block diagram used to collect data is

shown in Figure 3.32.
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Figure 3.30: Comb input signal used to stimulate the signal analyzer to evaluate the IF frequency
response. Generated by the General Purpose Instrument Signal Source.
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Figure 3.31: Comb Signal Frequency Response. Captured with the General Purpose Instrument
Signal Analyzer.
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Figure 3.33: Signal Analyzer Frequency Response. Captured with the General Purpose Instrument
Signal Analyzer.

Two-tone Third-order Intermodulation Distortion Measurement The presence of multiple
signals in a system is sometimes desired; for example, the generation of multi-tone signals or comb
signals. However, undesired signals (e.g., noise) are typically present in a signal system and can mix
with the desired signal to generate distortion products. Understanding the effects of distortion is
important when evaluating the measurement results of a DUT.

Intermodulation distortion is a type of distortion caused by the presence of two or more
signal tones at the input of a non-linear device [10]. This distortion causes spurious signals to be
generated, which are related to the original signal tones. The complexity of the distortion increases
as the number of signal tones present in the system increases beyond two. As such, the distortion
performance of signal analyzer systems are typically analyzed with two signal tones. The relationship

of the two original signal tones and the generated spurious signal tones is described by Equation 3.3.

M- fi+N-fy, where M, N = 0, 1, 2, 3, ... (3.3)

The order of the distortion product is represented by the sum of M + N. For example, the third-order
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intermodulation products of two signals at f; and fy would be:

2-fi+ fa
2-fi—fa
fi+2fo

fi—=2-fo

Third-order two-tone intermodulation distortion is a metric used to describe the distortion
performance of a transmitter or receiver when multiple signal tones are present in the data stream.
It is measured by driving two spectrally pure sine waves through the DUT at frequencies f; and
fs, where the difference in frequency is small. The amplitude of each tone is generally attenuated
by 6 dB to avoid clipping in the signal system. It is typically specified in dBc relative to the value
of either of the two input tones [11]. Figure 3.32 shows the test setup used to measure third-order
two-tone intermodulation distortion.

The IMD3 performance of the signal analyzer was measured using two signal tones at

frequencies:
e f; = 107.7 MHz
o f5 = 107.9 MHz

Figure 3.34 shows the resulting IMD3 measurement performed with the baseband signal analyzer.
The IMD3 parameter was determined by measuring the power level of a fundamental signal tone,
f; or fa, (P,) and one of the spurious tones (P,,) in units of dBm. Equation 3.4 describes the

relationship between P, and P,, when calculating IMDs.
IMDs =P, —P,, =—17.9 dBm — (—82.27 dBm) = 64.37 dBc (3.4)

An additional parameter, known as the third-order intercept (TOI) point, can be used to quantify
the distortion performance of a signal analyzer. TOI can be calculated using the power level of the
fundamental tones along with the third-order two-tone intermodulation distortion, and is typically

specified in dB. Equation 3.5 describes the relationship between P, and IMDs.

TOTI — HWQDS P, = 64.372dBc

+(—17.9 dBm) = 14.285 dB (3.5)
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Figure 3.34: Two-tone third-order intermodulation distortion (IMD3) plot for Signal Analyzer. Tone
frequencies: f; = 107.7 MHz, f, = 107.9 MHz. Captured with the General Purpose Instrument
Signal Analyzer.
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3.4 Specifications

93

A summary of the signal source specifications are shown in Table 3.6. These specifications

were determined by characterizing the signal analyzer outputs of four General Purpose Instruments.

Table 3.6: Signal Analyzer Specifications

PARAMETER TEST CONDITIONS MIN TYP MAX | UNIT
Frequency Domain Specifications
IMD3 fapcporre = 250 MHz, fapcs, . = 500 MHz, 64.37 dBc
f; = 80 MHz, f, = 100 MHz, Power level
of each tone -6 dBFS
TOI fapCpers = 250 MHz, fapc,., . = 500 MHz, 14.285 dB
f; = 107.7 MHz, f; = 107.9 MHz, Power level
of each tone -6 dBFS
Time Domain Specifications
Period fapcponre = 250 MHz, fapcs, . = 500 MHz, | 1e6 8 ns
Sine Wave Power Level 0 dBFS
fapcpone = 250 MHz, fapce, . = 500 MHz, | 0.001 125 MHz
Sine Waveform Power Level 0 dBFS
fapcporre = 250 MHz, fapcs, . = 500 MHz, | 0.001 25 MHz
Frequency Square Waveform
fapcponre = 250 MHz, fapcs, . = 500 MHz, | 0.001 10 MHz
Ramp Waveform
Amplitude fapcponx = 250 MHz, fapc., . = 500 MHz, | -1.1 1.1 A%

Sine Wave Power Level 0 dBFS
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Chapter 4

Measurement Board

The asynchronous array of simple processors is a single-chip, multi-core, computational
platform that is well-suited for DSP, embedded, and multimedia applications [4]. A measurement
board was designed to aid in developing software applications targeting the AsAP processor. The

following is an example of the types of applications supported by the measurement board:

Software defined radio

Signal source

Arbitrary waveform generator

Spectrum analyzer

Network analyzer

FFT analyzer

Oscilloscope

To demonstrate the capabilities of the AsAP processor, a high-speed ADC and DAC, along
with several types of memory, were included on the measurement board. Two AsAP chips were
provided to fully exercise the ADC and DAC circuits. A companion FPGA facilitates communication

between the AsAP and the memory devices.
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4.1 Requirements

The combination of digital and analog circuits creates a difficult environment to maintain
the high level of performance required by the measurement board. To ensure optimal performance,

the following areas of printed circuit board (PCB) design were addressed:

e Power Distribution System

Radio Frequency and Electromagnetic Interference (RF/EMI)

e Component Placement

Layout Strategy

Signal Integrity

4.1.1 Power Distribution System

Many factors of printed circuit board design can affect the performance of the power distri-
bution system (PDS) including the construction and layer stackup of the PCB, power supply filter
design, and IC power supply decoupling schemes. The PDS is responsible for distributing clean
power, power supply decoupling, and providing a low-impedance return path for current [18,19].

The layer stackup was designed to minimize the coupling of power supply noise onto trans-
mission lines of adjacent PCB layers. In addition, power supply filters were designed to filter out
the switching frequency of the power supply regulators and converters. Adequate bypassing was
provided for both the analog and digital devices, and X2Y capacitors were used in order to minimize

mounting inductance on the PCB.

4.1.2 Component Placement

The measurement board was designed to fit in a 1U tall, rack-wide instrument chassis.
Component placement is critical for the successful routing of the measurement board. The front
and rear panel I/O connections on the measurement board are located at fixed positions and were
used as starting points for the component placement. The pre-layout placement was performed
using a preliminary board outline. As the layout of the board evolved, modifications were made to
the component placement. In addition to the location of the components, the physical size of the
components must also be evaluated based on their relative position in the chassis. For example,

components that are too tall for the bottom side must be relocated to the top side, and vertical
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connectors placed too close to each other must be separated to accommodate insertion and removal

of cable assemblies.

4.1.3 Layout Strategy

Manufacturers of high-speed devices with parallel data busses typically require matching
the trace length of each signal in the bus for proper operation. However, due to component placement
density and the number of data busses that needed to connect to the Data Path FPGA, it is not
always possible to meet this requirement. The measurement board takes advantage of special FPGA
delay elements in an attempt to equalize the trace lengths of each connecting data bus. For example,
the measurement board uses high-speed, synchronous 36 Mbit QDR-IT SRAM for waveform capture
and playback. The synchronous SRAM operates at 250 MHz double data rate and has separate
36-bit read and write busses. The Xilinx SRAM memory controller requires the lengths of the read
data, write data, and control signals to be matched. The density of signals connected between the
SRAM and the FPGA is such that it is difficult to successfully match the length of all the traces.
The use of FPGA delay elements greatly simplified the routing of the SRAM signals.

The use of an FPGA offers flexibility in the pin assignment of signals. Pin planning was
performed for the FPGA signals with the aid of the preliminary component placement. Lack of
pin planning can result in an unrouteable design. For example, assigning the signals of a data bus
without proper planning may result in signals being crossed, which would require the use of many

vias to effectively unravel the signals and result in poor signal performance.

4.1.4 Radio Frequency and Electromagnetic Interference

The target bandwidth for the signal source and analyzer is 120 MHz. Both front-ends were
designed for operation in the first Nyquist zone (DC-120 MHz). Any signals on the measurement
board operating at or below 120 MHz can potentially mix with the signal being generated or analyzed.
The harmonics and sub-harmonics of any signals operating faster than 120 MHz are also potential
sources of noise. In an attempt to minimize signal corruption, the signals of the front-end designs
were routed on the top layer and enclosed in a board-level surface mount shield.

High-speed devices are susceptible to simultaneous switching noise (SSN), which is caused
by more than one I/O toggling at the same time. The interconnection of the high-speed devices on the
measurement board which share a common power supply can cause a significant voltage drop when

I/O are switching at the same time. There are many ways to combat the effects of SSN including
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minimizing the number of I/Os that may switch simultaneously in FPGA I/O banks, providing
adequate power supply decoupling, employing differential signal topologies, and minimizing the
inductance of decoupling capacitors [20]. All high-speed devices were decoupled using a combination
of tantalum, ceramic, and X2Y capacitors. The use of decoupling capacitors ensures that each high-
speed device has the appropriate amount of transient current during device operation [21].

The close proximity of unique power supply regulators that have a common input voltage
can add noise to the input supply. This is especially true when unshielded inductors are used in
power supply filters. In an attempt to minimize EMI, shielded inductors were employed in the power

supply filters of DC/DC converters.

4.1.5 Signal Integrity

The electrical performance of the high-speed signals on the measurement board is very
important. Impedance discontinuities of high-speed traces can cause several problems including
reflections and ringing. High-speed circuits were simulated using a variety of simulators such as
Agilent’s advanced design system (ADS), Linear Technology’s LTSpice, and DesignSoft’s TINA
to ensure the best signal integrity. Both single-ended and differential transmission line structures
were used to achieve the target impedance of each high-speed trace. Single-ended transmission lines
typically have a target impedance of 50 €2, whereas differential transmission lines have an impedance
of 100 Q. In addition to impedance, high-speed signal paths were also designed to minimize reflections

by using either source or end terminations, or a combination of the two.
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4.2 Design

The measurement board, shown in Figure 4.1, was designed using Mentor Graphics DxDe-
signer Schematic Entry and PADS Layout software over a period of six months. It contains 2,262
components and cost approximately $4,000.00 to fabricate and assemble. The overall dimensions of
the measurement board are 15.51 inches X 12.05 inches. Given the size, component density, and

routing density it is considered to be a complex printed circuit board.

Figure 4.1: Measurement Board ISO View.

4.2.1 Printed Circuit Board Construction

The measurement printed circuit board is fabricated using a 12-layer mixed dielectric core

construction and assembled using a lead-free process. The two dielectric materials used are:
e Rogers Corporation RO4003C laminate [22]
e Isola Group FR408 laminate/prepreg [23]

Rogers RO4003C laminate is a low loss material designed for high frequency circuits and has a
dielectric constant (e,) of 3.38. Isola FR408 laminate has similar properties to conventional FR-4
and a dielectric constant of 3.9. Both laminate materials are compatible with a lead-free process,

which means they can withstand the higher temperatures required to melt lead-free solder. Typically,
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lead-free solder has a melting point 34 °C to 37 °C higher than lead-based solder [24]. The stackup
used for the measurement board is shown in Figure 4.2. Its dimensions are outlined in Table 4.1.
The mixed dielectric construction allows for a cost effective solution with high performance signals

routed on the expensive Rogers RO4003C laminate and slower signals routed on the less expensive

Isola FR408 laminate.
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Figure 4.2: 12-Layer FR408/Rogers RO4003C Core Construction.

Table 4.1: 12-Layer FR408/Rogers RO4003C Core Construction

12-Layer FR408/Rogers R0O4003C Core Construction

Construction Al A2 B C1 C2
Type (inches) (inches) (inches) (inches) (inches)
FR408/Rogers Mix | .008 4+ .001 | .008 4 .001 | .0093 4 .0007 | .092-.111 .0934-.1124

* - Copper thickness on inner/outer layers, unless otherwise specified: % oz. Cu (0.00077).

A1 - Rogers RO4003C Core thickness

A2 - FR408 Core thickness

B - Pressed thickness of prepreg - 1x FR408 Prepreg 1080 and 1x FR408 Prepreg 7628

C1 - Overall finished board thickness substrate-to-substrate

C2 - Overall finished board thickness plated metal to plated metal. In addition, some surface
coatings (i.e., HAL) can add up to 0.002” of solder per side.

Soldermask (also not specified) typically adds about 0.001” per side but can add up to 0.004”
per side in extreme examples.
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4.2.1.1 Printed Circuit Board Stackup

The measurement board layer stackup is divided into two sections: analog and digital.

These two sections have different requirements based on:

e Number of power supply voltages

Current requirements of power supplies

Number of signal nets

Density of component placement

Available board area

The board layer stackup assignments are shown in Table 4.2. A symmetric layer stackup was

employed to help prevent warping of the printed circuit board [25].

Table 4.2: 12-Layer FR408/Rogers RO4003C Stackup

Layer Name | Signal or Plane H Analog Stackup H Digital Stackup

TOP Signal Routing Routing, Ground, and BGA Breakout
SIDE2 Plane Ground Ground

SIDE3 Signal Routing Routing - Offset Stripline

SIDE4 Signal Routing Routing - Offset Stripline

SIDE5 Plane Ground Ground

SIDE6 Signal Power Power - +3.3V, +1.8V, and +5V
SIDE7 Signal Power Power - +2.5V, +1.2V, and +1V
SIDES Plane Ground Ground

SIDE9 Signal Power Routing - Offset Stripline

SIDE10 Signal Power Routing - Offset Stripline

SIDE11 Plane Ground Ground

BOTTOM Signal Routing Routing, Ground, and BGA Breakout
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High-speed analog stackup The majority of the high-speed analog signals are routed on the top
layer in order to minimize effects of layer transitions. The measurement board has 3 main high-speed

analog circuits:
¢ High-speed Analog-to-Digital Converter
o High-speed Digital-to-Analog Converter
e High-speed clock generation

Each circuit has its own set of power supplies, the benefits of which include isolation of high-speed

analog circuits, distributed heat generation, and heat dissipation.

High-speed digital stackup The high-speed digital signals are very dense and require many

signal routing layers. The measurement board has 7 main high-speed digital circuits:

High-speed Analog-to-Digital Converter

High-speed Digital-to-Analog Converter

AsAP #1

AsAP #2

QDR-II SRAM

DDR2 SDRAM (SODIMM)

Data Path FPGA

Unlike the high-speed analog circuits, the majority of the high-speed digital circuits share a common

digital power supply.
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4.2.1.2

Transmission Line Structures
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The measurement board contains several high-speed mixed-signal circuits that require con-

trolled impedance transmission lines. The four transmission line structures employed on the mea-

surement board are shown below.
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Figure 4.3: Single-Ended Microstrip
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Figure 4.4: Differential Microstrip

E
T

- . w h S t Z,
Transmission Line €r
(Inch) (Inch) (Inch) | (oz)[Inch] | (Ohms)
Single-Ended (Solder Mask) 0.015 | 0.008 &+ 0.001 | N/A 110.0007] 52 Q 3.38
Single-Ended (No Solder Mask) | 0.016 | 0.008 &+ 0.001 | N/A 110.0007] 52 Q 3.38
Differential (Solder Mask) 0.010 | 0.008 £+ 0.001 | 0.006 %[0.0007] 103 Q 3.38

Table 4.3: Microstrip Transmission Line Information

Rogers RO4003C

PREPREG

PREPREG

i
I
1N

FR408

Figure 4.5: Single-Ended Stripline

t

Rogers RO4003C

v
T

PREPREG

L]

FR408

PREPREG

—

FR408

i
v
T

4

Figure 4.6: Differential Stripline

.. . hl h w S t Z,
Transmission Line €r
(Inch) (Inch) (Inch) | (Inch) | (oz)[Inch] | (Ohms)
Single-Ended 0.0149 £ 0.0017 | 0.0062 £ 0.0007 | 0.007 N/A 110.0007] 49 Q 3.90
Differential 0.0149 £ 0.0017 | 0.0062 £+ 0.0007 | 0.004 0.004 %[0.0007] 107 © 3.90

Table 4.4: Stripline Transmission Line Information
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4.2.2 Component Placement

103

Component placement can have a huge impact on the routeability of a printed circuit board.

Once the PCB construction and stackup designs have been completed, a board outline can be chosen

and the component placement can begin. The measurement board was designed to fit in a 1U tall,

19” rack-wide, 16” deep instrument chassis. The chosen board outline is shown in Figure 4.7.

— 15.640 Panel-to-Panel
— 15.510 Board
— 500 Typical

~F
Jnifs: INCH o ~ 16510 Overall
Scale: 1/2 ™~ m 83
Date: 4-09-2009 n 2 m oo
© n o S &
m I |e o 2
;\_ ~ 0 ‘ ‘ R
0
546 i @ % %
0 L om0
o DDT @@ EEDD o0 °T L g7y
3 .
i =80 oN E iD =1
o O 20 f % } )
: of DOTIOT L
i LI e
55 éﬂ:ﬂg e 3.026
i 5 = B i SEYE
Hﬁ E =1 [53 0000
: ] - 2| P80 &
q = s L naf]
5,391 | = B =l g |
5.820 — - =[] _ 22 -]
- ), BB Ny
1500 = al 1°2 e -
= @Du b 0 s s L= =
1= | E :
” B I; 9.284
ol D = EDED '
9.999 ki i =L g
o [ (0 nE
@ ) P
ol o g .
¥ O : i)
d o |, ° D - :.D Ele] 0 ° =
Lo OF &|———2_1lq 9
g R| " #al] B8P |° |&
13.588 Tao [ == 13.588
o |FE o]
14.214 L | L Du D]D SDDEQE
/‘4964 M. PR P I [P
T 00 O Juj
S h O m S 9 m O m

Figure 4.7:

Printed Circuit Board Outline
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4.2.2.1 Printed Circuit Board Pre-Placement

Using the initial board outline, a preliminary component placement was performed in
Microsoft Office Visio 2007. The printed circuit board outline was imported as a drawing exchange
format (DXF) file. Components were drawn and scaled proportionally to the board outline in order

to represent the physical size of the devices.

4.2.2.2 FPGA Pin Assignments

Both FPGAs are central components of the measurement board. They are used to control
peripheral devices, store and retrieve data from memory, and interface with digital signal processors.
As aresult, it was very important to plan the pin out of the FPGA devices before placing components.
Pin planning was performed with the aid of Xilinx’ PlanAhead software package. This software
provides both a package and device view, and allowed the signals to be placed on appropriate pins
while keeping in mind the relative placement of other signals, the I/O standards for the various
signals, and whether signals needed to be placed in a bank compatible with differential signals.
Several of the digital device interfaces required the signals to be placed on adjacent I/O blocks of
the device in pin order; the PlanAhead software was instrumental to the success of the pin planning

for these devices.

4.2.2.3 Decoupling Capacitor Placement Planning

Early planning of the decoupling capacitor placement around the perimeter of the FPGAs
was critical. By placing the decoupling capacitors before starting the layout, routing channels
were created for the signals to reach their destination, the mounting inductance of the decoupling
capacitors was minimized, and the power supply planes or area fills for each FPGA supply were
defined. Figures 4.8 to 4.11 show the preliminary placement of the top and bottom side decoupling
capacitors for each FPGA device. The decoupling capacitor placement of the bottom-side of the
PCB mirror the top-side with the addition of ceramic capacitors in an 0402 package placed close to

the power pins in the ball-grid array.
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4.2.2.4 High-Speed Device Considerations

The high-speed signal generator and analyzer circuits interface to the user via the front
panel of the chassis. As a result, these circuits were placed as close to the end-launch SMA connectors
as possible. The circuits were placed in a linear signal flow such that all traces could be routed on
the top side of the board. Each circuit receives a sample clock from the clock distribution circuit,
which was placed between the two groups of circuits. Given the close proximity of these devices and
the signal performance requirements, it was important to minimize any possible radiation into or out
of these circuits. Each circuit was enclosed in a single-cavity board level shield to minimize RF/EMI
radiation from circuit to circuit and within the chassis. The board level shield was manufactured
using a tin-plated, mild steel material, and has a removable top cover for debugging of the internal
circuits. The components of each circuit were placed in such a way that each could use the same
sized board level shield. This resulted in a cost savings for the shield design, since a non-recurring
engineering charge of $350.00 was required for each unique shield design. The total cost per shield

for a quantity of 25 shields was $11.04. The dimensions and mechanical outline of the board level

shields is shown in Figure 4.12.
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Printed Circuit Board Placement The preliminary component placement was used by the PCB
layout designer as a starting point for the actual board design. The final version of the preliminary

component placement is shown in Figure 4.13
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Figure 4.13: Preliminary Component Placement

The measurement board component placement was performed over a period of two weeks, and
continued to evolve throughout the layout process. During the component placement phase of the
design, the board was continually evaluated by a mechanical engineer to ensure the board would
fit properly in the chassis. The measurement board was modeled using a 3D CAD program called
CoCreate. The PCB layout designer exported the design as an intermediate data format (IDF) file,
which the mechanical engineer could use to import into CoCreate. Once the board was imported,

it was analyzed to ensure the following requirements were met:
e Top-side components are no taller than 1.100”
e Bottom-side components are no taller than 0.200”

o All end-launch SMA connectors align with the front and rear panel cut-outs
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¢ All mounting holes align with the stand-off placement on the chassis base plate
e All connectors are accessible when the board is mounted in the chassis

o All daughter card mounting holes and pads are in the correct location

4.2.3 Printed Circuit Board Layout

Signal routing is the most time-consuming and complex part of printed circuit board design.
As a result, careful planning is required in order to achieve the desired performance. Once the
preliminary component placement has been completed, the size and shape of the power and ground
planes can be chosen, net types can be defined and mapped to the appropriate signals, and signal

groups requiring length matching can be identified.

4.2.3.1 Routing Groups

High-speed devices with source-synchronous read and/or write interfaces require closely
matched clock and data signals. Each source-synchronous interface was identified, and length match-
ing tolerances were provided as necessary. Interfaces for high-speed devices connecting to an FPGA
with special delay primitives were routed using a shortest length method. The signal lengths of
high-speed devices connecting to an FPGA without delay primitives were closely monitored. The

high-speed source-synchronous devices on the measurement board include:

e DDR SDRAM

High-speed Analog-to-Digital Converter

High-speed Digital-to-Analog Converter

AsAP #1 and #2

QDR-IT SRAM

DDR2 SDRAM (SODIMM)

The specifications for the high-speed digital circuits are shown in Sections F.2 to F.6 in the Appendix.

4.2.3.2 Planning for Power and Ground Planes

Power and ground planes are an important part of the printed circuit board. These planes

serve many purposes, some of which include providing a return path for current and providing
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power supply voltages to ICs on the board. In the case of digital printed circuit boards, many
unique or filtered power supplies are used, which require the power planes to be shared by creating
unique polygons for each power supply. In addition, digital boards typically use devices with a ball-
grid-array (BGA) package. Designing power and ground planes for these types of packages can be
difficult, especially if consideration for the size and location of the planes is not done early enough
in the design cycle. To ensure the proper location and correct amount of copper was available
for the many power and ground planes, the size and shape of each plane was identified before the
layout was initiated. Planning the size and shape of the planes can also provide helpful insight when
performing the initial component placement. Figures 4.14 and 4.15 show the planned division of

two power planes for the Virtex-5 FPGA power supplies used on the measurement board.

Legend:

B )
_———a

+1.8v sz?n I'I:AN;'
-

+2.5v i_xEY'I ity

2, iTANTi

+3.3v [

Figure 4.14: Recommended power plane shape for Virtex-5 +1.0V and 4+2.5V power supplies.
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Figure 4.15: Recommended power plane shape for Virtex-5 +1.8V and 43.3V power supplies.

4.2.3.3 Net Type Assignments

High-speed printed circuit boards typically use devices that require a specific trace impedance
for input and output signals. Section 4.2.1.2 describes the construction of both single-ended and
differential microstrip and stripline transmission lines. Before the layout was started, each signal
on the measurement board was assigned a net type based on whether it would be routed on exter-
nal layers only or both internal and external layers. The PCB layout designer imported this data
into the PADS Layout software, which allowed each trace to be routed with the proper width and
spacing. The PADS Layout software performs design rule checking (DRC) throughout the layout
process using the net type information.

In addition to transmission line net types, the power and ground net types also require
definition based on the current requirements. Each power and ground signal on the measurement
board was assigned a net type based on whether it was routed as a trace or as a plane of solid
copper.

Table 4.5 describes the net type definitions used on the measurement board. The net type

assignments for the measurement board are shown in Table G.1 of the Appendix.



Table 4.5: PC Board Net Types

Net Type Inner Trace Trace Trace Notes
Name Outer Width Separation | Impedance
Default Net Types
DEFAULT | 1/O | 6 mils N/A [ N/A 1. Default analog trace width.
Signal Net Types
SE_FPGA I/0 4 mils N/A N/A 1. Default FPGA trace width.
SE.50 I 7 mils N/A 50 Q 1. No area fill on adjacent layer.
) 0] 15 mils N/A 50
SE.50.0 I NO_TRACE N/A N/A 1. No trace allowed on inner layer.
o 0 15 mils N/A 50 Q
I 4 mils 4 mils 100 ©2 1. No area fill on adjacent layer.
DIFF_100
0] 10 mils 6 mils 100 ©
DIFF.100.0 I NO_TRACE N/A N/A 1. No trace allowed on inner layer.
Q) 10 mils 6 mils 100 2
Power Net Types
GND_PLANE I PLANE N/A NA 1. Outer can be as narrow as 30 mils.
@) 50 mils N/A NA
PWR_15MIL I 15 mils N/A NA 1. Outer can be as narrow as 10 mils.
) 15 mils N/A NA 2. Maximum Current: 200 mA.
PWR._25MIL I 25 mils N/A NA 1. Outer can be as narrow as 15 mils.
O 25 mils N/A NA 2. Maximum Current: 300 mA.
I 50 mils N/A NA 1. Outer can be as narrow as 25 mils.
PWR_50MIL
O 50 mils N/A NA 2. Maximum Current: 500 mA.
I 100 mils N/A NA 1. Outer can be as narrow as 40 mils.
PWR_100MIL
0] 100 mils N/A NA 2. Maximum Current: 800 mA.

ayvod INHWHYNSVAN 7 HdLdVHO
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4.2.3.4 Digital Signal Routing

The central digital device on the measurement board is the Data Path FPGA, which has
a 1760-pin, 42.5mm x 42.5mm BGA package; as a result the signal routing is very dense. The Data
Path FPGA, which is a Xilinx Virtex-5 SX50T, contains delay primitives that allow the timing of
each I/O to be adjusted. These delay primitives are known as IODELAY, and contain 64 delay
taps, where each delay tap is equivalent to 78.125 ps (tiqp) [26]. Using the IODELAY primitives,
the signals for each device can be routed to the FPGA using the shortest possible route; the signal

lengths can be equalized inside of the Data Path FPGA.

Calculating IODELAY Taps for Data Path FPGA The number of IODELAY taps required
to equalize the traces of a device interface can be calculated by taking into account the length of
each trace and the estimated propagation delay on inner and outer layers of the measurement board.

The propagation delay of traces on the measurement board are:

¢ Top/Bottom layer microstrip: ~(130-140) &

mn

e Inner layer stripline: ~(160-170) ¥

The trace lengths for each high-speed signal connected to the Data Path FPGA are exported from
the layout tool, and grouped according to each unique device. A Perl script was written to calculate
the appropriate number of IODELAY taps for each signal. For each device, a signal is selected as
the reference. In the case of synchronous device interfaces, the reference signal is typically the clock
signal. The lengths of the traces are exported from the PADS Layout software in units of mils,

where one mil is equivalent to one thousandth of an inch. The script uses an average value of 167 £

for the propagation delay, which can be converted into units of = by using Equation 4.1.
167 ps 1 inch ps
PropDelay = : =0.167 — 4.1
ropEeay (1 inch) (1000 mils) mils (4-1)

When the propagation delay is represented in the proper units, the total delay in picoseconds of the

reference signal and remaining signals can be calculated using Equations 4.2 and 4.3.

. s
tRefsigPs] = Lengthpefsig(mils] - PropDelay[ﬁ] (4.2)

tsig [ps| = Lengthgi, [mils] - PropDelay | (4.3)

b ]
mils
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Once the total delay for each trace has been calculated, the difference between the reference signal
and each trace can be calculated using Equation 4.4 and the number of IODELAY taps for each

trace can be estimated using Equation 4.5.

tpifs [PS] = trefsig [PS] — tsig [Ps] (4.4)

1. LtDiff [DS]J7 if tpipr <0
Tapsgig = Rap [pe] (4.5)

tpirs [ps]
Llj‘zjmif[plz]sJ’

otherwise.

As can be seen in Equation 4.5, it is possible to calculate negative IODELAY taps. Since the delay
cannot be adjusted in the negative direction, the number of estimated IODELAY taps must be
normalized by adding the absolute value of the minimum IODELAY taps calculated (Taps,,i,). If
a device interface has no negative IODELAY taps, then the number of IODELAY taps calculated

using Equation 4.5 can be used directly.

Tapssig + |Tapsmin|, if Tapsmin <0
TapsNorm - (46)
Tapssig, otherwise.

Table 4.6 shows the IODELAY taps calculated for the high-speed ADC interface. The script does not
distinguish between single-ended and differential signals. When the estimated number of IODELAY
taps for the two complementary signals is different, the amount of added delay required for both
signals should be averaged and rounded to the nearest multiple of IODELAY taps. For example, the
script estimated a different number of IODELAY taps for the differential pair containing the signals:
FPGA_ADC_DATA P10 and FPGA_ADC_DATA _N10. Taking the average of both signals results
in a delay —76.27642 ps, which can be rounded to —78.125 ps or -1 IODELAY tap. In this case,
the number of normalized IODELAY taps for the complementary signals would be zero. The Perl
script used to calculate the number of IODELAY taps for the high-speed ADC interface is shown in
Appendix Chapter H.1. The IODELAY tap results for the remaining high-speed digital circuits are

shown in Sections H.2 to H.6 in the Appendix.
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Table 4.6: ADC Signal Delay Values

. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapsgiy | Tapsyorm
FPGA_ADC_DATA_RDY_P | 5084.05 | 849.0364 1 0.0000000 0 1
FPGA_ADC_DATA_RDY_N | 5084.41 | 849.0965 0 -0.060120 0 1
FPGA_ADC_OVR_P 4838.18 | 807.9761 0 41.060290 0 1
FPGA_ADC_OVR.N 4781.46 | 798.5038 0 50.532530 0 1
FPGA_ADC_DATA P15 4181.28 | 698.2737 0 150.76259 1 2
FPGA_ADC_DATA N15 4161.74 | 695.0106 0 154.02577 1 2
FPGA_ADC_DATA P14 4911.44 | 820.2105 0 28.825870 0 1
FPGA_ADC_DATA _N14 4933.09 | 823.8260 0 25.210320 0 1
FPGA_ADC_DATA P13 4431.04 | 739.9837 0 109.05267 1 2
FPGA_ADC_DATA N13 4418.19 | 737.8377 0 111.19862 1 2
FPGA_ADC_DATA P12 5105.24 | 852.5751 0 -3.538730 0 1
FPGA_ADC_DATA N12 5028.53 | 839.7645 0 9.2718400 0 1
FPGA_ADC_DATA P11 4849.78 | 809.9133 0 39.123090 0 1
FPGA_ADC_DATA _N11 4929.46 | 823.2198 0 25.816530 0 1
FPGA_ADC_DATA P10 5500.59 | 918.5985 0 -69.56218 0 1
FPGA_ADC_DATA_N10 5581.00 | 932.0270 0 -82.99065 -1 0
FPGA_ADC_DATA_P9 4717.87 | 787.8843 0 61.152060 0 1
FPGA_ADC_DATA_N9 4737.86 | 791.2226 0 57.813730 0 1
FPGA_ADC_DATA_P8 5423.00 | 905.6410 0 -56.60465 0 1
FPGA_ADC_DATA_NS 5384.44 | 899.2015 0 -50.16513 0 1
FPGA_ADC_DATA_P7 4994.17 | 834.0264 0 15.009960 0 1
FPGA_ADC_DATA_N7 5013.08 | 837.1844 0 11.851990 0 1
FPGA_ADC_DATA _P6 4770.75 | 796.7153 0 52.321100 0 1
FPGA_ADC_DATA_N6 4731.44 | 790.1505 0 58.885870 0 1
FPGA_ADC_DATA_P5 4352.98 | 726.9476 0 122.08869 1 2
FPGA_ADC_DATA N5 4330.28 | 723.1568 0 125.87959 1 2
FPGA_ADC_DATA P4 4684.41 | 782.2965 0 66.739880 0 1
FPGA_ADC_DATA N4 4700.57 | 784.9952 0 64.041160 0 1
FPGA_ADC_DATA _P3 4282.20 | 715.1274 0 133.90895 1 2
FPGA_ADC_DATA_N3 4306.90 | 719.2523 0 129.78405 1 2
FPGA_ADC_DATA_P2 4825.42 | 805.8451 0 43.191210 0 1
FPGA_ADC_DATA N2 4894.90 | 817.4483 0 31.588050 0 1
FPGA_ADC_DATA _P1 4284.51 | 715.5132 0 133.52318 1 2
FPGA_ADC_DATA N1 4301.71 | 718.3856 0 130.65078 1 2
FPGA_ADC_DATA_PO 4725.53 | 789.1635 0 59.872840 0 1
FPGA_ADC_DATA_NO 4712.04 | 786.9107 0 62.125670 0 1
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4.2.4 Power Supply Design

The measurement board is powered by a Power-One 125 W, +12 V AC-DC power supply.
The +12 V DC voltage is filtered and split into two paths: analog and digital. The majority of
the digital power supplies are generated using a single stage of DC/DC converters. The analog
power supply voltages are generated using two stages; one is generated by a DC/DC converter, and
the second is generated by a low-dropout linear regulator. A block diagram of the power supply

sub-system is shown in Figure 4.16.

4.2.4.1 Power Supply Synchronization

The digital power supplies are typically generated using a DC/DC converter with a switch-
ing frequency of less than 1 MHz, which can couple onto high-speed signals. As a result, the digital
power supplies are distributed on two solid planes of copper; the planes are stacked between two
solid ground planes, thus reducing power supply noise [25]. In addition to the layer stack of the dig-
ital power supplies, four solid ground planes are used to provide isolation for the high-speed digital
signals. Furthermore, the DC/DC converters used on the measurement board contain a synchroniza-
tion input that allows multiple converters to be synchronized together using a common clock running
at a frequency of 312.5 kHz. The synchronization clock is generated from a 10 MHz reference clock
using a chain of 5 flip-flops in divide-by-two configuration. The resulting clock is then driven into
a chain of flip-flops to create a unique clock phase for each DC/DC converter. The circuit, shown
in Figure 4.17, is implemented in a Xilinx CPLD. Synchronizing the DC/DC converters helps to

simplify the EMI noise suppression and reduce the overall capacitance requirements.
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4.2.4.2 Power Supply Filtering

The DC/DC converters operate with a switching frequency of 312.5 kHz, and therefore a
power supply filter is required before the voltage is driven into a low-dropout linear regulator. A
low-pass filter, shown in Figure 4.18, was designed with a —3 dB frequency of 32 kHz, as can be

seen in Figure 4.19. The goal of the power supply filter was to attenuate the signal to an amplitude

voltage less than 20 mV.
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Figure 4.19: Power Supply Filter: Frequency Response

The power supply filter was simulated using LTSpice. The input of the filter was stimulated with

a 312.5 kHz waveform with an amplitude of 100 mV. The time domain plot, shown in Figure 4.20,
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shows the output of the filter at an amplitude voltage of 15 mV, which is adequate to drive the

input of a linear regulator, thus the signal is sufficiently attenuated.
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Figure 4.20: Power Supply Filter I/O: Time Domain Waveforms

4.2.4.3 Power Supply Sequencing

Power supply sequencing is a common requirement of digital circuits. Several circuits on
the measurement board require their power supplies to turn on in a particular sequence. In some
cases, power supply sequencing is achieved by the natural order of supply generation. For example,
the sequencing for a circuit that requires +3.3 V to turn on before +1.2 V can be achieved by
generating +1.2 V from +3.3 V. In other cases, power supply voltage supervisors are required to
delay the turn on of supplies by a precise amount of time.

At power-up, the Control FPGA is configured by a serial peripheral interface (SPI) pro-
grammable read-only memory (PROM), which is powered off of +3.3 V. The configuration 1/0O
bank of the Control FPGA is also powered off of +3.3 V. The Control FPGA defaults to a master
SPI configuration mode; therefore as soon as it powers up, the configuration process will be initiated
and it will begin to drive the configuration clock of the SPT PROM. In order for the configuration

process to complete successfully, the +3.3 V supply must turn on before the core voltage (+1.2 V)
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of the Control FPGA, which in turn must power up before the remaining digital power supplies. If
this turn-on sequence is violated, the configuration process could potentially fail, or could fail at a
random time.

The measurement board uses a Texas Instruments TL7733B single supply voltage supervi-
sor which is powered off of the +12 V supply and senses when the +3.3 V supply crosses a voltage
threshold of +3.08 V. A slowly ramping signal is generated, which is driven into the tracking pin of
the DC/DC converters powering the digital circuits. A timing capacitor (Cr) is used to set the turn
on delay. The amount of delay inserted can be calculated using Equation 4.7. The timing capacitor
is set such that the +3.3 V power supply will turn on approximately 50 ms before the other digital

power supplies being generated by a DC/DC converter.
tdelay[s] = 2.6e4 - Cp[F] = 2.6e4 - 2.2 uF = 0.0572 s (4.7)

The Control FPGA core voltage is generated from the +3.3 V power supply using a Texas Instru-
ments TPS74201 single output low-dropout (LDO) linear regulator with programmable soft-start.
Using a timing capacitor (Cgg), the TPS74201 linear regulator can delay the turn on of its output.

The soft-start time can be calculated using Equation 4.8.

L [5] = Vrer [V] - Css [F]
S Iss [A]

(4.8)

From the TPS74201 data sheet, the soft-start current (Igg) is equal to 0.73 pA and the reference
voltage (Vrpr) is equal to 0.8 V. The desired soft-start time for the +1.2 V power supply is 10 ms.
Solving for the soft-start capacitor variable Csg in Equation 4.8 yields Equation 4.9, which results

in a capacitance of 9.125 nF.

tss [S] . ISS [A] 10 ms - 0.73 ,uA
F| = = =9.125e -9 F =~ 10 nF 4.
Css [F] Vapr V] RN 9.125¢ — 9 0n (4.9)

The soft start capacitor value was rounded to the nearest standard value of 10 nF, which results in

a soft start time of approximately 10.96 ms as shown in Equation 4.10.

08 V-100F

tgs = = 0.01096 s 4.10
557 7073 uA i (4.10)

The desired digital power supply sequencing of the measurement board is shown in Figure 4.21.
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Figure 4.21: Desired Digital Power Supply Sequence

4.2.4.4 Power Consumption

Estimating power supply current consumption is an essential part of printed circuit board
design. If the current requirements for each device are not accounted for, then the design could
fail to operate correctly or even turn on successfully. To estimate the current requirements of
the measurement board the maximum current requirements for each device were tabulated, and

the requirements for each power supply were summed. Table 4.7 describes the worst case power

consumption for the measurement board.

Table 4.7: Total Power Supply Current Usage

Total Power Supply Current Usage

ITEM H +12V | Total Power (W)
Analog Power Supply Current Usage || 1.322989 15.875872
Digital Power Supply Current Usage 4.933585 59.203015
TOTAL CURRENT (A) 6.256574

TOTAL POWER (W) 75.078888 75.078888

The analog power supply current usage was calculated using Table 4.8. The digital power supply

current usage was calculated using Tables 4.9 and 4.10.



Table 4.8: Analog Power Supply Current Usage

Analog Power Supply Current Usage

ITEM | +12v | +5.5V | +2.5V | -6V | Total Power (W)
THS4302 Fixed-Gain Op-Amp 14dB 0.130 0.284 0 0 1.56
THS4509 Wide-Band Differential Op-Amp 8 dB 0.043 0.095 0 0 0.52
ADS5463 12-bit, 500 MS/s ADC 0.333 0.725 0 0 3.99
SN74LVC2G125 x12 0.0000260 | 0.0000567 0 0 0.000312
DAC56827Z 16-bit, 1 GS/s DAC 0.288 0.3 0.720 0 3.45
OPAG695 Op-Amp 0.128 0.142 0 -0.125 1.53
Vectron 10 MHz TCXO Oscillator 0.003 0.006 0 0 0.033
On Semiconductor - NB6L1IMMNG 0.021 0.045 0 0 0.2475
Micrel - SY58017UMG 0.019 0.042 0 0 0.231
Micrel - SY58017UMG 0.019 0.042 0 0 0.231
Micrel - SY58017UMG 0.019 0.042 0 0 0.231
Micrel - SY58011UMG 0.026 0.057 0 0 0.3135
Micrel - SY58608UMG 0.022 0.048 0 0 0.264
Texas Instruments - ONET1191PRGTT 0.013 0.029 0 0 0.1617
On Semiconductor - MC10EP89DTG 0.030 0.065 0 0 0.3564
On Semiconductor - NB4N527S 0.015 0.032 0 0 0.1749
On Semiconductor - MC10EP89DTG 0.028 0.060 0 0 0.33
Analog Devices AD9516 0.138 0.3 0 0 1.65
Micrel - SY58601UMG - Trigger Out 0.013 0.027 0 0 0.15
SN65LVDS1 (x2) 0.004 0.009 0 0 0.05
UMC: UMX-244-B14 0.033 0 0 0 0.4
TOTAL CURRENT (A) 1.322989 | 2.350159 0.72 -0.125

TOTAL POWER (W) 15.875872 | 12.925872 1.8 0.75 15.875872
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Table 4.9: Digital Power Supply Current Usage

Digital Power Supply Current Usage

ITEM | +12v | Total Power (W)
XC5VSX50T-3FF1136C (Virtex 5 SX50T) 1.531 18.3666
DDR2 SDRAM SODIMM (MT16HTF25664H) 0.620 7.434
QDR-II SRAM (K7R323684C-EC250) 0.214 2.565
AsAP DSP IC (x2) 1.617 19.4
XC351400A-4FG484 (Spartan 3A) 0.088 1.052
M25P64-VMFGTP (SPI Flash 64 Mb) 0.006 0.066
TPS3823-25DBVT (Reset uChip) 0.000006875 0.000083
TPS3823-25DBVT (Config Hold-Off uChip) 0.000006875 0.000083
CSXT750FB (14.7456 MHz) 0.004 0.0495
MT46V32M16BN-6 (DDR SDRAM) 0.141 1.6875
SN74LVC1GO08 (Single 2-Input AND Gate) 0.000002750 0.000033
SN74LVC1G32 (Single 2-Input OR Gate) 0.000002750 0.000033
CP2102 (x2) 0.044 0.528
MicroSD Card (x2) 0.168 1.98
ADRO3 42.5V Precision Ref for V5 SM 0.01 0.12
AMC6821 (x2) 0.006 0.066
XC9572XL-10VQ44 0.011 0.132
CCLD-033-50-100.00 (x2) 0.035 0.4224
FTDI FT245BL (x2) 0.021 0.25132
User Interface Board 0.417 5.0
Temperature Sensor (TMP125) (x6) 0.00011 0.00132
SN65LVDT2DBVR (TTL-to-LVDS) 0.00275 0.033
TPS3808G25DRV (x2) 0.000012 0.000144
TL7733BCDR 0.004 0.048
TOTAL CURRENT (A) 4.933585

TOTAL POWER (W) 59.203015 59.203015

ayvod INHWHYNSVAN 7 HdLdVHO

vel



Table 4.10: Digital Power Supply Current Usage Detail

Digital Power Supply Current Usage Detail

ITEM | +0.9V | +1V | +1V ASAP | +1.2V | +1.25Vref | +1.3V | +1.8V | +2,5V | 43.3V | 45V
XC5VSX50T-3FF1136C 1.71 3.737 0 0 0 0 2.723 3.138 0.104 0
MT16HTF25664H DDR2 SDRAM 1.26 0 0 0 0 0 3.5 0 0 0
K7R323684C-EC250 0.45 0 0 0 0 0 1.2 0 0 0
AsAP DSP IC (x2) 0 0 4 0 0 8 0 2.0 0 0
XC3S1400A-4F G484 0 0 0 0.134 0 0 0 0.173 0.139 0
M25P64-VMF6TP 0 0 0 0 0 0 0 0 0.02 0
TPS3823-25DBVT (x2) 0 0 0 0 0 0 0 0 0.00005 0
CSXT750FB (14.7456 MHz) 0 0 0 0 0 0 0 0 0.015 0
MT46V32M16BN-6 (DDR SDRAM) 0 0 0 0 0.45 0 0 0.45 0 0
SN74LVC1GO8 (Single AND Gate) 0 0 0 0 0 0 0 0 0.00001 0
SN74LVC1G32 (Single OR Gate) 0 0 0 0 0 0 0 0 0.00001 0
CP2102 (x2) 0 0 0 0 0 0 0 0 0.16 0
MicroSD Card (x2) 0 0 0 0 0 0 0 0 0.6 0
ADRO3 +2.5V Precision Ref 0 0 0 0 0 0 0 0 0 0
AMC6821 (x2) 0 0 0 0 0 0 0 0 0.02 0
XC9572XL-10VQ44 0 0 0 0 0 0 0 0 0.04 0
CCLD-033-50-100.00 (x2) 0 0 0 0 0 0 0 0 0.128 0
FTDI FT245BL (x2) 0 0 0 0 0 0 0 0 0.0004 0.05
User Interface Board 0 0 0 0 0 0 0 0 0 1.0
Temperature Sensor (TMP125) (x6) 0 0 0 0 0 0 0 0 0.0004 0
SNG65LVDT2DBVR 0 0 0 0 0 0 0 0 0.01 0
TPS3808G25DRV (x2) 0 0 0 0 0 0 0 0 0 0
TL7733BCDR 0 0 0 0 0 0 0 0 0 0
TOTAL CURRENT (A) 3.42 3.737 4 0.134 0.45 8 7.423 5.7614 1.23687 1.05
TOTAL POWER (W) 3.078 3.737 4 0.161 0.5625 10. 13.361 | 14.4035 | 4.081671 | 5.25

ayvod INHWHYNSVAN 7 HdLdVHO
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4.3 Verification

The final version of the component placement can be seen in Figure 4.22.
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Figure 4.22: Measurement Board Top View
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4.3.1 Printed Circuit Board Turn-on

Overall, the PCB turn-on phase was successful. Initially, the power supply sub-system,
Control FPGA sub-system, Data Path FPGA sub-system, and high-speed sub-systems were func-
tioning properly. During the PCB turn-on phase of the project, two bugs were found in the schematic
design, which required PCB modifications for correct operation. In addition, two bugs were discov-
ered in the PCB layout library used with the PADS Layout software and trigger output circuit.
The power supply consumption, digital power supply turn-on sequence, and power supply filters
were measured to verify proper operation. Sections 4.3.1.1, 4.3.1.2, 4.3.1.3, and 4.3.1.4 describe the
solution for the Data Path FPGA configuration, high-speed DAC output, SODIMM layout decal,

and trigger output bugs, respectively.

4.3.1.1 Data Path FPGA Configuration Modification

The measurement board was designed with several options for configuring the Data Path
FPGA including slave-serial daisy chain configuration, SPI serial daisy chain configuration, and
JTAG daisy chain configuration. For two of the three configuration methods available, the Control
FPGA is responsible for configuring the Data Path FPGA. The slave-serial daisy chain configuration
method was used to configure the Data Path FPGA, and required 4 resistors to be loaded onto the

PCB. The configuration resistors loaded were:

R569: CUST_INIT_B

R568: CUST_CFG_DONE

R567: CUST_CCLK

R566: CUST_PROG_B

4.3.1.2 High-Speed Digital-to-Analog Converter Modification

The measurement board signal source output uses a Texas Instruments DAC56827Z dual-
channel, 16-bit, 1GS/s digital-to-analog converter. The original intent of the signal source design
was to use the dual-channel DAC in single channel mode with channel A. The DAC channel was
changed during the layout phase of the measurement board design from channel A to channel B for
layout reasons. Using channel B allowed the analog signal path of the signal source to be routed
without the use of vias. During the turn-on phase of the signal source circuit there was no data

observed on the channel B DAC output. After reading through the data sheet, it was discovered
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that when the DAC5682Z is used in single channel mode, channel A must be used. Measuring the
unused terminated output of the DAC5682Z revealed the desired data being played back through
the signal source circuit. Fortunately, the unused channel of the DAC56827 was terminated into
50 © and channel B was driven into the reconstruction filter through 0 €2 resistors. The following

PCB modification was made:
1. Removed resistors R88, R89, R530, and R531.
2. Soldered a wire from pad 1 of resistor R88 to pad 2 of resistor R531.
3. Soldered a wire from pad 1 of resistor R89 to pad 2 of resistor R530.

The length of the wire was cut to the shortest possible length, approximately % inch, to minimize
signal degradation of the DAC output. The crudeness of this modification was acceptable due to the
range of frequency operation, DC-120 MHz. The effectiveness of this modification would be lessened
if the frequency of operation was pushed to the maximum capability of the DAC5682Z. After the
PCB modification was made, the Data Path FPGA was able to drive data into the DAC56827Z and

out of the signal source circuit across the entire range of DC-120 MHz.

4.3.1.3 DDR2 SDRAM SODIMM Socket Modification

During the assembly phase of the measurement board it was discovered that the layout
footprint for the DDR2 SDRAM SODIMM socket (U42) was incorrect. The SODIMM socket foot-
print consists of two rows of 100 pads which are offset in the x- and y-dimensions. The incorrect
footprint was not properly offset in either dimension. To fix this problem, an interposer board was
designed with the incorrect footprint on the bottom side and the correct footprint on the top side.

The layer stackup for the 4-layer interposer board is shown in Table 4.11.

Table 4.11: 4-Layer FR408 Stackup

Layer Name | Signal or Plane H Stackup

TOP Signal Routing
SIDE2 Plane Ground
SIDE3 Plane Power

BOTTOM Signal Routing
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The interposer board, the construction of which is shown in Figure 4.23, is fabricated using

Isola FR408 laminate. Its dimensions are outlined in Table 4.1.

. Prepreg
[ i Coppar i

. Core Material

Figure 4.23: 4-Layer FR408 Core Construction

Table 4.12: 4-Layer FR4 Core Construction

4-Layer FR4 Core Construction

C on T Al B C1 C2
onstruction Lype (inches) (inches) (inches) (inches)
FR408 .0135 £ .002 | .027 = .001 | .0504-.0604 .0518-.0618

* - Copper thickness unless otherwise specified on inner layers: = oz. Cu (0.0007”).

oz. Cu (0.0007” before plating).

= N[

* - Copper thickness unless otherwise specified on outer layers:
A1 - FR408 Core thickness
B - Pressed thickness of prepreg
C1 - Overall finished board thickness substrate-to-substrate
C2 - Overall finished board thickness plated metal to plated metal. In addition, some surface
coatings (i.e., HAL) can add up to 0.002” of solder per side.
Soldermask (also not specified) typically adds about 0.001” per side but can add up to 0.004”

per side in extreme examples.
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The assembly top diagram of the interposer board is shown in Figure 4.24. The interposer
board is assembled onto the measurement board using a process similar to that of QFN packages.
Solder paste is applied to the incorrect footprint on the measurement board, and the two drill holes
on the ends of the SODIMM socket are used to align the interposer board with the pads on the
measurement board. Once the boards are properly aligned, heat is applied to the area of U42 until
the solder has melted, at which point the heat is removed. The final step is to verify the alignment
of the two boards by X-Raying the boards. The SODIMM socket is then soldered to the SODIMM

interposer board.

SODIMM Keepout Area /

SODIMM Keepout Area

1330mil

e

fl T fl'uf‘
il 5!5! 4

3000mil

Figure 4.24: SODIMM Interposer Board Assembly Top Diagram.
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4.3.1.4 Trigger Output Modification

Instrument I/O are typically protected against electrostatic discharge (ESD), which can
occur as a result of excess static build-up on the user. A common method of protecting against
ESD is to use a diode connected to sensitive I/O. An On-Semiconductor low capacitance diode,
NUP4301MR6T1, was used to protect the measurement board trigger output, which is generated
by a circuit in the Data Path FPGA operating at 31.25 MHz. Figure 4.25 shows the rising edge of

the trigger pulse with the ESD diode.

27.8

2rer i T
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- #
Z 27.2F f;f |
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s 27t » ]
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26.8} i .
§
DY | N P ——_ , i
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320.4 320.6 320.8 321 321.2 321.4

Time (ns)

Figure 4.25: Rising edge of trigger output pulse with ESD diode, which has a capacitance to ground
value of 1.6 pF.
While the diode used on the trigger output will protect against ESD damage, the capacitance to
ground for the diode had an adverse effect on the trigger waveform quality. As can be seen in
Figure 4.25, the added capacitance caused a reflection which appeared at the center of the rising
edge and resulted in a rise time of 162.22 ps. By removing the ESD diode from the trigger output
circuit, the reflection was removed resulting in a rise time of 77.78 ps. The rising edge of the trigger
pulse without the ESD diode is shown in Figure 4.26. In this case, a compromise was made for
performance over ESD protection. During normal operation, the trigger circuit with the ESD diode
could potentially result in a false trigger of an oscilloscope. Figure 4.27 shows the two trigger output

pulses together to emphasize the improvement in performance. The measurement setup is shown in

Figure 4.28.
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Figure 4.26: Rising edge of trigger output pulse without ESD diode
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Figure 4.27: Rising edge of trigger output pulse with and without ESD diode
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4.3.1.5 Power Supply Filtering

A Tektronix TDS3054C oscilloscope was used to verify the performance of the power supply
circuit. A passive, high-impedance oscilloscope probe was used to measure the power supply signals
with the oscilloscope in AC coupling mode. The measurement setup is shown in Figure 4.30. As can
be seen in Figure 4.29, the power supply sufficiently attenuates the noise on the DC/DC converter

output voltage to an amplitude voltage of 14.7 mV.

0.075

— Filter Input
0.06F — Filter Output

0.04

0.02-

Voltage (V)
o

-0.021

-0.04-

-0.06

_0.075 1 1 1 1
0 0.005 0.01 0.015 0.02

Time (ms)

Figure 4.29: Power Supply Filter: Time Domain Measurement
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4.3.1.6 Power Supply Sequencing

A Tektronix TDS3054C oscilloscope was used to verify the power-on sequence of the digital
power supply circuits. A passive, high-impedance oscilloscope probe was used to measure the power
supply signals with the oscilloscope in DC coupling mode. The oscilloscope was triggered on the
track signal generated by the Texas Instruments TL7733BCDR supply supervisor, which is enabled
when the sense voltage; +3.3 V| rises above +3.08 V. The turn-on rate of the track signal is set by an
RC time constant as described in Section 4.2.4.3. The measurement setup is shown in Figure 4.33.

The measured power supply turn-on sequence is incorrect, but functional. The +1.2 V
power supply, shown in orange in Figure 4.31, turns on approximately 0.745 ms after the +3.3 V

supply has ramped up.
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Figure 4.31: Measured Digital Power Supply Sequence

An incorrect soft-start capacitor value of 680 pF was connected to the soft-start pin of the TPS74201
linear regulator. By replacing the 680 pF capacitor with the soft-start capacitor value calculated
in Equation 4.9, the proper power supply turn-on sequence was achieved. Figure 4.32 shows the

measured power supply turn-on sequence with the new Cgg value of 10 nF.
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Figure 4.32: Measured Digital Power Supply Sequence with correct Cgg capacitor value of 10 nF.
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4.3.1.7 Power Supply Consumption

The power supply consumption of the measurement board was measured using a digital
multimeter. Measurements were taken at the inputs of each DC/DC converter and linear regulator
via a series resistor of value 0.01 €. The voltage across the input resistor was measured, and the

current was calculated using Equation 4.11.

Vdrop y

! [A] B Rseries [Q]

(4.11)

The total power supply consumption was calculated by measuring the current at each DC/DC

converter and linear regulator running on +12 V, and the results are shown in Table 4.13.

Name | Vix (V) | Vour (V) | 1 (A) | Power (W)
Digital
P5VD 12.0 5.0 0.0798 0.95760
P3V3D 12.0 3.3 0.2475 2.97000
P2V5D 12.0 2.5 0.3259 3.91080
P1V8D 12.0 1.8 0.2261 2.71320
P1VOD 12.0 1.0 0.1559 1.87080
POVID (VIT/VREF) 12.0 0.9 0.0793 0.95160
P1V3D_ASAP 12.0 1.3 0.0028 0.03360
P1VOD_ASAP 12.0 1.0 0.0036 0.04320
Analog
P8VA_CLKDIV 12.0 8.0 0.0323 0.38610
P5V5A 12.0 5.5 0.8970 10.7245
P2V5A 12.0 2.5 0.0525 0.62780
N6VA 12.0 -6.0 0.0618 0.73900
Total Power 25.9283

Table 4.13: Power Supply Consumption: First Stage
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The measurement results of the power consumption for each linear regulator are shown in

Table 4.14.

Name | Vix (V) | Vour (V) | T (A) | Power (W)
Digital
P1V2D | 33 | 12 o2270] 074810
Analog
P1VSA_SS 2.5 1.8 0.0287 | 0.07240
N5V2A_SS 6 5.2 0.0210 | 0.12450
N5V2A_AIF -6 5.2 0.0425 | 0.25140
N2V5A_ATF 5.2 2.5 0.0472 | 0.24670
P5V2A 5.5 5.2 0.4421 | 241110
P3V3A_CLK 5.5 3.3 0.4541 | 2.46800
P3V3A_CLKDIV 5.5 3.3 0.4023 | 2.19410
P3V3A_SS 5.5 3.3 0.0596 |  0.32630
P3V3A_AIF 5.5 3.3 0.1372 | 0.74990
P3V3D_AIF 5.5 3.3 0.0815 |  0.44570
P2V5A_AIF 5.5 2.5 0.0364 |  0.19910
P2V5A_TRIG 5.5 2.5 0.0550 | 0.30120

Table 4.14: Power Supply Consumption: Second Stage
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Chapter 5

Future Work and Conclusion

The General Purpose Instrument, shown in Figures 1.1 and 5.1, is a successful development
platform that can be used for a wide variety of AsAP DSP software prototyping. This platform can
be used to target applications from software defined radios to cognitive radio. The signal bandwidth
of the front end designs exceeded my initial design goals of a frequency range from DC to 110 MHz
by 15 MHz.

Future work on both the signal source and signal analyzer can further improve the perfor-
mance and usability for prototyping AsAP applications. During the verification of the signal source
and signal analyzer a mistake was discovered in the PLL loop-filter of the high-speed clock generation
circuit. Improvement in the loop-filter design has the potential to further increase the performance
of both front end designs. Once the PLL loop-filter has been addressed, an investigation of the
system jitter performance would provide more information on the system noise floor and may help
identify circuits that can be modified to improve the bandwidth and dynamic range.

Due to the size and scope of this project, there was not enough time to fully turn-on the
AsAP processors and interface them with the DSP sub-system. Adding this capability will allow

future research students to prototype AsAP applications.
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Appendix A

Waveform Generation and Play

Back

The signal source of the General Purpose Instrument can play back waveform files up to
32 Mbits in length. The General Purpose Instrument has a variety of waveforms preloaded onto an

internal 2 GB microSD card, including:

¢ Sinusoid Waveforms ranging in frequency from 1 kHz to 250 MHz and power levels of 0 dBF'S,
—6 dBFS, and —12 dBFS.

e Ramp Waveforms ranging in frequency from 1 MHz to 10 MHz.
e Square Waveforms ranging in frequency from 1 MHz to 25 MHz.
o Burst Waveforms

e Comb Waveforms

o Multitone Waveforms

Custom waveform files are also supported, but these files must be formatted properly and meet
certain length requirements for waveform play back and loading to be successful. The following

topics will be addressed:
e Waveform File Format

o Waveform Replication
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o Waveform Parameters

o Waveform Generation

A.1 Waveform File Format

The signal source of the General Purpose Instrument can play back custom waveform
files up to 32 Mbits long (e.g., 2%°). A waveform file is made up of 16 bit signed 2’s complement
hexadecimal samples. The bit length of the waveform file must be a multiple of 128 bits. If the
created waveform is not a multiple of 128 bits, or is less than 256 bits, the waveform must be
replicated until it is a multiple of 128 bits and at least 256 bits. In some cases, the waveform created
may not fit in the available amount of memory when replicated.

While the signal source can support up to 32 Mbits of waveform data using QDR-IT SRAM,
the Control FPGA software limits the size of waveform files to at most 24 Mbits. This limitation is
imposed as a result of an 8 MB RAM disk, which is created in the DDR SDRAM memory and used
by the software to buffer waveform files as they are transferred from the microSD card and loaded
into the waveform memory. A waveform file containing 24 Mbit is exactly 8 MB when stored in
ASCII format. Future support of 32 Mbit long waveforms can be added by modifying the software

in one of two ways:

1. Increase the size of the RAM disk such that it will allow waveform files of 32 Mbits in length

to be played back.

2. Require the waveform files to be stored in a binary format, which will reduce the overall file

size.

A.1.1 Filename Support

The General Purpose Instrument requires waveform filenames to be in a DOS 8.3 format.

Only the following characters are allowed in the filename:

o A7
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A.1.2 File Header
The waveform file will contain a header with the following parameters:
¢ patternname: Pattern Name; myfile.usr
e patterntype: Pattern Type; sram or bram
e patternlength: Pattern Length; number of bits
e readstartaddressa: Pattern A Start Address
¢ readstopaddressa: Pattern A Stop Address
e readstartaddressb: Pattern B Start Address; currently not used
¢ readstopaddressb: Pattern B Stop Address; currently not used
e density: Pattern Mark/Space Density; range 0 to 1000
e description: Pattern Description; 256 character limit
e triggerword: Pattern Trigger Word; currently not used
o bitshift: Pattern Bit Shift; currently not used
¢ bitshiftindex: Pattern Bit Shift Index; currently not used
e crc: Pattern CRC Checksum; currently not used

e version: Pattern Utility Version; 1.0
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A sample waveform file header is shown in Listing A.1.

Listing A.1: Example Waveform File Header

#description=This is where the description goes.
#patternname=mypattern. pat
#patterntype=sram
#patternlength=256
#readstartaddressa=0x0
#readstopaddressa=0x1
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=
#density=500.000
#bitshift=no
#bitshiftindex=0

#cre=x

#version=1.0
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A.1.3 Sample Waveform File

The following is an example waveform file with a description:

Listing A.2: Example Waveform File

#description=This is where the description goes.
#patternname=mypattern.usr
#patterntype=sram
#patternlength =256
#readstartaddressa=0x0
#readstopaddressa=0x1
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=
#density=50.000
#bitshift=no
#bitshiftindex=0

#cre=x

#version=1.0

#begin
AAFC0418
51E459D4
FA1C49B5
BD8D2EE6
AAFC0418
51E459D4
FA1C49B5
BD8D2EE6
#end
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A.1.3.1 File Data

The waveform data will be written to the file using hexadecimal format with 32 bits or two
16 bit samples per-line. The data payload will be preceded with a ’#begin’ tag and followed by an

"#end’ tag. An example of the waveform data is shown in Listing A.3.

Listing A.3: Example Waveform Data

#begin
AAFC0418
51E459D4
FA1C49B5
BD8D2EE6
AAFC0418
51E459D4
FA1C49B5
BD8D2EE6
#end

A.2 Waveform Replication

Technically, there is no minimum requirement for waveform length, but the signal source
of the General Purpose Instrument requires waveforms to be at least 256 bits long. If a waveform
is created for which L < 256 is true, then the waveform will need to be replicated until it meets the
minimum length requirement. After the waveform has been replicated to a length of at least 256
bits, it can then be tested to determine if further replication is required. Waveforms must always
end on a 128 bit boundary; in other words the waveform length must be a multiple of 128 bits. A
script can be used to calculate the total number of bits in the waveform and determine if the total
is a multiple of 128 bits. Equation A.1 shows how to determine if the waveform length is a multiple
of 128 bits.

Lynoa = mod (L, 128) (A1)

If L > 256 is true and L,,,q is equal to zero, then waveform replication is not required. If L > 256
is true and L,,,q is not equal to zero, then waveform replication is required. Algorithm A.2.1 shows
how to determine the replicated length, where L is the original waveform length and the minimum

waveform length is 256 bits.
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Algorithm A.2.1: Waveform Replication

if ((mod (L,128) # 0) & (mod (L,32) == 0)) then
L,ep = L-mod (L, 128);
else if (mod(L,128) # 0) then

Lrep =L-128;
else
L'r‘ep = L;

Once the replicated waveform length has been calculated, it must be compared against the
capacity of the desired waveform memory to determine if the waveform will fit. For QDR-~IT SRAM,

the waveform length must be less than 32 Mbits. The equation used is: 32L1()[€§its <1

o If the ratio is less than 1, then the replicated waveform will fit within the QDR-II SRAM.
e If the ratio is greater than 1, then the waveform will not fit in the QDR-II SRAM.
For Block RAM, the waveform length must be less than 2 Mbits. The equation used is: #b’:tb <1.

o If the ratio is less than 1, then the replicated waveform will fit within the Block RAM.

o If the ratio is greater than 1, then the waveform will not fit in the Block RAM.

A.3 Waveform Parameters

The file header defined in Section A.1.2 contains several parameters that need to be calcu-

lated from the waveform data, including:
e Waveform Bit Length
e Waveform Memory Stop Address

o Waveform Mark Density

A.3.1 Waveform Bit Length

Once it has been determined that the waveform requires replication, the waveform length

will be re-calculated from the replicated waveform file. The waveform length must be checked to
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ensure that it will fit within the appropriate waveform memory. The QDR-II SRAM is constructed
as 256-kwords x 128-bits (or 225 bits). The Block RAM is constructed as 16-kwords x 128-bits (or

221 bits). The total bit length of the replicated waveform data can be calculated using Equation A.2.

Lrep = Nsamples - 16 (A2)

A.3.2 Waveform Memory Stop Address

Once the replicated waveform length has been determined, the memory stop address must
be calculated for the waveform file. The memory stop address is used by the Data Path FPGA to
determine when to roll-over back to the start address, which is typically 0x0. The stop address for

both the Block RAM and QDR-II SRAM is shown in Equation A.3.

Lrep
AddT’e.SSSTop = ( 198 - 1> (A3)

The QDR-II SRAM stop address will be stored as an 18-bit hexadecimal value and the Block RAM
stop address will be stored as an 14-bit hexadecimal value. The stop address will be written to the

header of the waveform file.

A.3.3 Waveform Mark Density

The Mark Density of the waveform bits must be calculated and stored in the header of the
waveform file. Equation A.4 can be used to calculate the Mark Density. The resulting Mark Density
will be a value in the range of 1.00 to 1000.00.

MD = <Number of Ones) 1000

Number of Bits
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A.4 Waveform Generation

Several scripts were written in a variety of scripting languages to facilitate the generation
of waveform files suitable for loading and play back from the signal source of the General Purpose
Instrument. The scripting language used to generate waveform files is dependent on the type analysis
required to verify the waveform is correct. Simple waveforms can be generated using either Perl or
Bash scripts. More complex waveforms can be generated using Matlab, which excels at plotting
data in both the time and frequency domain. Some of the scripts are used specifically for generating
waveform files that contain a single cycle of a waveform that, when played back, repeatedly generate
a continuous waveform. Others are targeted at analyzing, replicating, and reformatting the single
cycle waveform files so that they meet the waveform file requirements outlined in Sections A.1 to
A3.

The following scripts were used to generate waveform files:
e wave_array.m - Sinusoid Waveform Generation
e square.pl - Square Waveform Generation
e ramp.pl - Ramp Waveform Generation

The output waveform files generated by the above scripts are then filtered by the sig2hex.pl script,
which is described in detail in Appendix Chapter B. Some of the scripts above can iterate over a
frequency range to generate multiple files. The generation of waveform files suitable for loading onto

the General Purpose Instrument can be further scripted using a Bash script.
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A.4.1 Sinusoid Waveform Generation

A sinusoid waveform can be generated in Matlab using either the sin() function with a 90°
phase offset or the cos() function. A for loop was employed to iterate over the frequency ranges

described in Table A.1.

Fgiare Faiop Fine nSamps
1 kHz 9 kHz 1 kHz | 1048576
10 kHz 1 MHz 10 kHz | 1048576
1 MHz | 250 MHz | 1 MHz 16384

Table A.1: Sinusoid Waveform Frequency Range Matlab script parameters

Equation A.5 describes the function used to generate the sinusoid waveform.

yln] = A-cos(2-m- F.-x[n]) (A.5)

The function z/n/ is described by Equation A.6, where nSamps represents the number of waveform

samples and varies for each frequency range.

(0:1: (nSamps —1))
F’S

zn] = (A.6)

A scale factor of A, described in Equation A.7, was used to scale each sinusoid waveform generated.

AdBm
a0l (A7)
10200

50

The parameter Agp,,, shown in Equation A.7, was set to 9.95 dBm, or slightly less than 2 Vypk.
Once the sinusoid waveform function is generated, the Matlab script will then extract a single cycle
and write the waveform data to a file in a format suitable for processing by the waveform conversion
script, sig2hex.pl. A sample sinusoid waveform generation Matlab script for the frequency range of

10 MHz to 250 MHz in 1 MHz steps is shown in Listing A.4.
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Listing A.4: Sinusoid Waveform Generation Matlab Script

0700000000000DDDD%%OG/G00000000000DDDD%%O/G/G00000000000000000000000000

% wave_array.m script

0070707/0/070707/0/070707/0/07070/0/070707/0/070707/0/070707/0/070707/0/ 07070707 0707070/07070/0/07070/ 0707070/ 0707070/ 0707070/ 0707070707070

% VCL Confidential, Copyright 2009 UC Davis ECE Department

00/0/0/0/0/0/0/0/0/07/0/0/0/0/0/0/0/0/0/07/0/0/0/0/07/0/0/0/0/0/0/0/0/0/07/0/07/0/0/0/0/07/0/0/0/0/07/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0
% created on: 11/02/2009

% created by: Jwwebb

% last edit on: $DateTime: $

% last edit by: $Author: $

% revision : $Revision: §

% comments : Generated

67000000000000DUD%%%G/G/GGOOOOOO000ODUD%%%G/G/GGOOOOOOOOOOO0000000000000
% Sine Waveform Generation

%

% This matlab script generates a sine waveform file for the

% Data Path FPGA.
%%%%0/000000000000000%%%%0000000000l/00000%%%%%%00000000000000000000

clear;clc;close all;
PrintOnEps = 0;
PlotMe = 0;

WriteMe = 1;

for f = 1:1:250;

00707070, 0/070/070/070/070/070707070/070, 0/070/070/070/070/0707070707/070/070/0: 0/070/070/070707070/070/070

% Generate the Sine Waveform:

00707070, 0/0/07/070707/07/07/0/0/07070707/070s 070 0/07/07070/07/07/07/0/0707070707070s 0/0/07/07/0/07/0/0707/0/0/0/0
fc = fxle6; % in Hz
fs = 500e6; % in Hz

amplitude_.dBm = 9.95; % Equivalent to slightly less than 2 Vpkpk
amplitude.V = 10" (amplitude-.dBm /20) /sqrt (1000/2/50); %in wvolts
nSamps = 16384;

nData = 0:(nSamps—1);

xData = nData/fs;

yData = amplitude_-V .*xcos(2*pi*fcxxData);

0070/070/070/070707070/070/070/070/070707070/070/070/0707 0707 07070/070/070/ 070/ 07070707 0/070/0; 0/070/070/070707070/070/070

% Write the Sine Waveform to a Text File in 2°s Complement Decimal.

V0606% 8000 060600767606 067606007676 0060600060600 067606 007606007606 8000060606 767600 76760 %
if WriteMe

getOnes = find (yData == amplitude_V);

start = 1;
stop = getOnes (2) —1;
fData = yData(start:stop);
stopAddr = dec2hex (((length(fData)*16x128)/128)—4);
filename = sprintf(’./file_in /patOdBFS/sine%dm.pat’, fc/le6);

fid = fopen(filename , 'w’);
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end

end

fprintf(fid ,
)
fprintf(fid ,
)5
fprintf(fid ,
fprintf(fid ,
fprintf(fid ,
fprintf(fid ,
fid ,
fid ,
fid

fprintf
fprintf
fprintf s
fid ,
fid

fprintf
fprintf s
fid ,
fid ,
fid ,

(
(
(
(
(
fprintf(
fprintf(
fprintf(
fprintf(fid ,
fprintf(fid ,
fprintf(fid ,
)5
fprintf(fid ,

for j = 1:1:length(fData);

1t

1t
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Lt

L ) ]
T i i i i i1 11 11

INTRTRTRTNTRT
Tt

#description=Sine _Waveform: .Fc.=_%MHz, _Fs _.=_%dMHz\n "’ ,

#patternname=%s\n’,

filename) ;

"#patterntype=sram\n’);

#patternlength=%d\n’ ,(length(fData)*128));

"#readstartaddressa=0x0\n"’);

"#readstopaddressa=0x%s\n’ ,stopAddr) ;

‘#readstartaddressb=0\n");
‘#readstopaddressb=0\n") ;

#triggerword=0\n");

#patternstatistics=\n");
"#density =0.750\n");
#bitshift=no\n’);
#bitshiftindex=0_\n");
‘Here=77?\n");

#version=1.0\n");

#begin\n’) ;

yl = fData(j);

fprintf(fid , '%2.16f° ,y1);

fprintf(fid,’ ’\n’);

end;
fprintf(fid ,
fclose (fid);

‘#end\n’) ;

INTRTRTRINTRT
Tt

fc/1e6,

Ay 0
Hlln

fs/1e6
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Listing A.5 shows a sample waveform file for a 100 MHz sinusoid waveform.

Listing A.5: Example Sinusoid Waveform File

155

NI T L NI T T TR T 7T T
T T e 7117 T Tt Tt T 11T Tt

#description=Sine Waveform: Fc¢ = 100MHz, Fs = 500MHz

#patternname=sinel00m . pat
#patterntype=sram
#patternlength =640
#readstartaddressa=0x0
#readstopaddressa=0x13C
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=
#density =0.750
#bitshift=no
#bitshiftindex=0
H#Hcre=777

#version=1.0

Ll Lt L) L
T T it T T

#begin
1.0000000000000000

Lt T L

T
T i Tt T

0.3090169943749475
—0.8090169943749473
—0.8090169943749478
0.3090169943749472
#end
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A.4.2 Ramp Waveform Generation

A ramp, or triangle, waveform can be generated by incrementing a sample value from —N
to N and then decrementing a sample value from N to —N. The period of the ramp waveform is
determined by the number of samples present on the incline and decline of the ramp waveform. A
Perl script, ramp.pl, was developed to generate a ramp waveform with a frequency in the range of
1 kHz to 10 MHz. Table A.2 outlines the parameters used by the ramp.pl script to determine the
number of samples required on the incline and decline of the ramp waveform to achieve the desired

ramp waveform frequency.

Parameter Value Description
DACRES 16 bits High-Speed DAC Resolution
MAXVAL 215 Maximum Signed 2’s Complement Value
MINVAL —215 Minimum Signed 2’s Complement Value
F, 500 MHz High-Speed DAC Sample Frequency
Framp 1 kHz to 10 MHz | Desired Ramp Waveform Frequency

Table A.2: ramp.pl Perl script parameters

The total number of samples required to achieve the desired ramp waveform frequency can be

calculated using Equation A.8.

; F.
Framp s
NumSamples = ( T > = ( > (A.8)

7 Framp

The number of samples required for the incline or decline is simply NumSamples divided by two.
The sample increment is common to both the incline and decline of the ramp waveform, and can be

calculated using Equation A.9.

(A.9)

NumSamples

Ramplnc = (
2

MAXVAL—MINVAL) B < 216.2 ) B ( 217 )

NumSamples NumdSamples

Algorithm A.4.1 describes how the ramp waveform is created using the parameters listed in Ta-
ble A.2 and calculated in Equations A.8 and A.9 parameters. Upon completion of the algorithm,
the array variable ramp is written to a waveform file in a format suitable for processing by the

waveform conversion script, sig2hex.pl.
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Algorithm A.4.1: Ramp Waveform Generation Algorithm

Data: RamplInc=equally spaced increment value from min to max DAC value.

Data: idx =1
Data: mdx =0
begin

for (p =28 p<2B p=p+ Ramp]nc) do
ramp(idx) = 55;

| idx = idx + 1;
for (m = 2", m > (—2'° + RampInc) ,m = m — RampInc) do

if (mdz > 0) then
ramp(idx) = 575;

idx = idx + 1;
| mdx = mdx + 1;

Listing A.6 shows a sample waveform file for a 10 MHz ramp waveform.

Listing A.6: Example Ramp Waveform File

NI L)L 1y T L T NI, L Ly T
17 T e 1177 T T T T 1T Tt

#description=Ramp Waveform: Fc¢ = 10.0 MHz, Fs = 500.0 MHz

#patternname=ramp_10mhz. pat
#patterntype=sram
#patternlength=25600
#readstartaddressa=0x0
#readstopaddressa=0xc7
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=
#density =0.750
#bitshift=no
#bitshiftindex=0
H#Hcre=777

#version=1.0

Ll Lt L) Ll Lt L) T T
T T it T T 77 T Tt T

#begin
—1.000000000000000

—0.920000000000000
—0.840000000000000
—0.760000000000000
—0.680000000000000
—0.600000000000000
—0.520000000000000
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—0.440000000000000
—0.360000000000000
—0.280000000000000
—0.200000000000000
—0.120000000000000
—0.040000000000000
0.040000000000000
0.120000000000000
0.200000000000000
0.280000000000000
0.360000000000000
0.440000000000000
0.520000000000000
0.600000000000000
0.680000000000000
0.760000000000000
0.840000000000000
0.920000000000000
1.000000000000000
0.920000000000000
0.840000000000000
0.760000000000000
0.680000000000000
0.600000000000000
0.520000000000000
0.440000000000000
0.360000000000000
0.280000000000000
0.200000000000000
0.120000000000000
0.040000000000000
—0.040000000000000
—0.120000000000000
—0.200000000000000
—0.280000000000000
—0.360000000000000
—0.440000000000000
—0.520000000000000
—0.600000000000000
—0.680000000000000
—C

o

.760000000000000
—0.840000000000000
—0.920000000000000

#end

More information, including the Perl code, can be found in Appendix Chapter D.
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A.4.3 Square Waveform Generation

A square waveform can be generated by assigning the sample value the maximum value for
half of the period, and then assigning the sample value the minimum value for the remaining half of
the period. The period of the square waveform is determined by the number of samples present on
the positive and negative pulses of the square waveform. A Perl script, square.pl, was developed to
generate a square waveform with a frequency in the range of 1 kHz to 25 MHz. Table A.3 outlines the
parameters used by the square.pl script to determine the number of samples required on the positive

and negative pulses of the square waveform to achieve the desired square waveform frequency.

Parameter Value Description
DACRES 16 bits High-Speed DAC Resolution
MAXVAL 215 Maximum Signed 2’s Complement Value
MINVAL —215 Minimum Signed 2’s Complement Value
F, 500 MHz High-Speed DAC Sample Frequency
Fisquare 1 kHz to 25 MHz | Desired Square Waveform Frequency

Table A.3: square.pl Perl script parameters

The total number of samples required to achieve the desired square waveform frequency can be

calculated using Equation A.10.

» F
Fsquare s
NumSamples = ( i ) = ( > (A.10)

o quuare

The number of samples required for the positive or negative pulses is simply NumSamples divided
by two. Algorithm A.4.2 describes how the square waveform is created using the parameters listed
in Table A.3 and calculated in Equation A.10. Upon completion of the algorithm, the array variable
square is written to a waveform file in a format suitable for processing by the waveform conversion

script, sig2hex.pl.
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Algorithm A.4.2: Square Waveform Generation Algorithm

Data: idx =1

Data: mdx =0

begin

square(idx) = 0;

idx = idx + 1;

for (pz 0, p< (M) ,p=p+1) do
square(idx) = ;z,
idx = idx + 1;

square(idx) = 0;

idx = idx + 1;

for (m:O,m< w> 7m:m-i-l) do
square(idx) = —3%;
idx = idx + 1;

Listing A.7 shows a sample waveform file for a 25 MHz square waveform.

Listing A.7: Example Square Waveform File

#description=Square Waveform: Fc¢ = 25.0 MHz, Fs = 500.0 MHz

#patternname=squ-25mhz. pat
#patterntype=sram
#patternlength=33792
#readstartaddressa=0x0
#readstopaddressa=0x107
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=
#density =0.750
#bitshift=no
#bitshiftindex=0
F#crc=777

#version=1.0

NIRRT IR RTR) L) TR NIRRT 1 TR
7 T 11T 1T T Tt 1177 T

#begin
0.000000000000000
1.000000000000000

NIRRT 1y T
777 el

T

1.000000000000000
1.000000000000000
1.000000000000000
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—_

.000000000000000

=

.000000000000000
.000000000000000

—

[

.000000000000000
.000000000000000
.000000000000000

= =

0.000000000000000

—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000
—1.000000000000000

#end

More information, including the Perl code, can be found in Appendix Chapter C.
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A.4.4 Waveform Generation Automation

It is imperative to automate the generation of waveform files as the number of waveform
files that need to be created increases beyond a few files. As an example, the spurious-free dynamic

range is typically measured at three power levels over the frequency range from 1 kHz to 250 MHz.

e 0 dBFS
e —6 dBFS
e —12 dBFS

The initial waveform files are generated using wave_array.m, described in Section A.4.1, and are
then converted to the internal waveform file format for each power level using the sig2hex.pl script.
A Bash script, shown in Listing A.8, was developed to automate the conversion and scaling of the

waveform files for use with the SFDR measurement.

Listing A.8: Waveform Generation Automation Bash Script
#!1/bin/sh

L

# SFDR Waveform File Generation Module

filename: gen_sfdr.sh

by Jeremy Webb

Rev 1.1, November 20, 2009

This wtility is intended to generate the Waveform Files for
measuring SFDR. This script will generate sine waveform files

for the Measurement board with the following scale factors:

% +0dBFS = 20xlog10(2°15/2°15)
* —6dBFS = 20%log10(2°14/2°15)
* —12dBFS = 20x1log10(2°13/2°15)

An example usage is:

./gen_sfdr.sh

Rewviston History:

1.0 11/02/2009 Initial release
1.1 11/20/2009 Combined all waveform gen into one script.

R TR N N N N N N R TR T R N N N R R R R TR N N N

Please report bugs, errors, etc.
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4
echo " Generating_.Hex_Pattern_.Files._for_.0dBFS_scale ...
echo 77
echo ”"Frequency_Range: _1MHz._to_.250MHz"
echo 77
X=1
while [ $X —le 250 ]
do
./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}m.pat —o ./fo/pwr0OdBFS/sine${X}m.pat —m 0 —r
16 —s 15
X=§ ((X+1))
done
echo ”"Frequency_Range: _10kHz_to._.990kHz”
echo 77
X=10
while [ $X —le 990 ]
do

./sig2hex.pl —i
16 —s 15
X=$ ((X+10))

./ file_in /pat0OdBFS/sine${X}k.pat —o

done

echo ”"Frequency._Range:_1kHz_to_9kHz”
echo 77
X=1
while [ $X —le 9 |
do

./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}k.pat —o

16 —s 15

X=% ((X+1))
done
echo " Generating_.Hex_Pattern_.Files_for_.—6dBFS_scale ...
echo 7”7
echo ”"Frequency_Range: _1MHz_.to._.250MHz"
echo 7”7
X=1
while [ $X —le 250 ]
do

./sig2hex.pl —i ./ file_in /pat0OdBFS/sine${X}m.pat —o

16 —s 14
X=$ ((X+1))
done
echo ”"Frequency_Range: __10kHz_to._.990kHz”
echo 7”7
X=10
while [ $X —le 990 ]

do

./ fo/pwr0dBFS/sine$ {X}k.pat —m 0 —r

./ fo/pwr0dBFS/sine$ {X}k.pat —m 0 —r

”»

./ fo/pwrn6dBFS/sine$ {X}m.pat —m 0 —r
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./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}k.pat —o ./fo/pwrn6dBFS/sine${X}k.pat —m 0 —r
16 —s 14
X=$ ((X+10))
done
echo ”"Frequency_Range: _1kHz._to_9kHz”
echo 77
X=1
while [ $X —le 9 ]
do
./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}k.pat —o ./fo/pwrn6dBFS/sine${X}k.pat —m 0 —r
16 —s 14
X=$ ((X+1))

done

echo 7" Generating_Hex_Pattern_Files_for_—12dBFS_scale ...”
echo 7”7
echo ”"Frequency_-Range: _1MHz._to_250MHz”
echo 7”7
X=1
while [ $X —le 250 ]
do
./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}m.pat —o ./fo/pwrnl2dBFS/sine${X}m.pat —m 0 —
r 16 —s 13
X=$ ((X+1))
done
echo ”"Frequency_Range:_10kHz_to_990kHz”
echo 7”7
X=10
while [ $X —le 990 ]
do
./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}k.pat —o ./fo/pwrnl2dBFS/sine${X}k.pat —m 0 —
r 16 —s 13
X=$ ((X+10))
done
echo ”"Frequency_Range:_1kHz_to_9kHz"
echo 7”7
X=1
while [ $X —le 9 ]
do
./sig2hex.pl —i ./ file_in /patOdBFS/sine${X}k.pat —o ./fo/pwrnl2dBFS/sine${X}k.pat —m 0 —
r 16 —s 13
X=8 ((X+1))

done
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A.5 Waveform Play Back

Waveforms can be loaded into the signal source for generation by the General Purpose
Instrument using remote commands via the USB interface. A list of patterns available for play back

on the General Purpose Instrument can be viewed by executing the command shown in Listing A.9.

Listing A.9: Waveform File Name List Command

Is pattern

where pattern is the name of the directory containing the waveform files
available for play back on the General Purpose Instrument via the signal source

output .

Waveform files can be loaded from the microSD card into either the Block RAM or the QDR-II

SRAM waveform memory by executing the command shown in Listing A.10.

Listing A.10: Waveform Load Command

src_-load [1]0] [pattern\type\name.pat]

where [1]0] selects either Block RAM (0) or QDR-II SRAM (1) as the playback

memory, and [pattern\type\name.pat] is the path to the pattern file.
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This chapter describes the sig2hex waveform conversion Perl script, which is used to convert

Matlab waveform files into a format supported by the Measurement board for waveform playback.

B.1

B.2

NAME

sig2hex.pl - Waveform Signed 2’s Compliment Decimal-to-Hexadecimal Converter

SYNOPSIS

sig2hex.pl [-h] [-v] [-i <FILE>] [-o <FILE>] [-r <RES>] [-s <SCALE>] [-m <TYPE>]

Help Options:

-h Print Help.
-V Verbose: Print Debug Information.
-1 <FILE> Waveform Input filename.
-o <FILE> Waveform Output filename.
-r <RES> Waveform Resolution (Default: 16).
-s <SCALE> Waveform Maximum Value: 2°N (Default: 15).
-m <TYPE> Waveform Type; O: QDR-II SRAM, 1: BRAM.
Example:
./sig2hex.pl -v -i sample.pat -o mypat.pat -r 16
./sig2hex.pl -i ./file_in/sinelm.pat -o ./fo/sinelm.pat -m 0 -r 16 -s 15
B.3 OPTIONS

-h

Show the brief help information.
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-v
Show debug information.

-i FILE
Waveform input filename containing a single cycle of the desired waveform in signed 2’s com-
plement decimal format.

-o FILE
Waveform output filename containing a replicated waveform in hexadecimal format. The
output file contains a header, which is used by the Control FPGA on the Measurement board
to aid in the loading of the pattern into the desired pattern memory. The hexadecimal data is
formatted as eight hexadecimal digits per line, and the data is encompassed by a #begin/#end
tag.

-r RES
Resolution of the digital-to-analog converter generating the waveforms.

-s SCALE
Scale of the generated waveform. This option can be used to scale the waveform by a power
of 2. For example, 0dBFS refers to a SCALE value of 15, -6dBFS refers to a SCALE value of
14, -12dBF'S refers to a SCALE value of 13, etc.

-m TYPE

Select the waveform memory type. A 1 indicates Block RAM, and a 0 indicates QDR-IT SRAM.

B.4 DESCRIPTION

sig2hex.pl is used to convert waveform files created using Matlab into a format suitable
for playback on the Measurement Board. sig2hex.pl will read in a waveform file with a single signed
2’s complement decimal value per line. It will quantize the data based on the desired resolution as

follows:

o) = o (212°) .
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The quantized waveform data will then be converted to a hexadecimal signed 2’s comple-
ment value with the desired resolution. The data will then be written out to a file for use with the

Measurement Board Data Path FPGA.

B.5 SUBROUTINES

Get Waveform File

The getF'ile sub-routine will open the input waveform file in signed 2’s complement format
and store the data into a hash as an array. In addition, the getFile will also store the total number

of lines in the file into a hash.

Parse Waveform File

The parseFile sub-routine will parse the waveform file to find the #begin and #end tags,
which identify the location of the waveform data in the file array. After locating the waveform data,
parseFile will then extract the waveform data from the file array into its own array and store both

the array and the number of waveform samples in a hash.

Convert Signed 2’s Complement Decimal to 16-bit Hexadecimal

The convDec2Hex sub-routine will quantize, scale, and convert the signed 2’s complement
decimal data into hexadecimal data. It will then write the data to a waveform file suitable for loading

onto the Measurement board.

ALGORITHM DESCRIPTION
1. Determine maximum value of a hexadecimal sample using the RES value provided by the user.

a. $maxValue = 28RES

b. The default RES value for the Measurement board DAC is 16.
2. Determine the scale coefficient for the quantized sample data.

a. $maxScale = 285CALE

b. The default SCALE value for the Measurement board DAC is 15.

3. Grab a signed 2’s complement decimal value from the data array.



APPENDIX B. WAVEFORM CONVERSION PERL SCRIPT 169

4.

10.

11.

12.

13.

14.

Quantize signed 2’s complement decimal value to RES bits.

a. $datQuant = ceil($datIn * $maxValue) / $maxValue

Scale the quantized sample data by 25¢ALE,

a. $datScale = $datQuant * ($maxScale - 1)

Convert the quantized and scaled data to hexadecimal.

a. $hexValue = dec2hex($datScale)

Test hexadecimal value to ensure that it contains 4 hexadecimal digits.

Store the hexadecimal value in an array in the order provided by the input waveform file.

Determine if the hexadecimal waveform data meets the length requirements of the Measure-

ment board and replicate the waveform if necessary.

a. Waveform must be a minimum of 256 binary bits long.
b. Waveform length must be a multiple of 128 bits.

c. Waveform length must meet maximum requirements depending on the waveform memory

type. Block RAM can support up to 22! bits. QDR-II SRAM can support up to 22° bits.
Calculate waveform stop address.
a. $stopAddr = ( ($LENBITS / 128) - 1 )
Determine the mark density, or ratio of 1’s and 0’s, of the waveform.
Format waveform file header, and write to an output waveform file.
Write the 16-bit hexadecimal value to an output waveform file.

Write the replicated waveform to a file in decimal format for verification of waveform in Matlab.

Test Hexadecimal Values

The testhex sub-routine will receive a single hexadecimal value. If the hexadecimal value

is less than 4 digits, then testhex will pre-pend the appropriate number of zeros in order to provide

a complete 16-bit hexadecimal value. An error flag is also provided to determine if the hex value is

more than 4 digits.
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Calculate the Replicated Waveform Length

The repCalc sub-routine will receive a hexadecimal waveform array, and determine if its
overall bit length meets the length requirements of the Measurement board. If the requirements are
not met, then the repCalc sub-routine will replicate the pattern as necessary.

ALGORITHM DESCRIPTION

1. Determine if the hexadecimal waveform data meets the minimum length requirement of 256

bits.

a. Replicate the hexadecimal waveform data such that it meets the minimum length require-

ment.
2. Is the waveform length a multiple of 128 bits?
3. Is the waveform length a multiple of 32 bits?
4. TIs the waveform length a multiple of 2 bits?
5. Determine if the hexadecimal waveform data needs to be further replicated.

a. If the waveform length is a multiple of 32 bits but not a multiple of 128 bits, then the

waveform must be replicated by $REPNUM = ($LENBITS * 16) % 128.

b. If the waveform length is not a multiple of 32 bits and not a multiple of 128 bits, then the

waveform must be replicated by $REPNUM = 128.

c. If the waveform length is a multiple of 128 bits, then the waveform does not require repli-

cation.
6. Replicate the hexadecimal waveform data if necessary.

7. Determine if the hexadecimal waveform data meets the maximum length requirements depend-

ing on the waveform type selected.

a. Block RAM can support up to 22! bits.

b. QDR-II SRAM can support up to 22° bits.
8. Calculate waveform stop address.
a. $stopAddr = ( ($LENBITS / 128) - 1 )

9. Determine the mark density, or ratio of ones to total bits, of the waveform.
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Calculate Mark Density of Waveform File

The calcMD sub-routine will determine the total number of logic ones in the waveform
file, and calculate the mark density. Mark density is the ratio of logic ones to the total number of

bits.

Decimal to Hexadecimal Conversion

The dec2hex sub-routine will convert a decimal value into its hexadecimal equivalent.

Hexadecimal to Binary Conversion

The hex2bin sub-routine will convert a hexadecimal value into its binary equivalent.

B.6 CODE

Listing B.1: Waveform Conversion Perl Script

#!/usr/bin/env perl

# vim:ts=4:sw=4:expandtab:cindent

T kKKK KRR R KRR R R KRR R R KRR R R KRR R R KRR R R R R R R R R R R R o R R K o ok ok K K
#

# sig2hex.pl module
Z******************************************************************
#

# VCL Confidential Copyright 2009 UC Davis, ECE Department

#

#******************************************************************

created on: 05/18/2009
created by: Jwwebb

last edit on: $DateTime: §
last edit by: $Author: §$
revision: $Revision: $

comments: Generated

R N N SR TR T I N

#******************************************************************

# Revision List:

#

# 1.0 05/18/2009 Initial release

# 1.1 11/20/2009 Added capability to scale
# the waveform from Matlab
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before converting to Hex
and replicating.

01/01/2011 Add Perl POD documentation .

R S N
IS

Please report bugs, errors, etc.
S K ko ko Kok R Kk KOk Kk R KOk K ok R oKk K kR Kk KOk K ok K Kk K ok R oKk K kR oKk K kR Kk K KOk Kk R KOk KOk K
# Waveform Signed 2’s Compliment Decimal—to—Hex Converter
This wutility is intended to read in a waveform with a single
signed 2’s complement decimal value per line. The wtility will

quantize the data based on the desired resolution as follows:

y_n_scaled = round(xz_nx2°20)/2°20;

The quantized waveform data will then be conwverted to a
hexadecimal signed 2’s complement wvalue with the desired
resolution. The data will then be written out to a file for

use with the Measurement Board Data Path FPGA.
Usage Information :
Usage: ./sig2hex.pl [—h] [—v] [—f <FILE>] [—r <RES>]
—h Print Help.
—v Verbose: Print Debug Information .
—f <FILE> Input Waveform File (Decimal)

—r <RES> Waveform Resolution (Default: 16)

Example :

./sig2hex.pl —v —f sample.pat —r 16

TR TR N R N N N N R R N N N T T S N N R T R N N

KRR R R R KRR KRR R KRR R R KRR R R KRR KRR R R R R R R R R R R R R R R R R R R R R R R R Rk R K

B e
# CPAN Modules

Tk kK kKRR KRR KRR KRR R KRR R R R R R R R R R R R R R R ok o o R o o ok ok K K
use strict;

use Getopt:: Std;

#use Math:: Round qw (round);

use POSIX;

use Data :: Dumper;

#******************************************************************
# Constants and Variables:
#******************************************************************
my (%opts)=();

my ($filein);
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my ($fileout);

my ($bram_nsram) ;
my ($res);

my ($scale);

my (3debug);

my (%patH, S$pat_-rH);

sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok stk ok sk ok sk k sk sk Sk k sk ok Kk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk ok ok sk ok sk ok ok ok ok ok ok
# Retrieve command line argument
sk sk ok sk sk ok sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk ok sk sk ok sk sk sk sk sk sk Sk sk ok sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk ok ok sk sk sk ok ok sk ok ok ok

getopts(’hvi:o:rim:s:’ \%opts);

my $optslen = scalar( keys %opts );

print (”Number_of_Options_on_Command—Line:_$optslen\n”) if Sopts{v};

#check for walid combination command—line arguments
if ( $opts{h} || !Sopts{i} || (Soptslen eq 70”) ) {
print_usage () ;

exit ;

# parse command—line arguments

$filein = Sopts{i};
$fileout = $opts{o};
$res = $opts{r};
$scale = $opts{s};
$bram_nsram = $opts{m};
$debug = Sopts{v};

Sk ok ko kR R Kk KR Kk Kk K kR oKk K kR Kk K KOk K ok K Kk K ok R oKk K kR Kk K kR Kk K KOk Kk R KOk KOk K
# Stuff input options into a Hash:

S K ko ko kR R Kk KR K kR Kk K R R Kk K KR Kk KR K ok K Kk ok oKk K kR Kk KR Kk KOk Kk R KOk Kk K
$patH{ ’'wave_in’ } = $filein;

$patH{ ’'wave_out’ } = $fileout;

$patH{ ’'resolution’ } = $res;

$patH{ ’scale’ } = $scale;

$patH{ ’bram_nsram’ } = $bram_nsram;
$patH{ ’debug’ } = $debug;

#******************************************************************
# Convert Waveform data:
#******************************************************************
if ($filein) {

if (!(defined $res)) {

$patH{ ’'resolution’ } = 7167 ;

print ("WARNING: _No_Resolution.Provided , ~Assuming._16—bit _Resolution!\n”);

}
if (!(defined $scale)) {

173
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$patH{ ’scale’ } = 715"
print ("WARNING: _No_Scale _Provided , _Assuming._2"15_max_value!\n”);
}

# Get Waveform File :

$pat_-rH = getFile(\%patH);

# Parse Waveform File:

$pat_-rH = parseFile($pat_rH);

# Write data to File:

$pat_rH = convDec2Hex ($pat_rH) ;

exit ;

=pod

=headl NAME

B<sig2hex .pl> — Waveform Signed 2’s_.Compliment_Decimal—to—Hexadecimal_Converter

=headl _.SYNOPSIS

cosig2hex . pl_o[—h]_[—v]_[—i1 _<FILE>]_[—0_<FILE>]_[—r _<RES>]_[—s _.<SCALE>]_.[—m_<TYPE>]

--Help_Options:

cee—hooooooooan Print .Help .

R Verbose: .Print_Debug.Information .

cee—i1 <FILE>_._._Waveform_Input_filename.

cee—0 <FILE>_._Waveform_Output_filename .

cee—r <RES>____Waveform_Resolution.(Default:_.16) .

eee—s <SCALE>.._.Waveform _Maximum._Value: .2"N._(Default:_.15) .
e <TYPE>__.__Waveform_Type; . 0: .QDR-I11 _SRAM, _1: BRAM.

c—-Example:

HHHHHHHH /sig2hex .pl.—v_—i_sample.pat_.—o_mypat.pat_—r._16

uuuuuuuu /sig2hex.pl_—i_./ file_in /patOdBFS/sinelm.pat_—o../fo/sram/pwrOdBFS/sinelm.pat_—m_0
—r.16.—s_15

=headl _OPTIONS

=over.8

=item .B<—h>
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Show._the_brief_help_information.

=item _B<—v>

Show._debug._information .

=item .B<—i _FILE>

Waveform.input._filename._containing.a_single_cycle_.of_the_desired _waveform._in.signed.2’s

complement decimal format.

=item B<—o FILE>

Waveform output filename containing a replicated waveform in hexadecimal format. The
output file contains a header, which is used by the Control FPGA on the Measurement
board to aid in the loading of the pattern into the desired pattern memory. The
hexadecimal data is formatted as eight hexadecimal digits per line, and the data is
encompassed by a #begin/#end tag.

=item B<—r RES>

Resolution of the digital —to—analog converter (DAC) generating the waveforms.

=item B<-s SCALE>

Scale of the generated waveform. This option can be used to scale the waveform by a power
of 2. For example, 0dBFS refers to a SCALE value of 15, —6dBFS refers to a SCALE value
of 14, —12dBFS refers to a SCALE value of 13, etc.

=item B<-m TYPE>

Select the waveform memory type. A 1 indicates Block RAM, and a 0 indicates QDR-II SRAM.

=back

=headl DESCRIPTION

B<sig2hex .pl> is used to convert waveform files created using Matlab into a

format suitable for playback on the Measurement Board. B<sig2hex.pl> will

read in a waveform file with a single signed 2’s_complement_decimal_value_per_line.

It_.will_.quantize_the_.data_based_on_.the_desired._resolution_as_follows:

=over.4

=item _*x_C<y[n] .=—round (x[n] .*_2*%20)_/_2%*%20>

=back
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The_quantized _.waveform_data_will _then_be_converted_to_a_hexadecimal_signed

2’s complement value with the desired

out to a file

resolution. The data will then be written

for use with the Measurement Board Data Path FPGA.

=headl SUBROUTINES

=cut

R R R R KRR KRR R R KRR R KRR R KRR R KRR R R R R R R R R KRR R R R R R R R R R Rk R K K

# Sub—routines

T KKK R R R R KRR KRR R R KRR R R KRR R R R R R R R R R R R R R R R R R R ok o K K

sub dienice {

my(S$errmsg) = Q_;

print” Serrmsg\n” ;

exit ;

sub print_usage {

my ($usage);
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Susage = "\nUsage:_$0_[—h]_[—-v]_.[—1_<FILE>]|.[—0_<FILE>]_[—r .<RES>]|._.[—s _.<SCALE>]_[-m_<
TYPE>]\n" ;

$usage .= "\n”;

$usage .= "\t—h\t\tPrint_Help.\n”;

Susage .= 7\t—v\t\tVerbose:_Print_Debug_Information.\n”;

$usage .= "\t—i_<FILE>\tWaveform_Input._filename.\n”;

Susage .= 7\t—o_<FILE>\tWaveform_Output_filename.\n”;

Susage .= 7\t—r_.<RES>\tWaveform_.Resolution_(Default:_.16).\n”;

Susage .= 7 \t—s_<SCALE>\tWaveform_Maximum._Value:_2"N_(Default:_15).\n";

Susage .= 7"\t-m_.<TYPE>\tWaveform.Type;._.0:_SRAM, .1: .BRAM.\n” ;

Susage .= 7\n”;

$usage .= "\tExample:\n”;

$usage .= "\t\t$0_.—v_—i_sample.pat_—o_mypat.pat_—r.16_\n";

$usage .= "\n”;

print (Susage);

return;

sub getFile {

=head2 Get Waveform File

The B<getFile> sub—routine will open the input waveform file

in signed 2’s

complement._format._and_store_.the_data_into_a_-hash_as_an_array..In_addition ,

the._.B<getFile>_will_.also_store_the_.total_number_of_lines._.in_the_file_.into

a_hash.
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=cut

T L
7

TR NIRRT} T L) T T T TR T Ll NI
T T T T T

cecFH_Get_Waveform_File :

SR

cee#o.The_sub—routine_getFile () -will _open_the_Waveform.file
ceeffecandoread_its .contents_.into_an_array.._It_will_also_determine

ceefoctheofile nlength . _The_following._parameters_are_created

S
oo oxofileData : oo @QdataA
etk fileLen tceoen scalar (@dataA)
S
cee#o_Usage: _$pat_-rH._ =_getFile(\%patH) ;
S
PO i s A
ceeemy ($pat_rH) o=_shift ; oooooooooos #_Read_in_user’s variable.
my (%patH) = %{ $pat_rH }; # De—reference hash.
my ($debug) = $patH{ debug’}; # Print out Debug Info.

# Open the waveform file, and read the results into an array for
# manipulating the data array. Strip new lines and carriage returns
# from remove string array, and initialize for loop wariables. Close file

# when done.

open(inF, 7’<”, $patH{ ’wave_in’ }) or dienice (”$patH{_’wave_in’_}_open_failed”);
my QdataA = <inF >;

close (inF);

# Strip newlines
foreach my $i (@dataA) {
chomp($i); # Remove any \n line—feeds.
$i =" s/\r//g; # Remove any \r carriage—returns.

}
push (@{ $patH{ ’'waveFileIn’ } }, @dataA);

# Determine number of lines

$patH{ ’waveFileLen’ } = scalar (Q{ $patH{ ’'waveFileIn’ } });

print (?\n\n”) if $debug;
print (? Total _.number_of_lines :.$patH{. waveFileLen’_}\n”) if $debug;
print (?\n\n”) if $debug;

# Return data to wuser
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return \%patH;

sub parseFile {

=head2 Parse Waveform File

The B<parseFile> sub—routine will parse the waveform file to find the #begin
and #end tags, which identify the location of the waveform data in the file
array . After locating the waveform data, B<parseFile> will then extract the
waveform data from the file array into its own array and store both the array

and the number of waveform samples in a hash.

=cut
# Parse Waveform File
#
# The sub—routine parseFile() will parse the input Waveform File
# and retrieve the following information:
#
# #begin
# #end
#
# This sub—routine will also extract the actual pattern data into an
# array for conwverting from decimal to hexadecimal.
#
# Usage: $pat-rH = parseFile(\%patH);
#
my ($pat_-rH) = shift; # Read in wuser’s wvariable.
my (%patH) = %{ $pat_rH }; # De—reference hash.
my ($debug) = $patH{ debug’}; # Print out Debug Info.

# Search through $file for keywords.

my (8$i) = 0;
0;

my ($j)
my ($beginFound);
my ($endFound) ;

for ($i=0; $i < $patH{ ’*waveFileLen’ }; $i++) {
if (${ $patH{ ’waveFileln’ } }[$i] =" m/#begin/) {
$beginFound = $i;
print (? Begin_Line_Number: .$beginFound\n”) if $debug;

}
if (${ $patH{ ’'waveFileln’ } }[$i] =" m/#end/) {
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$endFound = $i;
print (?”End_Line _Number: _$endFound\n”) if $debug;

}
print (?\n\n”) if $debug;

# Search through $file for waveform data and store into a data array.

my (@Qwave_dataA);

for ($j=($beginFound+1); $j < $endFound; $j++) {
my ($tmp_data) = ${ S$patH{ ’waveFileIn’ } }[$j];
Stmp_data =" s/[\r\n]//;
Stmp_data =" s/[\r\n]//;
push(@wave_dataA , $tmp-data);

}

my ($wave_len) = scalar (Qwave_dataA);

# Grab header from input file:

push (@Q{ $patH{ ’'Header’ } }, @{ $patH{ ’waveFileIn’ } }[0 .. $beginFound]);

# Store wvariables into hash:

$patH{ ’beginFound’ } = $beginFound;

$patH{ ’endFound’ } = $endFound;

$patH{ ’NumberSamples’ } = $wave_len;

push (@{ $patH{ ’>waveDataDec’ } }, Qwave_dataA);

# Return data to wuser

return \%patH;

sub convDec2Hex {

=head2 Convert Signed 2’s_Complement_Decimal_to_16—bit_Hexadecimal
The_B<convDec2Hex>_sub—routine_will _.quantize ,_.scale ,_and.convert_the_signed
2’s complement decimal data into hexadecimal data. It will then write the

data to a waveform file suitable for loading onto the Measurement board.

=head3 ALGORITHM DESCRIPTION

179
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=over 4

=item 1. Determine maximum value of a hexadecimal sample using the RES value provided by

the user.

=over 4

—item a. C<$maxValue = 2x+x$RES>

=item b. The default RES value for the Measurment board DAC is 16.

=back

=item 2. Determine the scale coefficient for the quantized sample data.

=over 4

=item a. C<$maxScale = 2xx$SCALE>

=item b. The default SCALE value for the Measurement board DAC is 15.

=back

=item 3. Grab a signed 2’s_complement_decimal_value_from_the_data_array.

=item_4._Quantize_signed._2’s complement decimal value to RES bits.

=over 4

—item a. C<$datQuant = ceil ($datln * $maxValue) / $maxValue>

=back

=item 5. Scale the quantized sample data by 2%xSCALE.

=over 4

=item a. C<$datScale = $datQuant * ($maxScale — 1)>

=back

=item 6. Convert the quantized and scaled data to hexadecimal.

=over 4

=item a. C<$hexValue = dec2hex($datScale)>

=back
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=item 7. Test hexadecimal value to ensure that it contains 4 hexadecimal digits.

—item 8. Store the hexadecimal value in an array in the order provided by the input

waveform file .

=item 9. Determine if the hexadecimal waveform data meets the length requirements of the

Measurement board and replicate the waveform if necessary.

=over 4

=item a. Waveform must be a minimum of 256 binary bits long.

=item b. Waveform length must be modulo—128.

=item c¢. Waveform length must meet maximum requirements depending on the waveform memory

type. Block RAM can support up to 2%*21 bits. QDR-II SRAM can support up to 2%%25 bits

=back

=item 10. Calculate waveform stop address.

=over 4

=item a. C<$stopAddr = ( ($LENBITS / 128) — 1 )>

=back

=item 11. Determine the mark density, or ratio of 1’s_and_-0’s, of the waveform.

—item 12. Format waveform file header, and write to an output waveform file .

—item 13. Write the 16—bit hexadecimal value to an output waveform file .

—=item 14. Write the replicated waveform to a file in decimal format for verification of

waveform in Matlab.

=back

=cut

Conwvert Decimal to Hexadecimal:

The sub—routine convDec2Hex () will convert the signed 2’s complement

decimal data to hexadecimal data.

R TR YR N N
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#
#

Usage: $pat_-rH = convDec2Hez ($patH) ;

($pat_rH) = shift; # Read in wuser’s wvariable.
(%patH) = %{ $pat_rH }; # De—reference hash.
($nsamps) = $patH{ NumberSamples’}; # Number of Waveform Samples
($res) = $patH{ resolution’}; # DAC resolution

($scale) = $patH{ scale’}; # Scale factor

# Convert Waveform Data from Signed 2°’s Complement Decimal to Hexzadecimal

my
pri
my

my

my

for

($maxValue) = (2x*x$res);

nt (”Maximum.Value: .$maxValue\n”) if $debug;
(@waveHexA) ;

($maxOValue) = (2xx($scale));

(8j) = 0;

($j=0; $j<$nsamps; $j++) {

print (”*_Sample_Number: _$j\n”) if $debug;

# Grab current sample:

my ($datln) = ${ $patH{ ’waveDataDec’ } }[$j];
print (”Sample_Data.(3$j):.8datIn\n”) if $debug;

# Quantize data to ’'resolution’ bits:

#my ($numerator) = round($datIinx*($mazValue));

my ($numerator) = ceil ($datIn*($maxValue));

print (” Numerator_(rounded_to_nearest_integer):_$numerator\n”) if $debug;
my ($datQuant) = $numerator /($maxValue);

print (” Quantized _Data_(rounded_to_nearest_integer):_$datQuant\n”) if $debug;

# Convert from decimal to hexadecimal:
my $hexValue = dec2hex ($datQuantx($maxOValue—1));
print (” Quantized .Data.(Hex):.$hexValue\n”) if $debug;

# Test Hexadecimal Value to see if there are 4 zeros:
my (@test_hexA) = testhex($hexValue, $debug);

# This 1s the wvalue we would send to the Data Path FPGA.
my ($test_hex4) = S$test_hexA [1];

# Grab 4 LSB hex wvalues:

my (@QhexA) = split(//,$test_hex4);

my ($hexLen) = scalar (@hexA) ;

print (”Number_of_hex._.digits:_.$hexLen\n”) if $debug;
my ($bit0) = $hexLen—1;

my ($bit3) = S$hexLen—4;

print (” Grabbing_bits.$bit3_.to_.$bit0\n”) if $debug;
my ($newHexValue) = join(”” ,@QhexA[$bit3 .. $bit0]);
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print (” Quantized .Data.(Hex, .4—digits):_$newHexValue\n”) if $debug;
print (?\n\n”) if $debug;
push (@QwaveHexA, $newHexValue) ;

}

my ($waveHexLen) = scalar (QwaveHexA) ;

print (?”Waveform_Length : .§waveHexLen\n” ) ;

# Write Hexadecimal 2’s Complement Waveform Data to File:

my $newfile = $patH{ ’wave_out’ };

# check to make sure that the file doesn’t exist.
die "Oops!_A_file._called.’ $newfile’ _already._exists.\n” if —e $newfile;
# Open Hex File:

open(my $outF, 7>”, $newfile);

# Replicate Array if Necessary:

my (%repH, $rep_rH);

my (Q@QwaveHexFinalA) ;

push (@Q{ S$repH{ ’waveFileIn’ } }, @QwaveHexA) ;
$repH{ ’debug’ } = $debug;

# Call repCalc():

%repH = %{ repCalc(\%repH) };

printf(” Just_finisned _Replication._.Check\n”);

# Grab new Wavefile:
# push (@QwaveHexFinalA, @{ $repH{ waveFileOut’} } );
@QwaveHexFinalA = @{ $repH{’ waveFileOut’} };
# Grab Number of Samples:
my ($patLen) = $repH{ ’'numSamples’};
print (”Waveform _.Number_of_Samples: _$patLen\n”);
# Grab Number of Bits:
my ($numBits) = $repH{ numBits’ };
print (”Waveform _Number_of_Bits: _.$numBits\n”);
# Grab Stop Address in Hex:
my ($stopAddr) = $repH{ stopAddr’};
print (” Waveform.Stop_Address: .$stopAddr\n”);
# Grab Waveform Type:
my $BORS = S$repH{ ’waveType’ };
# Grab Waveform Mark Density :

my $mkDen = S$repH{ markDensity ’ };

my (3mydesc) = ’empty’;
foreach my $h (@{ S$patH{ ’'Header’ } }) {
if ($h =" m/desc/) {
$mydesc = $h;
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my ($headFileName) = $newfile;
$headFileName =~ s/.x\///;

. B R TR R R R R R TR R TR R R TR TR YN T A
printf(SoutF "#4 # # AT e i e et A UM I

printf($outF 7#patternname=$headFileName\n”);
printf($outF "#patterntype=$BORS\n”);
printf($outF 7"#patternlength=$numBits\n”);
printf($outF "#readstartaddressa=0x0\n");
printf($outF "#readstopaddressa=0x$stopAddr\n”);
printf($outF "#readstartaddressb=0\n”);
printf($outF "#readstopaddressb=0\n");
printf(SoutF "#triggerword=0\n");
printf($outF "#patternstatistics=\n");
printf($outF "#density=%2.4f\n”, $mkDen) ;
printf($outF "#bitshift=no\n”);

printf($outF 7"#bitshiftindex=0_.\n");
printf($outF "#crc=77?\n");

printf($outF ”$mydesc\n”);

printf($outF
printf($outF ”#begin\n”);

my ($i) = 0;

for (8i=0; $i < $patLen; $i4+=2) {
printf($outF ”$waveHexFinalA[$i]”);
printf($outF ”$waveHexFinalA [$i+41]");
printf($outF ”\n”);

printf($outF 7#end\n”);

close (outF);

# Write Decimal Waveform Data to Matlab File:

my $newfile = $patH{ ’wave_out’ };
$newfile =~ s/\.pat//;

$newfile .= ” _dec.m”;

# check to make sure that the file doesn’t exist.
die "Oops!_A_file_called_.’ $newfile _already_exists.\n” if —e $newfile;
# Open Hex File:

open(my $out2F, ”>”, $newfile);

for ($i=0; $i < SwaveHexLen; $i++) {
my ($tmpD) = unpack(’s’,pack ’s’, hex($waveHexA[$i]));
my (S$index) = $i+41;
printf($out2F ”wave_p($index ) _=_$tmpD;”);
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printf($out2F ”\n”);

close (out2F) ;

# Return data to wuser

return \%patH;

sub testhex {

=head2 Test Hexadecimal Values

The B<testhex> sub—routine will receive a single
hexadecimal value. If the hexadecimal value is less
than 4 digits , then B<testhex> will pre—pend the
appropriate number of zeros in order to provide a
complete 16—bit hexadecimal value. An error flag is
also provided to determine if the hex value is more

than 4 digits.

=cut
# Test Hexadecimal Values:
#
# The sub—routine testhexz () will receive a single
# hexadecimal wvalue. If the hexadecimal value is less
# than 4 digits , then testhex () will prepend the
# appropriate number of zeros in order to provide a
# complete 16—bit hexadecimal wvalue. An error flag is
# also provided to determine if the hex wvalue is more
# than 4 digits.
#
# @hexOut = (orig, hez4, len, hflag);
#
# Usage: my (@hexOut) = testhex ($hexIn,h $debug);
#

my ($hexIn) = shift;

my ($debug) = shift;

my (@hexInA) = split(//,$hexIn);

my ($hexInALen) = scalar (@hexInA);

print ("Hex_In:_$hexIn\n”) if ($debug);

print (”Hex_.Length._.In:._$hexInALen\n”) if (3debug);
my (@hexOut) ;
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my ($1);
my ($hexDiff) = 4—8$hexInALen;
my ($hFlag) = 0;

if (ShexDiff = 0) {
print ("hex._length.is.4\n”) if ($debug);
push (@hexOut, $hexIn);
push (@hexOut, $hexIn);
push (@hexOut, $hexInALen);
push (@QhexOut, $hFlag);
} elsif ($hexDiff > 0) {
for ($i=0; $i<$hexDiff; $i++) {
unshift (QhexInA ,0) ;
}
push (@hexOut, $hexIn);
push (@QhexOut, join(””, @hexInA));
push (@hexOut, $hexInALen);
push (@QhexOut, $hFlag);
print ("hex._length._is._.$hexInALen, .add_-$hexDiff_zeros_to.pad_-to.4\n”) if ($debug);
print (?New_Hex: _$hexOut [1]\n”) if ($debug);
} else {
$hFlag = 1;
push (@hexOut, $hexIn);
push (@hexOut, $hexIn);
push (@hexOut, $hexInALen);
push (@hexOut, $hFlag);
print ("hex.length_is:_$hexInALen\n”) if $debug;

print Dumper(@hexOut) if $debug;

return (@QhexOut) ;

sub repCalc {

=head2 Calculate the Replicated Waveform Length

The B<repCalc> sub—routine will receive a hexadecimal waveform array, and
determine if its overall bit length meets the length requirements of the
Measurement board. If the requirements are not met, then the B<repCalc>

sub—routine will replicate the pattern as necessary.

=head3 ALGORITHM DESCRIPTION

=over 4



APPENDIX B. WAVEFORM CONVERSION PERL SCRIPT 187

=item 1. Determine if the hexadecimal waveform data meets the minimum length requirement

of 256 bits.

=over 4

=item a. Replicate the hexadecimal waveform data such that it meets the minimum length

requirement .

=back

=item 2. Is the waveform length modulo—1287

=item 3. Is the waveform length modulo—327

=item 4. Is the waveform length modulo—27

=item 5. Determine if the hexadecimal waveform data needs to be further replicated.

=over 4

=item a. If the waveform length is modulo—32 but not modulo—128, then the waveform must be

replicated by C<$REPNUM = ($LENBITS % 16) % 128>.

=item b. If the waveform length is not modulo—32 and not modulo—128, then the waveform

must be replicated by C<$REPNUM = 128>.

=item c¢. If the waveform length is modulo—128, then the waveform does not require

replication .

=back

=item 6. Replicate the hexadecimal waveform data if necessary.

=item 7. Determine if the hexadecimal waveform data meets the maximum length requirements

depending on the waveform type selected.

=over 4

=item a. Block RAM can support up to 2%%21 bits.

=item b. QDR-II SRAM can support up to 2*x25 bits.

=back

=item 8. Calculate waveform stop address.

=over 4
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=item a. C<$stopAddr = ( ($LENBITS / 128) — 1 )>

=back

=item 9. Determine the mark density, or ratio of ones to total bits, of the waveform.

=back
=cut
# Calculate the Replicated Length:
#
# The sub—routine repCalc() will receive a waveform array, and determine
# if the waveform array meeds to be replicated such that it meets the
# waveform requirements of the Data Path FPGA:
#
# Usage: my (@QAOUT) = repCalc (@AIN);
#
my ($rep_-rH) = shift; # Read in wuser’s wvariable.
my (%repH) = %{ $rep-rH }; # De—reference hash.
my ($debug) = $repH{ ’debug’}; # Print out Debug Info.
my (QAIN) ;

push (@QAIN, @{ $repH{ ’waveFileln’ } });

# Constants and Variables:

my (%repH, S$rep_-rH);
my ($dacres) = 16;

# Calculate length of waveform in bits:
my ($Alenin) = scalar (QAIN)=x$dacres;
print (7 Array _Length: _$Alenin\n”);

# Check to see if waveform is less than or 256—bits :
my (QAtmp) ;
my (8i);
my ($Alen);
push (@Atmp, @AIN);
if ($Alenin < 256) {
print (" Array.length.less_than_.256—bits.\n”);
print (" Actual_Array._Length:_.$Alenin.\n”);
for ($i = 0; $i < 129; Si++) {
my ($Alentmp) = scalar (QAtmp)*$dacres;
print (” Length_=_3Alentmp.\n" ) ;
if ($Alentmp < 256) {
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push (@Atmp, @Atmp) ;
} else {
$Alen = $Alentmp;
print (” Replicated_$i_times_to_meet_minimum_bit_length_of_256.\n");
print ("New._length_of_waveform:_$Alen\n”);

$i 129;

}

print (7 Iteration.$i\n”);

}
my ($Alentmp2) = scalar (QAtmp) ;
print (”Length_of _Atmp: _$Alentmp2\n”) ;

print Dumper (@QAtmp) if $debug;

# Determine replication factor:
my ($REPNUM) = 1;
my ($Alen_mod_128) = $Alentmp2+$dacres % 128;
my ($Alen_mod-32) = $Alentmp2x«$dacres % 32;
my ($Alen_.mod_2) = $Alentmp2*$dacres % 2;
printf(” Length: . %d, .Length_mod_.128: %d\n”, $Alentmp2, $Alen_mod-128);
if (($Alen-mod_128 ne 0) and ($Alen_mod_-32 eq 0) and ($Alen_mod_2 eq 0)) {
print (”I_am.not.mod.128,_but_I_am.mod_-32.\n");
$REPNUM = $Alentmp2x*16 % 128;
} elsif ($Alen_mod_128 ne 0) {
print (?I_am_not_mod_128.\n");
$REPNUM = 128;
} else {
print (”I_meet_the_requirements.\n”);

$REPNUM = 1;

# Replicate array ’'REPNUM’ times:
my (@AOUT) ;
my (8k) = 1;
if (SREPNUM eq 1) {
print ("No_replication_necessary.\n”);
push (QAOUT, @Atmp) ;
} else {
print (” Replicate ~Array $REPNUM._times.\n”) ;
my ($REPNUM) = $REPNUM/S;
if (SREPNUM < 1) {
print (?Error:._replication_factor_less._than_.1.\n”);
$REPNUM = 1;
}
print (” Replicate _Array $REPNUM_times.\n”) ;
for ($k=1; $k <= $REPNUM; $k++) {
push (QAOUT, @Atmp) ;
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}
print Dumper (QAOUT) if $debug;

# Determine if length will fit in Block RAM or QDR-I1I SRAM:
my ($SAMPLES) scalar (QAOUT) ;
my (SLENBITS) = $SAMPLES*16;

my ($BORS) ;
printf(” Final _Waveform._Length , _.samples: _%d, _.bits: _%d\n”, $SAMPLES, $LENBITS) ;
if ($patH{ ’bram_nsram’ } =~ /1/) {

if (SLENBITS > 2%%21) {
print (7 *_ERROR: .Waveform._will .not_fit .in_.Block.RAM.\n"” ) ;
exit ;

} else {
print (?” Waveform_will_fit_in_Block RAM.\n”);

}
$BORS = ’bram’;

}
if (SpatH{ ’bram_nsram’ }="~ /0/) {
if (SLENBITS > 2x%25) {
print (7 + _ERROR: -Waveform._will .not_fit.in_QDR-II _SRAM.\n” ) ;
exit ;
} else {
print (?Waveform_will_fit_in_QDR-II _SRAM.\n");

}
$BORS = ’sram ’;

# Calculate Stop Address:

my ($stopAddr);

my ($stopAddrHex);

if ($BORS =" m/bram/) {
print (”Waveform_will _fit _in_Block .RAM.\n”);
$stopAddr = ((SLENBITS/128)—1);
$stopAddrHex = dec2hex ($stopAddr);

} else {
print (?”Waveform_will_fit_in_QDR-II _SRAM.\n"”) ;
$stopAddr = ((SLENBITS/128)—1);
$stopAddrHex = dec2hex ($stopAddr);

}

print (”Stop_Address: _$stopAddr\n”);

print (” Stop_Address.(Hex) : .8stopAddrHex\n" ) ;

# push (@{ $repH{ ’‘waveFileOut’ } }, @AOUT) ;
$repH{ ’'waveFileOut’ } = \@AOUT;
$repH{ ’'waveType’ } = $BORS;
$repH{ ’numSamples’ } = $SAMPLES;
$repH{ ’'numBits’ } = $LENBITS;
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$repH{ ’stopAddr’ } = $stopAddrHex;

# Calculate Mark Density :
# %repH = %{ calcMD(\%repH) };
$repH{ markDensity >’} = 7500”7 ;

# Return data to wuser

return \%repH;

sub calcMD {

=head2 Calculate Mark Density of Waveform File

The B<calcMD> sub—routine will determine the total number of logic ones in

the waveform file , and calculate the mark density. Mark density is the ratio

of logic ones to the total number of bits.

=cut
# Calculate Mark Density of Waveform File:
#
# The sub—routine caleMD () will calculate the mark density of the
# Waveform File.
#
# Usage: $pat_-rH = calcMD(\ %patH) ;
#
my ($pat_-rH) = shift; # Read in wuser’s wvariable.
my (%patH) = %{ S$pat_-rH }; # De—reference hash.
my ($debug) = $patH{ debug’}; # Print out Debug Info.

my (@dataA) = @{ $patH{ waveFileOut’} };

# Determine number of 1’s and Total Bits:

my ($i) = 0;
03

my ($j)

my ($cnt_ones) = 0;

Il
o

my ($cnt_bits)
my ($tmpH) ;
my ($tmpD) ;
($tmpB) ;
my (@tmpBA) ;
(@tmpBinA) ;
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printf(” Calculate _Mark_Density\n”);
for ($i=0; $i < $patH{ ’'numSamples’ };$i++) {
$tmpH = $dataA[$i];
my (@tmpHA) = split (//,$tmpH) ;
foreach my $j (@tmpHA) {
push (@QtmpBinA, hex2bin($j));
}
my ($tmpJW) = join (7”7 ,@tmpBinA) ;
@tmpBA = split (//,$tmpJW) ;
my ($Blen) = scalar (QtmpBA) ;
print (”Blen:_$Blen\n”) if $debug;
for my $x (@tmpBA) {
$cnt_ones += $x;
$cnt_bits += 1;
}
# printf(”index: %d\n”, $i);
¥

printf(”Done_calculating .Mark_.Density\n”);

print (” Total_number_of_bits:_$cnt_bits\n”);

print (” Total .number_of_ones:_$cnt_ones\n”);

my ($mkDen) = ($cnt_ones/$cnt_bits)=*100;
print (”Mark_Density : .$mkDen\n” ) ;
$patH{ markDensity ’} = $mkDen;

# Return data to wuser

return \%patH;

sub dec2hex($) {

=head2 Decimal to Hexadecimal Conversion

The B<dec2hex> sub—routine will convert a decimal

hexadecimal equivalent.

=cut

its

# Decimal to Hexadecimal Conwversion:

#

The sub—routine decZhex() will convert a decimal value

#
# hexadecimal equivalent.
#
#

Usage: $hout = dec2hex($din);

into

its
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#

my( $dec ) = shift;

return sprintf("%x”, $dec );

sub hex2bin {

=head2 Hexadecimal to Binary Conversion

The B<hex2bin> sub—routine will convert a hexadecimal value into its

binary equivalent.

=cut

Hezadecimal to Binary Conversion:

The sub—routine hex2bin () will convert a hezadecimal value into

binary equivalent.

Usage: $bout = hex2bin ($hin);

RN R NI R N NI N

its

my $hex = shift;
my $binary;

my %h2b = (0 => 00007, 1 => 700017, 2 => ”0010”, 3 => ”0011",
4 => 701007, 5 => 701017, 6 => 701107, 7 => 701117,
8 => 710007, 9 => "1001”, a => 710107, b => " 1011”,
c => 711007, d => 711017, e => 71110”7, f => "1111",

)3
($binary = $hex) =" s/(.)/$h2b{lc $1}/g;

return ($binary);
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Appendix C

Square Waveform (eneration Perl

Script

This chapter describes the square waveform generation Perl script, and how it is used to

generate square waveforms.

C.1 NAME

square.pl - Square Waveform File Generation Script

C.2 SYNOPSIS
square.pl [-h] [-v] [-f <FILE>] [-s <FREQ>]

Help Options:

-h Print Help.

-V Verbose: Print Debug Information.
-f <FILE> New Matlab filename.

-s <FREQ> Requested Frequency.

Example:

./square.pl -v -f sample.m -s 1e6

C.3 OPTIONS

-h

Show the brief help information.
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Show debug information.

-f FILE

Square waveform Matlab filename. The pattern file will use the same filename, but with a .pat

file extension.

-s FREQ

Square waveform frequency in the range of DC to 250 MHz. A sample rate of 500 MHz is

assumed.

C.4 DESCRIPTION

square.pl is used to generate a square waveform file, which can be converted to the ap-
propriate format for playback on the Measurement board by the sig2hex.pl script. The square.pl

script will generate two files:

e Matlab waveform file for plotting and further analysis.

e Waveform file for conversion by the sig2hex.pl script.

ALGORITHM DESCRIPTION

Square Waveform Parameters

The square.pl script will use the FREQ parameter to calculate the following parameters:

Square Waveform Period ($reqPeriod).

Number of samples in the square waveform file ($numPoints).

Number of samples in the positive pulse of the square waveform ($posPoints).

Number of samples in the negative pulse of the square waveform ($negPoints).

In addition, the square.pl script will define the following parameters:

Sample frequency ($£s).

Sample period ($sampPeriod).
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e High-speed DAC resolution ($dacres).

e Maximum signed 2’s complement decimal value ($res).

File Headers

The square.pl script will then use the calculated variables to create the file headers for
both the Matlab file and the waveform file. The header of the waveform file requires additional

parameters to be calculated:
e Waveform length in bits ($numBits).
e Waveform Stop Address ($stopAddr).
The waveform length is calculated using the high-speed DAC resolution and the number
of sample points required for the square waveform.
Positive and Negative Pulse Generation

Using the $posPoints and $negPoints parameters previously calculated, the square.pl

script will generate the positive and negative pulses of the square waveform using the following steps:
1. Store a sample value of OV.
2. Store the maximum value of the high-speed DAC $posPoints times.
3. Store a sample value of OV.

4. Store the minimum value of the high-speed DAC $negPoints times.

File Footers

The square.pl script will create a file header for both the Matlab file and the waveform
file. The Matlab file will contain code to plot the generated square waveform. The waveform file will
contain the tag ”"#end”, which indicates to the sig2hex.pl script that the end of the data payload

has been reached.

C.5 SUBROUTINES

Decimal to Hexadecimal Conversion

The dec2hex sub-routine will convert a decimal value into its hexadecimal equivalent.
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Test Hexadecimal Values

The testhex sub-routine will receive a single hexadecimal value. If the hexadecimal value
is less than 4 digits, then testhex will pre-pend the appropriate number of zeros in order to provide
a complete 16-bit hexadecimal value. An error flag is also provided to determine if the hex value is

more than 4 digits.

C.6 CODE

Listing C.1: Square Waveform Generation Perl Script

#!/usr/bin/env perl

# vim:ts=4:sw=4:expandtab:cindent

#******************************************************************
#

# square.pl module
Z******************************************************************
#

# VCL Confidential Copyright 2009 UC Davis, ECE Department

#

B e e

created on: 11/25/2009
created by: Jwwebb

last edit on: $DateTime: §
last edit by: $Author: §
revision: $Revision: $

comments: Generated

R R N N S N S N

#******************************************************************

# Revision List:

#

# 1.0 11/25/2009 Initial release

# 1.1 01/01/2010 Add Perl POD documentation
#

FH ok ok ok K Kok ok K Kk ok ok ok ok oK K kK kK Sk K K KO Kk Sk K K Kk Kk Sk K R Kk kK ok ok ok K kK K ok K K Kk R K K
# Square Waveform File Generation
This wutility is intended to generate a square waveform for

playback on the Measurement board.

Usage Information :

R R N N S
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Usage: ./square.pl [—h] [—-v] [—f <FILE>] [—s <FREQ>]
—h Print Help.
—v Verbose: Print Debug Information.

—f <FILE> New Matlab filename.
—s <FREQ> Requested Frequency.

Example :

./square.pl —v —f sample.m —s 1e6

R R N R R T N NN

ok kKRR KRR KRR KR KKK KRR KRR KRR KR KRR KRR K K R R o K o o o K K K o ok oK oK K

use strict;

T KK KKK KRR KRR KR KRR R R KRR R R KRR R R KRR R R R R R R R R R o R R R R K K ok oK oK K
# CPAN Modules
#******************************************************************
use Getopt::Std;

use FileHandle;

use POSIX;

use Fcntl; # File control (lock, etc...)
use SDBM_File; # Simple database

use Carp; # Warnings/Errors for modules

use File ::Basename;
use File::Path;

use Data:: Dumper;

#******************************************************************
# Centellax Modules
#******************************************************************
use CentellaxATE; # System setup

use meas_utils;

#******************************************************************
# Constants and Variables:
#******************************************************************
my (%opts)=();

my ($file);

my ($freq);

my ($debug);

sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk Kk sk sk sk Kk ok sk ok Kk sk sk Kk sk sk sk Kk sk sk ok stk sk sk ok sk sk sk sk ok sk sk sk sk ok kK sk ok ok kK ok ok
# Retrieve command line argument
sk sk sk sk sk ok sk sk sk sk sk sk sk sk k sk sk Kk sk sk sk Kk sk sk sk sk k sk sk Kk sk sk ok Kk sk sk ok stk sk sk ok sk sk sk sk ok sk sk sk ok ok kK sk ok ok sk ok ok ok

getopts( hvf:s:’  \%opts);

#check for walid combination command—line arguments
if (Sopts{h} || !S$opts{f}) {
print_usage () ;

198
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exit ;

# parse command—line arguments
$file = Sopts{f};
$freq = Sopts{s};
$debug = $opts{v};
=pod
=headl NAME
B<square.pl> — Square Waveform File Generation Script
=headl SYNOPSIS
square.pl [-h] [—v] [—-f <FILE>] [—s <FREQ>]
Help Options:
—h Print Help.
—v Verbose: Print Debug Information.
—f <FILE> New Matlab filename.

—s <FREQ> Requested Frequency.

Example:

./square.pl —v —f sample.m —s 1e6
=headl OPTIONS
=over 8
=item B<-h>
Show the brief help information.
=item B<—v>
Show debug information.
=item B<—f FILE>

Square waveform Matlab filename. The pattern file will use the same filename, but with a I

<.pat> file extension.
=item B<—s FREQ>

Square waveform frequency in the range of DC to 250 MHz. A sample rate of 500 MHz is

assumed .
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=back

=headl DESCRIPTION

B<square.pl> is used to generate a square waveform file , which can be converted
to the appropriate format for playback on the Measurement board by the sig2hex.pl
The B<square.pl> script will generate two files:

=over 4

=item = Matlab waveform file for plotting and further analysis.

=item * Waveform file for conversion by the sig2hex.pl script.

=back

=cut

# check to make sure that the Matlab file doesn’t exist.

die "Oops!_A_file._called.’$file ' _already._exists.\n” if —e $file;

open (SF1,”>$file”) || die ”Can’t.open_$file!__$!\n";

# check to make sure that the Pattern file doesn’t exzist.

my ($patfile) = $file;

$patfile =~ s/\..x$/.pat/;

die "Oops!_A_file_called.’$patfile _already_exists.\n” if —e $patfile;
open (SF2,”’>$patfile”) || die "Can’t_open_$patfile!__$!\n";

# AutoFlush FileHandles :

autoflush SF1 1; # Immediate writes
autoflush SF2 1; # Immediate writes
autoflush STDOUT 1; # Immediate writes

=head2 ALGORITHM DESCRIPTION

=head3 Square Waveform Parameters

The B<square.pl> script will use the FREQ parameter to calculate

the following parameters:

=over 4

=item % Square Waveform Period (C<$reqPeriod>).

=item % Number of samples in the square waveform file (C<$numPoints>).

200

script .
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=item % Number of samples in the positive pulse of the square waveform (C<$posPoints>).
=item % Number of samples in the negative pulse of the square waveform (C<$negPoints>).
=back

In addition, the B<square.pl> script will define the following

parameters:

=over 4

—item x Sample frequency (C<$fs>).

=item % Sample period (C<$sampPeriod>).

=item * High—speed DAC resolution (C<8$dacres>).

=item * Maximum signed 2’s_complement_decimal_value.(C<S$res>).
=back

=cut

FH 3k s ok sk sk ok sk sk ok sk ok sk ok sk ok ok sk kK ok sk sk oK sk ok ok sk sk ok sk ok ok sk sk ok sk sk K ok sk kK ok sk sk K oK sk kK ok sk koK ok oKk oK
#.Square_.Waveform_Parameters:

N I I I o
my_(8res).=_15;

my_($dacres)._=_16;

my_($fs).=_.500e6;

$freq 4+=-0;

my._($sampPeriod)_=_1/$fs;

my.($reqPeriod).=_.1/$freq;

my._($numPoints) _=_$reqPeriod /$sampPeriod;

my.($posPoints)._=_ceil ($numPoints /2);

my_($negPoints)_=_ceil ($numPoints/2);

#_Print _Parameters:

select (STDOUT) ;

printf(” Sample_Period:____. Yo .4e\n” ,_$sampPeriod) ;
printf(” Request_Period: ... %..4e\n”,_%reqPeriod);
printf(” Positive _Ramp: __._. Jo-.4f\n” ,_$posPoints) ;
printf(” Negative _Ramp: .. Y-.4f\n” ,_$negPoints);
printf (” Number.Points: ... o .4 f\n” ,_$numPoints) ;

=head3_.File _Headers

The_B<square.pl>_script_will_then_.use_the_calculated_variables

to_create_the_file _headers_for_both_.the_Matlab_file _and_the
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waveform.file ._.The_header_of_the_waveform_file_requires_additional

parameters_to_be_calculated:

=over _4
=item._*_.Waveform_length_in_bits_.(C<$numBits>).
=item_*_.Waveform_Stop_.Address.(C<$stopAddr>).
=back

The_waveform._length._is_calculated -.using._the_high—speed .DAC_resolution

and_the_number_of_sample_points_required .for_the_square._waveform.
—=cut

T sk sk sk sk ok ok ok ok ok ok kS K K K K K K K oK oK oK ok ok ok ok ok ok kR K K K K K oK oK ok ok ok ok ok ok kR KRR R K K K oK oK ok ok ok ok ok ok ok ok

#_.Write_.Matlab_Header :

sk sk sk ok ok ok ok ok ok ok ko K K K K oK K oK oK oK ok ok ok ok ok ok kR K K K K K K oK oK oK ok ok ok ok sk kR KK R R K K oK oK oK ok ok ok ok ok ok kR
my. ($matHead ) .=_.<<"MATHEAD” ;

Do sk sk sk sk 3k % sk ok 3 ok ok ok ok ok ok ok ok ok ok kK ok ok K ok ok Ok sk ok Rk sk ok R K sk sk K sk ok Kk sk kK K sk kK K ok kK K K kK K Kok K

%

%-VCL_Confidential .Copyright. .2011.UC.Davis, _ECE_.Department
%

D s % sk sk sk sk % sk sk 3 sk ok sk sk s sk ok sk sk % ok sk 3 sk ok sk sk o sk ok sk % ok sk sk ok sk sk ok sk sk sk sk K sk sk ok sk sk sk sk K sk sk %k sk sk ok ok ok
%

%-Module: oo $file

%._Created_on: ... .. Sun_Jan_01.16:27:11.2011
Y0\%\-Executed _by: ooooon jwwebb

%

%\%\~board._name: . MSEE_Thesis .Measurement.Board
Y%\%\-board _number: oo p342

%\%\-board _rev: ... 001

%

D sk sk sk sk sk sk sk sk sk 3 sk ok sk sk 3 sk K sk ok 3 sk ok 5 sk ok 3k sk 3 sk ok 3 ok 3 sk 5k 5 sk 5k 3k sk 3 sk ok 3 sk 3 5k sk 3 5k ok % sk 5 3 5k 3 >k 5k % 5k 5k * sk K 5k
%

%..Column_Headers_for _measurement

Yome\$1 =_time; .Time.(sec)

Yoo \$2_=_volt;_Voltage_(V)

%

clear ;clc;close_all;

PrintOnEps._=_1;

square (1).=.0.0000;
MATHEAD

select (SF1);
printf(” $matHead”) ;
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select (STDOUT) ;

#******************************************************************
#_-Write_Pattern_Header:
#******************************************************************
my_($numBits) .= ($numPoints.+_2)«$dacres; #_account._for._.the_two_samples_at._0V.
my._($mod128) .=.$numBits _%._128;

my.($patLen). =.($mod128.>_.0).7_$mod128*$numBits.: .$numBits;

my._ ($stopAddr)._=_($patLen/128)._—_1;
my.($stopAddrH ) _=_dec2hex ($stopAddr) ;

my_($dispFs)._—=_Suffix ($fs,_"Hz",_1);

my_($dispFc)._=_Suffix ($freq,-"Hz”,.1);

my._ ($patHead) .=_<<’PATHEAD” ;

T T T L T T L T NIRRT L
T T A i1t T i i T T

#patternname=$patfile
#patterntype=sram
#patternlength=$patLen
#readstartaddressa=0x0
#readstopaddressa=0x$stopAddrH
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=

#density =0.750

#bitshift=no

#bitshiftindex=0

F#cre=777
#description=Square_Waveform: _Fc_=_$dispFc , _Fs_=_8dispFs

NIRRT} T L L T T NI T T
T T T T T Tt T T Tt AT

#begin
0.000000000000000
PATHEAD

select (SF2);

printf(” $patHead”);

select (STDOUT) ;

=head3_Positive_and_-Negative_.Pulse_.Generation
Using_the_C<$posPoints>_and .C<$negPoints>_parameters_previously
calculated ,_the_B<square.pl>_script_will_generate_the_positive
and_negative_pulses_.of_the_square_waveform_using._the_following._steps:
=over .4

=item._1._.Store_a_sample_value_of_0V.

—item._2._.Store_.the_maximum_value._of_the_high—speed DAC_C<$posPoints>_times.
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=item_3._Store_a_sample_value_of_0V.
—item._4._Store_the_minimum_value_of_the_high—speed .DAC_C<$negPoints>_times.
=back

=cut

o kot ko ok R Rk kK R ok Ok kK R ok K R K R R R R K R R R K R Rk Ok Rk R Rk K R R ok
#_Generate_Positive_Pulse:

ok ko ok ok K Rk kK R Kk Kk kK K R Rk K K R KK R R R K R R K K ok kK R kK K R kR K ok
my._ ($pidx)._=_2;

for_.(my.$p_.=_0;_$p_<_$posPoints; _$p++)_{

ce-oselect (STDOUT) ;

ceceprintf (7 1: %d, oP: n%.0f\n” ,_$pidx ,_$p)_if _8debug;

———_select (SF1);

ceeoprintf(”square(%d) .=_%.4f;\n” ,_8$pidx, . (2*xxSres));

eeeoselect (SF2);

ceeeprintf (" %.15f\n” , o (2%* 8res) /(2xx$res));

e $pidx++;

}

select (STDOUT) ;

printf(?I: %d, _P:_-%.0f\n”,_$pidx,.0)_if _$debug;
select (SF1);

printf(” square(%d) _=.%.4f;\n” ,_$pidx,.0);
select (SF2);

printf(?%.15f\n”,_0);

$pidx++;

ok ko ok ok R kK R R kK R Kk Rk kK R R R K R R R K R R Rk K R K R kK R Rk K R R K ok
#._Generate_Negative_Pulse:

kK ok Rk R kK R ok kK K ok R KK R R R R K R R Rk K R Kk R kK R Rk K R R R ok
my._($nidx ) _=_$pidx;

for.(my.$n_=_0;_.$n_<_8$negPoints; .$nt+)_{

—eooselect (STDOUT) ;

ceeoprintf (" T:%d, N: .%.0f\n” ,_$nidx ,_$n)_if _$debug;

e—__select (SF1);

ceeeprintf (”square(%d) o=-%.4f;\n” ,_$nidx , . —(2*x8res));

ee—_select (SF2);

ceceprintf ("%.15f\n” ,o—(2xx$res) /(2*x $res) ) ;

e $nidx++;

}

=head3_File_Footers

The_B<square.pl>_script_will_.create_a_file _header_for_both_the_Matlab_file
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and_the_waveform._file._The_Matlab_.file _will_contain._code.to
plot_the_generated _square_waveform._The_waveform_file _will
contain._the_tag."#end” ,_which_indicates_to_the_sig2hex.pl

script._that_the_end_of_the_data_payload_has_been_reached.
=cut

FH sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk Kk Ok sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk Ok sk sk ok ok sk Ok sk sk sk ok Kk sk ok sk ok ok ok ok ok
#._.Write_Matlab_Footer:
sk sk sk sk ok ok sk ok sk ok sk kK K K K K oK K oK oK oK ok ok ok sk sk sk kK KR R R K K K oK oK ok ok ok sk sk sk kR KR R R K K oK oK ok ok ok sk ok ok ok ok ok

my._ ($matFoot) .=_<<"MATFOOT” ;

%-Plot _-Waveforms: _Time_(us)_vs_Voltage_(V)

figure (1) ;

set (gca, "FontSize’ ,14);

plot (square , ’—r’, ’LineWidth’ ,2);

xlabel ("Time (us)’, ' fontsize’,14);

ylabel (’Voltage (mV)’, fontsize’ ,14);

grid.on;

axis ([0.500.—1.1.1.1]);

if _PrintOnEps

eeeopng_file_=.sprintf( meas_sig_src_square_td .png’);
ceeoprint (’—dpng’,_png_file);

ceeceps_file_=_sprintf( meas_sig_src_square_td.eps’);
ceeoprint (’—depsc’,_eps_file);

end
MATFOOT

select (SF1);
printf(”$matFoot\n”);
select (STDOUT) ;

okt ko ok ok K K kK R Rk Kk kK K R Rk K R KK R R R K R R K K Kk kK K R kKK R kR K ok
#_.Write_Pattern_Footer:
#******************************************************************
select (SF2);

printf("#end\n”);

select (STDOUT) ;

exit ;
=head1 _SUBROUTINES

=cut
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sk sk sk sk ok ok sk sk sk sk sk kR R R K K oK K oK oK sk ok ok sk sk sk sk kKRR R R K oK K oK oK sk ok sk sk sk sk KRR R K K oK oK ok ok sk sk ok ok ok ok R
#_Sub—routines

#******************************************************************

sub_dienice _{
ceeomy($errmsg) =_Q_;
ceeoprint” $errmsg\n”;

e exit

}

sub_print_usage.{

ceoomy. ($usage) ;

ceooSusage.=_"\nUsage: .$0_[—h] _[—v] o[- f <FILE>]_.[—s _<FREQ>]\n";
ceeoSusage..=."\n";

ce--Susage_.=_"\t—h\t\tPrint _Help.\n”;

ceeoSusageo.=."\t—v\t\tVerbose: _Print _Debug_Information.\n”;
———_$usage_.=_"\t—f <FILE>\tNew_Matlab_filename.\n";
cecoSusageo.=."\t—s .<FREQ>\tRequested _.Frequency .\n”;

cewoSusage..=."\n";

—ce-oSusage_.=_."\tExample:\n”;

ceeoSusage.. ="\t \t$0 . —v._—f_sample . m.—s._le6._\n";
ceooSusage_.=."\n";
cewoprint ($usage);

weworeturn;

}

sub_dec2hex ($)_{

=head2_Decimal_to_Hexadecimal_Conversion

The_B<dec2hex>_sub—routine_will_convert._a_.decimal_value_into._its

hexadecimal_equivalent .

=cut

T L m

L T TR T T L T T NIRRT T
ST T i i 11t T it T i it

cewff-Decimal _to_Hexadecimal_Conversion:

R i

cee#-_The_sub—routine_dec2hex () -will_convert_a_decimal_value_into_its

ceeffoohexadecimal _equivalent .

S

ceefto_Usage: _.$hout_=_dec2hex ($din);
i

IRTRTan L

TR T
T it

Lt TR IRTeIm)
7

I T T NI, T T
T T T &

cewemy(-$dec.) o=_shift;

ceeoreturnosprintf("%x” ,.$dec.);

}

NI, T
(Rin 1T T Tt 1T T T
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sub_testhex _{
=head2._.Test _Hexadecimal_Values

The_B<testhex>_sub—routine_will_receive_a_.single
hexadecimal_value._If_the_hexadecimal_.value_is._less
than_4_.digits ,.then_B<testhex>_will _pre—pend._the
appropriate_number_of_.zeros.in_order_to_provide.a
complete.16—bit _hexadecimal_.value._An_error._flag.is
also._provided._.to_determine_if_the_hex_value_is_more

than_4_digits.

=cut

INIRTRINTA]
== ST

IR NI NI IR NIRRT RIaTY) NIRRT NI I IR IR IR TR IR TR TR IR TR NIRRT NI NIRRT TTRIeTNIN)
711 T T Tt T aiaias i T arais Tt T

i
ceeftoTest _.Hexadecimal_.Values:

i

e The_sub—routine._testhex () -will_.receive._a.single
cewffehexadecimal mvalue . _If_the_hexadecimal_.value_is._less
o othan_4_.digits ,_.then_testhex ()_-will_prepend._the
eewffe_appropriate_number_of_zeros._.in_order_to_provide.a
ceeffomcomplete_16—bit _hexadecimal_value._An_error._flag.is
ceeffealsooprovided_-to_determine_if_the_hex_value_is_more

ceeffocthano4.digits .

i

cee#eo@hexOut_=_(orig ,_hex4,_len,_hflag);

i

oo #o_Usage: .my_(@hexOut) =_testhex ($hexIn , $debug) ;
R i

L) INTRINTIN) NIRRT TNIeT] NI, NIRRT IRTRIN] eI, NIRRT NTRTNIeT] TNTRIRIRININ]]
— = =TT (R T miaiais T It T Tt T It T T Tt Tt T

ceeemy. (ShexIn) o=_shift ;

cewomy. ($debug) =_shift ;

ceeemy. (@hexInA) =_split (//,$hexIn);

cewomy. ($hexInALen) .=_scalar (@QhexInA) ;

ceeoprint (s _Hex_In:_.$hexIn\n”)_if_($debug);

cewoprint (”+ _Hex_.Length_In:_.$hexInALen\n”).if_($debug);
ceeomy. (@hexOut) ;

ceeemy ($1) ;

cecemy_($hexDiff)_=_4—$hexInALen;

ceeemy- ($hFlag) =.0;

eeceifo(ShexDiff==_0)_{

HHHHHHHH print (" *_hex_length_is_4\n”)_if_($debug);
HHHHHHHH push (@hexOut , .$hexIn) ;

HHHHHHHH push (@hexOut, .$hexIn) ;

HHHHHHHH push (@hexOut, .$hexInALen) ;

HHHHHHHH push (@hexOut, .$hFlag) ;

ceecteelsif o ($hexDiff >_0)
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HHHHHHHH for_($i=0;_8i<ShexDiff; _$i++)_{
uuuuuuuuuuuu unshift (@QhexInA ,0) ;

uuuuuuuu push (@hexOut, .$hexIn) ;

HHHHHHHH push (@hexOut, _join (7”7 ,_@hexInA));

HHHHHHHH push (@hexOut, -$hexInALen) ;

HHHHHHHH push (@hexOut, .$hFlag) ;

HHHHHHHH print (”*_hex.length._is_$hexInALen, .add_-$hexDiff_zeros.to.pad-to_4\n”)._if_($debug);
HHHHHHHH print (7 *_New_Hex:_$hexOut [1]\n”)_if_($debug);
ceeotoelseoq

HHHHHHHH $hFlag.—=_1;

HHHHHHHH push (@hexOut, .$hexIn) ;

HHHHHHHH push (@hexOut, .$hexIn);

HHHHHHHH push (@hexOut, .$hexInALen) ;

uuuuuuuu push (@QhexOut, _$hFlag) ;

HHHHHHHH print (?x_hex.length_is:_$hexInALen\n”)_if _$debug;

ceeoprint oDumper (@hexOut) ~if _$debug;

cecoreturn (@hexOut) ;

}



209

Appendix D

Ramp Waveform Generation Perl

Script

This chapter describes the ramp waveform generation Perl script, and how it is used to

generate ramp waveforms.

D.1 NAME

ramp.pl - Ramp Waveform File Generation Script

D.2 SYNOPSIS
ramp.pl [-h] [-v] [-f <FILE>] [-s <FREQ>]

Help Options:

-h Print Help.

-V Verbose: Print Debug Information.
-f <FILE> New Matlab filename.

-s <FREQ> Requested Frequency.

Example:

./ramp.pl -v -f sample.m -s 1e6

D.3 OPTIONS

-h

Show the brief help information.
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Show debug information.

-f FILE

Ramp waveform Matlab filename. The pattern file will use the same filename, but with a .pat

file extension.

-s FREQ

Ramp waveform frequency in the range of DC to 250 MHz. A sample rate of 500 MHz is

assumed.

D.4 DESCRIPTION

ramp.pl is used to generate a ramp waveform file, which can be converted to the appro-
priate format for playback on the Measurement board by the sig2hex.pl script. The ramp.pl script

will generate two files:

e Matlab waveform file for plotting and further analysis.

o Waveform file for conversion by the sig2hex.pl script.

ALGORITHM DESCRIPTION
Ramp Waveform Parameters

The ramp.pl script will use the FREQ parameter to calculate the following parameters:

Ramp Waveform Period ($reqPeriod).

Number of samples in the ramp waveform file ($numPoints).

Number of samples in the positive incline of the ramp waveform ($posPoints).

Number of samples in the negative decline of the ramp waveform ($negPoints).

Sample spacing for the positive incline of the ramp waveform ($posInc).

Sample spacing for the negative decline of the ramp waveform ($negInc).

In addition, the ramp.pl script will define the following parameters:
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e Sample frequency ($£s).
e Sample period ($sampPeriod).
e High-speed DAC resolution ($dacres).

e Maximum signed 2’s complement decimal value ($res).

File Headers

The ramp.pl script will then use the calculated variables to create the file headers for
both the Matlab file and the waveform file. The header of the waveform file requires additional

parameters to be calculated:

e Waveform length in bits ($numBits).

e Waveform Stop Address ($stopAddr).

The waveform length is calculated using the high-speed DAC resolution and the number

of sample points required for the ramp waveform.

Positive and Negative Ramp Generation

Using the $posInc and $neglInc parameters previously calculated, the ramp.pl script will

generate the positive incline and negative decline of the ramp waveform using the following steps:

1. Starting at the minimum value of the high-speed DAC, increment in $posInc steps until the

maximum high-speed DAC value is reached.

2. Starting at the maximum value of the high-speed DAC minus $negInc, decrement in $negInc

steps until the minimum high-speed DAC value plus $negInc is reached.

File Footers

The ramp.pl script will create a file header for both the Matlab file and the waveform
file. The Matlab file will contain code to plot the generated ramp waveform. The waveform file will
contain the tag ”"#end”, which indicates to the sig2hex.pl script that the end of the data payload

has been reached.
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D.5 SUBROUTINES

Decimal to Hexadecimal Conversion

The dec2hex sub-routine will convert a decimal value into its hexadecimal equivalent.

Test Hexadecimal Values

The testhex sub-routine will receive a single hexadecimal value. If the hexadecimal value
is less than 4 digits, then testhex will pre-pend the appropriate number of zeros in order to provide
a complete 16-bit hexadecimal value. An error flag is also provided to determine if the hex value is

more than 4 digits.

D.6 CODE

Listing D.1: Ramp Waveform Generation Perl Script

#!/usr/bin/env perl

# vim:ts=4:sw=4:expandtab:cindent

Sk ko ko Kk R Kk KR Kk R Kk K kR Kk K kR Kk KR K ok Kk K ok Kk K kR oKk o KR Kk o KOk Kk R KOk KOk K
#

# ramp.pl module

#

Fo K ko ko Kk R Kk KR K kR KRk R Kk KR K ok KR K ok Kk K ok Kk K kR Kk K KR K ok KR Kk R KOk Kk K
#

# VCL Confidential Copyright 2009 UC Davis, ECE Department

#

#******************************************************************

created on: 11/25/2009
created by: Jwwebb

last edit on: $DateTime: $
last edit by: $Author: §
revision : $Revision: §

comments: Generated

R R N R S R RS

T kKKK KR KRR KRR KR KRR KR KRR R R KRR R KRR R R R R R R R R R R R R o R R K K ok o K K

# Rewvision List:

#

# 1.0 11/25/2009 Initial release

# 1.1 01/01/2010 Add Perl POD documentation
#

#******************************************************************
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# Ramp Waveform File Generation

—f <FILE> New Matlab filename.
—s <FREQ> Requested Frequency.

Example :

./ramp.pl —v —f sample.m —s 1e6

#

# This wutility is intended to gemnerate a sawtooth waveform for
# playback on the Measurement board.

#

# Usage Information :

#

# Usage: ./ramp.pl [—h] [—v] [-f <FILE>] [—s <FREQ>]
#

# —h Print Help.

# —v Verbose: Print Debug Information.
#

#

#

#

#

#

#*****>k*****>k*****>k************************************************

use strict;

Tk ok ok ok ok ok ok ok koK ok K oK kK oK oK kR sk koK sk R KKK KR oK kK oK oK sk R sk koK sk R oK kK KR oK kK KK oK K K KR oK K KR K kK
# CPAN Modules

Tk ok ok ok ok sk ok sk koK sk K ok koK KR oK sk R sk oK KR sk koK oK R oK kR oK R oK Sk R sk koK sk R sk kK KR oK kK KR oK kK KR oK kK KR oK kK
use Getopt::Std;

use FileHandle;

use POSIX;

use Fcntl; # File control (lock, etc...)
use SDBM_File; # Simple database

use Carp; # Warnings/Errors for modules

use File :: Basename;
use File ::Path;

use Data:: Dumper;

Tk ok ok ok ok ok ok sk koK kK oK kK KK oK kR sk KK Sk R sk kK KR oK kR sk oK sk R sk koK sk R oK kK oK R oK kK KR oK kK KK oKk K KR oKk K
# Centellax Modules

Tk ok ok ook sk ok sk koK sk R ok koK KK oK sk K sk oK Sk R sk koK KR oK ok K oK R oK sk R sk koK sk R sk koK sk R oK kK KR oK kK KR oK kK KR oK koK
use CentellaxATE; # System setup

use meas_utils;

#******************************************************************
# Constants and Variables:
#******************************************************************
my (%opts)=();

my ($file);

my ($freq);

my ($debug);

B T
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# Retrieve command line argument
FH ok ok ok K kR ok ok K kK ok K ok oK K kK ok K ok KK K Sk Sk ok K K Kk Sk ok R Kk kK ok ok ok K ok K ok K K R Kk R K K

getopts ( hvf:s:’ \%opts);

#check for walid combination command—line arguments
if (Sopts{h} || !S$opts{f}) {

print_usage () ;

exit ;

# parse command—line arguments
$file = Sopts{f};
$freq = Sopts{s};
$debug = $opts{v};
=pod
=headl NAME
B<ramp.pl> — Ramp Waveform File Generation Script
=headl SYNOPSIS
ramp.pl [—h] [—-v] [—-f <FILE>] [—s <FREQ>]
Help Options:
—h Print Help.
—v Verbose: Print Debug Information.
—f <FILE> New Matlab filename.

—s <FREQ> Requested Frequency.

Example:

./ramp.pl —v —f sample.m —s 1le6

=headl OPTIONS

=over &

=item B<—h>

Show the brief help information.

—=item B<—v>

Show debug information.

=item B<—f FILE>
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Ramp waveform Matlab filename. The pattern file will use the same filename, but with a I<.

pat> file extension.

=item B<—s FREQ>

Ramp waveform frequency in the range of DC to 250 MHz. A sample rate of 500 MHz is assumed

=back

=headl DESCRIPTION

B<ramp.pl> is used to generate a ramp waveform file , which can be converted
to the appropriate format for playback on the Measurement board by the sig2hex.pl script.
The B<ramp.pl> script will generate two files:

=over 4

=item * Matlab waveform file for plotting and further analysis.

=item * Waveform file for conversion by the sig2hex.pl script.

=back

=cut

# check to make sure that the file doesn’t exist.

die "Oops!_A_file_called._.’$file’_already_exists.\n” if —e $file;

open (SF1,”’>$file”) || die "Can’t.open_$file! __$!\n”;

# check to make sure that the file doesn’t exist.

my ($patfile) = $file;

$patfile = s/\..x$/.pat/;

die ”"Oops!_A_file._called.’$patfile _already_exists.\n” if —e $patfile;
open (SF2,”>$patfile”) || die "Can’t_open_$patfile!__$!\n";

# AwutoFlush FileHandles :

autoflush SF1 1; # Immediate writes
autoflush SF2 1; # Immediate writes
autoflush STDOUT 1; # Immediate writes

=head2 ALGORITHM DESCRIPTION

=head3 Ramp Waveform Parameters

The B<ramp.pl> script will use the FREQ parameter to calculate
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the following parameters:

=over 4

=item % Ramp Waveform Period (C<S$reqPeriod>).

=item % Number of samples in the ramp waveform file (C<$numPoints>).

=item % Number of samples in the positive incline of the ramp waveform (C<$posPoints>).

=item % Number of samples in the negative decline of the ramp waveform (C<$negPoints>).

=item % Sample spacing for the positive incline of the ramp waveform (C<$posInc>).

=item =% Sample spacing for the negative decline of the ramp waveform (C<$neglnc>).

=back

In addition, the B<ramp.pl> script will define the following

parameters:

=over 4

=item =% Sample frequency (C<$fs>).

—item x Sample period (C<$sampPeriod>).

=item =% High—speed DAC resolution (C<$dacres>).

—item #* Maximum signed 2’s_complement_decimal_value_(C<8$res>).

=back

=cut

ko ko ok K Rk kK K R Kk Kk koK K R K K K KK R R R R K R R K K Kk Rk R kKK R KR K ok
#_-Ramp_Parameters:
#******************************************************************
my_(8res)._=_15;

my_($dacres)._=.16;

my_($fs).=_500e6;

$freq +=_0;

my.($sampPeriod) . .=_1/$fs;

my._($reqPeriod).=_1/8%freq;

my.($numPoints) _=_$reqPeriod /$sampPeriod;

my_($posPoints)_=_ceil ($numPoints/2);

my_($negPoints)._=_ceil ($numPoints /2);
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my._($posInc) =.((2+*x$res)_—.(—(2++8res)))/$posPoints;
my_($neglnc) _=.((2%x%res)_—_(—(2**x8res)))/$negPoints;

#_Print _Parameters:

select (STDOUT) ;

printf(” Sample_Period: ... Jo-.4e\n” ,_$sampPeriod) ;
printf(” Request_Period:_._.%..4e\n”,_$reqPeriod);
printf(” Positive _Ramp: .. Jo-.4f\n” ,_$posPoints);
printf(” Negative _Ramp: .. Y. 4f\n” ,_$negPoints);
printf (” Number_.Points : ... Jo.4 f\n” ,_$numPoints) ;
printf(” Positive_Inc: oo Yo.4f\n” ,_$posinc) ;
printf(” Negative_Inc: oo Jo.4f\n” ,_8neglnc) ;

=head3_.File_Headers

The_B<ramp.pl>_script._will _then_use_the_calculated_variables
to_create_the_file _headers_for_both_the_Matlab_file _and_the
waveform.file ._.The_header_of_the_waveform_file_requires_additional
parameters_to_.be_calculated :

=over.4

=item_*_.Waveform_length_in_bits_.(C<$numBits>).

=item _* _Waveform_Stop._Address.(C<$stopAddr>).

=back

The_waveform._length._is_calculated _using._the_high—speed _DAC_resolution

and_the_number_of_sample_points_required -for_the_ramp_waveform.

=cut

K ok ok ok ok ko kR Kk Kk R KR Kk K ok R KR Kk Kk K o R KR Kk K ok oK R Kk oKk ok ok ok R Kk Kk K ko K R KR Kk Kk
#-Write_Matlab_Header:

K ok ko ok ok kR Kk ok ko R KR K kK ok KR Kk Kk K ok R KR K kK ok K KR K kK ok K R K R K kK ok K R KR Kk Kk
my. ($matHead ) .=_<<’MATHEAD” ;
%******************************************************************
%

%-VCL_Confidential _.Copyright. .2011_.UC_Davis, _ _ECE_Department

%
%******************************************************************

%

%-Module: oo $file

%-Created_on: oo Sun.Jan.01.16:27:11.2011
Y%\%\-Executed .by: oo jwwebb

%

217
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Y%0\%\-board _number: ... p342

%\%\-board._rev:____._ 001

%

O 5 s k4 ok o ok ok ok ok ok ok ok ok ok R ok K Ok kK KR Sk ok K R KK R R R K R SRR K R ok K Ok SRk R R K K R R K Ok
%

%-Column_Headers_for _measurement
Y\ $1=_time; _Time._(sec)

Yo \$2 =_volt ;_Voltage._(V)

%

clear;clc;close_all;

PrintOnEps._=_1;

MATHEAD

select (SF1);
printf(” $matHead”) ;
select (STDOUT) ;

ok ko ok kR kK R kK R Kk Ok K R Rk K R KKK R R R K R R Rk K R Kk Ok Rk R Rk K R R K Ok
#_.Write_Pattern_Header:

kK ok R K R kK R R R K R ok R R K R R R K R R R K R K Ok Rk R R ok K R R ok
my-($numBits) .=_$numPointsx$dacres;

my.($mod128) =_$numBits. %.128;

my._($patLen)._=.($mod128.>.0) .7 _8$mod128+«$numBits.: .$numBits;
my._($stopAddr).=_($patLen/128)._—_1;

my._ ($stopAddrH) _=_dec2hex ($stopAddr) ;

my._($dispFs)_=_Suffix ($fs ,."Hz”,_1);

my._($dispFc)_=_Suffix ($freq,."Hz”,_1);

my.($patHead) .=_<<’PATHEAD” ;

L NIRRT TNTe] eI, NIRRT IR INTRTNIeT] eI, NIRRT IR INIeT] INTRINTRINTNIN)
7t T T R Tt T T Tt Tt T Tt T T T

#patternname=3$patfile
#patterntype=sram
#patternlength=$patLen
#readstartaddressa=0x0
#readstopaddressa=0x$stopAddrH
#readstartaddressb=0
#readstopaddressb=0
#triggerword=0
#patternstatistics=

#density =0.750

#bitshift=no

#bitshiftindex=0

H#Hcre=777
#description=Ramp_.Waveform: .Fc_.=_$%$dispFc, .Fs.=_$dispFs

1) LU T L TN T T LI T NIRRT
T i1 T it it i Tt i1t it T it it

#begin
PATHEAD
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select (SF2);
printf(” $patHead”);
select (STDOUT) ;

=head3_Positive_and_-Negative _.Ramp_Generation

Using._.the_.C<$posInc>_and._.C<$neglnc>_parameters_previously._calculated ,._the
B<ramp.pl>_script_.will_generate_the_positive_incline_and.negative_decline_of

the_ramp_waveform._using._.the_following._steps:

=over.4

—item._1..Starting._at_the_minimum.value_of_the_high—speed .DAC, _increment.in._.C<$poslnc>._

steps—until_the_maximum_high—speed .DAC_value_is._.reached.

—item_2._.Starting._at_the_maximum_value_of_the_high—speed .-DAC_minus._.C<$neglnc>,_decrement .

in_C<$neglnc>_steps_until _the_minimum_high—speed -DAC_value_plus_C<$neglnc>_is_reached.

=back

=cut

kot ko ok K Rk R kK R ok Kk kK R kR R KK R R R R K R R R K R Rk R Rk R kR K R Rk K ok
#_Generate_Positive .Ramp:

sk sk sk sk ok ok sk sk sk sk sk sk kR R R K K oK K oK oK sk ok sk sk sk sk sk kR R R K K oK oK oK oK sk sk sk sk sk sk kKRR R K oK oK oK ok ok sk sk ok ok ok ok ok
my_($pidx)_=_1;

for_o(my.$p_=_—(2xx8res); _$p.<=_(2%x$res); . $p_+=_%poslnc)_{
ce-oselect (STDOUT) ;

ceceprintf (7 1: %d, oP: n%.4f\n” ,_$pidx ,_$p)_if _$debug;

———_select (SF1);

ceeeprintf (Pramp(%d) -=-%.4f;\n” ,_$pidx , _8$p/(2xx $res));

e—c—oselect (SF2);

ceeeprintf ("%.15f\n” ,_$p/(2%* $res) ) ;

e $pidx++;

}

FH 3k s ok sk sk ok ok sk sk ok ok sk sk ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk K ok sk kK ok sk sk K ok sk sk ok ok sk koK ok ok ok ok
#._.Generate_Negative _Ramp:

R I I I I o
my_($nidx ) _=_$pidx;

my.(8$j)=0;

for_(my-$n_=_(2**8$res);_$n.>=_(—(2*x$res)_+_$neglnc); _$n.—=_%neglnc)_{
e i f L ($)>20) o{ #-Skip_maximum_high—speed .DAC_value .

HHHHHHHH select (STDOUT) ;

HHHHHHHH printf (" I:.%d,_N:_.%.4f\n”,_.$nidx,_%n)_if _$debug;
HHHHHHHH select (SF1);

HHHHHHHH printf (”ramp(%d) -=-%.4f;\n”,_.$nidx , .$n/(2xx $res));
HHHHHHHH select (SF2);
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HHHHHHHH printf(”?%.15f\n”,_.8n/(2x*8res));
uuuuuuuu $nidx++;

!

cecc i+

}

=head3_File_Footers

The_B<ramp.pl>_script._will_create_a_file_header_.for_both_the_Matlab_file

and_the_waveform._file._The_Matlab_.file _will_contain.code.to
plot _the_generated _.ramp._waveform._.The_waveform._file _will
contain.the_tag."#end” ,_which_indicates_to_.the_sig2hex.pl

script.that_the_end_of_the_data_payload_has_been.reached.

=cut

FH sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk Rk Ok sk sk sk sk sk sk sk sk ok Kk sk sk sk sk sk Rk Ok sk sk ok ok sk k sk sk sk ok Kk sk ok sk ok ok ok ok ok
#_.Write_Matlab_Footer:
FH sk sk sk sk sk sk ok sk sk ok sk sk sk k sk sk sk sk sk ok sk sk sk kk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk skt Ok sk sk ok sk sk sk sk ok ok sk sk sk ok sk ok ok ok ok ok

my._ ($matFoot) .=_<<"MATFOOT” ;

%-Plot -Waveforms: _Time_(us)._vs_Voltage._(V)

figure (1);

set (gca, "FontSize’ ,14);

plot (ramp, '—r’, ’LineWidth’ ,2);

xlabel (’Time (us)’, fontsize’ ,14);

ylabel (’Voltage (mV)’,’ fontsize’ ,14);

grid._on;

axis ([0.500_—1.1.1.1]);

if _.PrintOnEps

eeeopng_file_.=_sprintf( meas_sig_src_ramp_td.png’);
ceeoprint (’—dpng’,_png_file);
eewceps_file_=_.sprintf( meas_sig_src_ramp_td.eps’);
ceeoprint (’—depsc’,_eps_file);

end

MATFOOT

select (SF1);
printf (” $matFoot\n”);
select (STDOUT) ;

ok ok koK ook K ok o ok K koK ok ok K Sk K K KOk ok ok K kK ok ok K sk K K oKk sk ok K ok K o KOk ok ok K ok ok ok ok K ok ok K Kok o oKk oK K K
#-Write_Pattern_Footer:
ok ook ok ok ok ok K koK s oK K K sk ok K kK K KOk sk ok K KK ok oK K KK S oKk sk ok K kK S KK sk ok K KK sk ok K sk K K Kok o oK oKk oK

select (SF2);

220
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printf("#end\n”);
select (STDOUT) ;

exit ;

=headl .SUBROUTINES

=cut

ok ok o koK ok K koK sk oK K koK ok ok K sk K K KOk sk ok K kK ok KR sk K K oKk sk ok K kK o oKk sk oK K KK o ok K ok K K Kok o oKk oK Kk oK
#_.Sub—routines

sk sk sk sk ok ok sk sk ok sk kR R R K K oK K oK oK oK ok ok sk sk sk sk kK KRR R R K oK oK oK oK sk ok ok sk sk sk kKRR R K K oK oK ok ok ok sk ok ok ok ok ok

sub_dienice _{
cecomy($errmsg) o=_Q_;
ceeoprint” $errmsg\n”;

ee——exit;

}

sub_print_usage_{

ceoomy. ($usage) ;

ceooSusage.=_"\nUsage: .$0_[—h] _[—v] o[- f <FILE>]_.[—s _<FREQ>]\n";
cewoSusage..=."\n";

ceeoSusage_.=_"\t—h\t\tPrint _Help.\n”;
ceooSusage..=."\t—v\t\tVerbose: _Print _Debug_Information.\n”;
ceo-$usage_.=_"\t—f <FILE>\tNew_Matlab_filename.\n";
cecoSusage..=."\t—s .<FREQ>\tRequested _.Frequency .\n”;

cec-Susage_.=_."\n";

cece-Susage_.=."\tExample:\n”;
———-S%usage_.=_"\t\t$0 —v_—f_sample . m_—s_le6_\n";
ceeoSusage..=."\n";

cewoprint ($usage) ;

ceooreturn

}

sub._dec2hex (8).{

=head2_.Decimal_to_Hexadecimal_Conversion

The_B<dec2hex>_sub—routine_will _convert._a_.decimal_value_into._its

hexadecimal_equivalent .

=cut

T T TN TR T NIRRT T TR LU T L) )
ST Tt it it T it it i i1t T it it T it

cewffDecimal _to_Hexadecimal_Conversion:

i

cew#to_The_sub—routine._dec2hex () owill_convert_a_decimal_value_into._its
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ceeoffo_hexadecimal _equivalent .

R

ceeftoUsage: .$hout_.=_dec2hex ($din);
—

1y L L IRTRTan 1)

L T

m

L

m

L

L T NI T T NI Lt T
i T T T T T T T 1T

cewemy(-$deco) o=_shift;

ceeoreturnosprintf("%x” ,_.$dec.);

}

sub_testhex _{

=head2_.Test _Hexadecimal_Values

The_B<testhex>_sub—routine_will_receive_a.single
hexadecimal_value._If_the_hexadecimal_value_is._less
than_4._.digits ,_.then_.B<testhex>_will _pre—pend_the
appropriate_number_of_zeros_in_order_to_provide.a
complete.16—bit _hexadecimal_.value._An_error._flag.is
also._provided._.to_determine_if_the_hex_value_is_more

than_4._digits .

=cut

LUy NIRRT IR IR IR NTRI) 7T NIRRT IR IR IR TRI)

TR,
11

T

Lot
Tt

7T TR IR TN IR IR IR IR RTRTT

1117

L
i

NI

L L
i T Tt T 111 i T 111 Tt T

ceeftTest _.Hexadecimal_.Values:

R

e #-.The_sub—routine_testhex ()_will_receive_a.single
cewffo_hexadecimal _value._If_the_hexadecimal_value_is_less
o othan_4_.digits ,_.then_testhex ()_-will_prepend._the
—e—_f—_appropriate_number_of_zeros_in_order_to_provide._a
ceeffeocomplete_16—bit _hexadecimal_.value._An_error._flag.is
ceeffealsooprovided-to_determine.if_the_hex_value_is._more
ceeffoothano4.digits .

i

et @hexOut_=_(orig , _-hex4,_len ,_hflag);

R

e Usage: .my_ (@QhexOut) =_testhex ($hexIn , $debug) ;

SR

T

T

T

TRTRIRTeIN)

INIRTRINTa] IR NI NI NIRRT NIRRT RITY) TR NI IR IR IR I NIRRT R TR IR IR TR
e i T

ceeemy. ($hexIn) =_shift;

cecomy_ ($debug) _=_shift ;

ceeomy. (@hexInA) _=_split (//,$hexIn);

cewomy. ($hexInALen) .=.scalar (@QhexInA) ;
ceeeprint (7x _Hex.In:_.$hexIn\n”)_if . ($debug);
cecoprint (7x _Hex_Length_In:_.$hexInALen\n”)_if_($debug) ;
ceeemy. (@hexOut) ;

wememy (81)

ceeomy. ($hexDiff) _=_4—$hexInALen;

L)
1T

i

T

222
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ceeomy- ($hFlag)_=_0;

ceecifo($hexDiff =—.0)_{

________ print ("+_hex_length_is_4\n”)_if_($debug):
HHHHHHHH push (@hexOut, .$hexIn) ;

HHHHHHHH push (@hexOut, -$hexIn) ;

HHHHHHHH push (@hexOut, .$hexInALen) ;

HHHHHHHH push (@hexOut, .$hFlag) ;
ceecteelsifo($ShexDiffo>.0) -

HHHHHHHH for-($i=0;-8i<$hexDiff;_$i++)_{
HHHHHHHHHHHH unshift (@QhexInA ,0) ;

HHHHHHHH push (@hexOut, .$hexIn);

HHHHHHHH push (@hexOut, _join (7”7 ,_@hexInA));

uuuuuuuu push (@hexOut, _$hexInALen) ;

HHHHHHHH push (@hexOut, .$hFlag) ;

HHHHHHHH print (”*_hex_length_is_$hexInALen,_add_$hexDiff_zeros_-to_pad_-to_4\n”)_if_($debug);
HHHHHHHH print (7 *_New_Hex:_$hexOut [1]\n”)_if_($debug);
ceeotoelseo{

HHHHHHHH $hFlag.=_1;

HHHHHHHH push (@hexOut, -$hexIn) ;

HHHHHHHH push (@hexOut, .$hexIn) ;

HHHHHHHH push (@hexOut, .$hexInALen) ;

HHHHHHHH push (@hexOut, .$hFlag) ;

HHHHHHHH print (”*_hex.length._is:_.$hexInALen\n”)._.if_$debug;

ceecprint _.Dumper (@hexOut) _if _$debug;

———_return (@QhexOut) ;

}
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Appendix E

ADC Waveform Capture

Conversion Perl Script

This chapter describes the wave2mat ADC waveform capture conversion Perl script, which
is used to convert ADC data captured by the Data Path FPGA into a data file suitable for analysis

in Matlab.

E.1 NAME

wave2mat.pl - ADC Capture Signed 2’s Compliment Hexadecimal-to-Decimal Converter

E.2 SYNOPSIS

wave2mat.pl [-h] [-v] [-f <FILE>]
Help Options:
-h Print Help.

-v Verbose: Print Debug Information.
-f <FILE> Input ADC capture filename.

Example:
./wave2mat.pl -v -f sample.dat

E.3 OPTIONS

-h

Show the brief help information.
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Show debug information.

-f FILE

ADC capture input filename containing ADC data in signed 2’s complement hexadecimal

format.

E.4 DESCRIPTION

wave2mat.pl is used to convert ADC capture files created by the Measurement Board and
captured from the high-speed ADC into a data file suitable for analysis in Matlab. wave2mat.pl
will read in an ADC capture file with 8 signed 2’s complement hexadecimal values and a single
over-range value per line. The values are comma separated. It will sign-extend and convert the
signed 2’s complement hexadecimal data to decimal. The decimal data will then be quantized based

on the ADC resolution as follows:
e y[n] = (x[n] / 2%*x11) * (2.2V / 2)

The data will then be written out to a file for analysis in Matlab.

E.5 SUBROUTINES

Get Waveform File

The get ADCPFile sub-routine will open the input ADC capture file and store the data

into a hash as an array.

Parse ADC Capture File

The parseADCFile sub-routine will extract the ADC capture data from the file array

into its own array and store both the array and the number of ADC samples in a hash.

Convert 16-bit Hexadecimal to Signed 2’s Complement Decimal

The convHex2Dec sub-routine will sign-extend, convert the hexadecimal value to a signed
2’s complement decimal value, and quantize the data. It will then write the data to a data file suitable

for analysis in Matlab.



APPENDIX E. ADC WAVEFORM CAPTURE CONVERSION PERL SCRIPT 226

ALGORITHM DESCRIPTION
1. Define the full scale ADC input voltage.
a. The ADC full scale input voltage is 2.2V.
2. Define the maximum value of a hexadecimal sample using the RES value.

a. $maxValue = 2*x*x$RES-1

b. The default RES value for the measurement board ADC is 12.
3. Grab a signed 2’s complement hexadecimal value from the data array.
4. Sign-extend the signed 2’s complement hexadecimal value to 16 bits.
5. Convert the sign-extended hexadecimal data to decimal.
a. $dec = signed hex2dec($btc_hex)
6. Quantize signed 2’s complement decimal value to RES bits.
a. $decQuant = ($dec / $maxValue) * ($fs / 2)

7. Store the signed 2’s complement decimal value in an array in the order provided by the input

ADC capture file.

8. Write the signed 2’s complement decimal value to an output data file for analysis in Matlab.

Test Hexadecimal Values

The testhex sub-routine will receive a single hexadecimal value. If the hexadecimal value
is less than 4 digits, then testhex will pre-pend the appropriate number of zeros in order to provide
a complete 16-bit hexadecimal value. An error flag is also provided to determine if the hex value is

more than 4 digits.

Signed Extension

The signextend sub-routine will sign-extend a hexadecimal value.

Signed Hexadecimal to Decimal Conversion

The signed_hex2dec sub-routine will convert a signed hexadecimal value into its decimal

equivalent.
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Hexadecimal to Decimal Conversion

The hex2bin sub-routine will convert a hexadecimal value into its decimal equivalent.

Decimal to Hexadecimal Conversion

The dec2hex sub-routine will convert a decimal value into its hexadecimal equivalent.

Hexadecimal to Binary Conversion

The hex2bin sub-routine will convert a hexadecimal value into its binary equivalent.

Binary to Hexadecimal Conversion

The bin2hex sub-routine will convert a binary value into its hexadecimal equivalent.

E.6 CODE

Listing E.1: ADC Waveform Capture Conversion Perl Script

#!/usr/bin/env perl

# vim:ts=4:sw=4:expandtab:cindent

#******************************************************************

#

# wavel2mat. pl module

#
#******************************************************************
#

# VCL Confidential Copyright 2011 UC Dawvis, ECE Department

#

ok ok ok ok ok ok ok K ok ok K K ok ok R K K oK K R K ok ok ok kK ok oK ok Rk Sk ok ok K K ok ok K oK ok kR K ok ok kK K ok oK K K KK K K K K
#

# created on: 01/24/2011

# created by: Jwwebb

# last edit on: $DateTime: $

# last edit by: $Author: $

# revision : $Revision: §

# comments : Generated

#

ok kK kKRR KRR KRR KRR KRR KR KRR KR R R R R R R R R o ok o o K K o ok ok K K
# Revision List:

#
# 1.0 01/24/2011 Initial release
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# Please report bugs, errors, etc.
#******************************************************************

# ADC Capture Data to Matlab Script

#

# This wutility is intended to convert an ADC capture file

# containing 8 ADC samples and an over—range indicator per line
# into a Matlab array for further post—processing.

#

# Usage Information :

#

# Usage: ./wave2mat.pl [—h] [—v] [—f <FILE>]

#

# —h Print Help.

# —v Verbose: Print Debug Information.
# —f <FILE> Input LOG File .

#

# Example :

# ./wave2mat. pl —v —f LOGFILE. tzt

#

KRR R KRR R R R KRR R R R R KRR R KRR R KRR KRR R R R R R R R R R R R R R R R R R R R Rk o K K

B
# CPAN Modules

Fok K ko ok ok K K kK KK K kK KR K KK K KK K K K kK 3K K K K K KR K ok K K kK ok K oK kK KK K K K KK K K K KR K K K KOk Kk K
use strict;

use Getopt:: Std;

use Fcntl; # File control (lock, etc...)
use SDBM_File; # Simple database
use Carp; # Warnings/Errors for modules

use File :: Basename;
use File ::Path;

use FileHandle;

use POSIX;

use Data:: Dumper;

#******************************************************************
# Constants and Variables :
#******************************************************************
my (%opts)=();

my ($file);

my (3debug);

my (%adcH, $adc_rH);

#******************************************************************
# Retrieve command line argument

B T
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getopts (hv:f:’ \%opts);
my $optslen = scalar( keys %opts );

print (”Number_of_Options_on_Command—Line:_$optslen\n”) if Sopts{v};

#check for walid combination command—line arguments
if ($opts{h} || (Soptslen eq 707)) {
print_usage () ;

exit ;

# parse command—line arguments
$file = Sopts{f};
$debug = $opts{v};

# Stuff input options into a Hash:

$adcH{ ’file’ } = $file;

$adcH{ ’debug’ } = $debug;

# AutoFlush FileHandles :

autoflush STDOUT 1; # Immediate writes

select (STDOUT) ;

# Convert ADC Sample Data from Log File to Matlab File:

if ($file) {

# Get Block RAM Patter File:

$adc.rH = getADCFile(\%adcH) ;

# Parse Block RAM Pattern File:

$adc.rH = parseADCFile($adc_-rH);

# Convert from Hex 2 Dec:

$adc_rH = convHex2Dec($adc_rH);

=headl NAME
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B<wave2mat.pl> — ADC Capture Signed 2’s_Compliment_Hexadecimal—to—Decimal_Converter

=headl _.SYNOPSIS

—owave2mat.pl_[—h]_[—v] o[- f<FILE>]

--Help_.Options:
R R Print .Help .
R PO Verbose: _Print_Debug.Information .

eee— [ <FILE>._._._Input.ADC_capture._filename .

~..Example:

HHHHHHHH /wave2mat . pl.—v._—f_sample.dat

=head1_.OPTIONS

=over .8

=item .B<—h>

Show_the_brief_help.information .

=item .B<—v>

Show._debug_information .

=item _B<—f _FILE>

ADC_capture_input_filename_containing _ADC_data_in_signed._-2’s complement hexadecimal format

=back

=headl DESCRIPTION

B<wave2mat.pl> is used to convert ADC capture files created by the Measurement Board and

captured from the high—speed ADC into a data file suitable for analysis in Matlab.

B<wave2mat.pl> will read in an ADC capture file with 8 signed 2’s_complement_hexadecimal._
values.and

a_single_over—range_value_per_line._The_values_are_comma_separated._It_will_sign—extend._
and

convert.the_.signed.2’s complement hexadecimal data to decimal. The decimal data will

then be quantized based on the ADC resolution as follows:

=over 4

=item * C<y[n] = (x[n] / 2xx11) *= (2.2V / 2)>
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=back

The data will then be written out to a file for analysis in Matlab.

=headl SUBROUTINES

=cut

R R R R KRR KRR R KRR R R KRR KRR KRR R R R R R R R R R R R R R R R R R R R R R R ok o K K

# Sub—routines

T kKRR R R KRR R KRR R KRR R R KRR R KRR R R R R R R R R R R R R R R R R K R ok o K K

sub dienice {
my($errmsg) = Q_;
print” $errmsg\n” ;

exit ;

sub print_usage {

my (Susage);

$usage = "\nUsage: . _$0_[—h]_[—v]_[—f_<FILE>]\n";

$usage .= 7\n”;

$usage .= 7\t—h\t\tPrint_Help.\n”;

$usage .= 7\t—v\t\tVerbose:_ Print.Debug_.Information.\n”;
$usage .= "\t—f_<FILE>\tInput_LOG.filename.\n”;

$usage .= 7\n”;

$usage .= 7\tExample:\n”;

Susage .= "\t\t$30_—v_.—f_logfile.txt\n";

$usage .= 7\n”;

print ($usage);

return;

sub getADCFile {

=head2 Get Waveform File

The B<getADCFile> sub—routine will open the input ADC capture file and store

the data into a hash as an array.

=cut

Get ADC Sample File:

#
#
# The sub—routine getADCFile() will open the ADC Sample file
#

and read its contents into an array. It will also determine

231
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# the file length. The following parameters are created

#

# * fileData: @dataA

# * fileLen: scalar (@dataA)

#

# Usage: $adc.rH = getADCFile(\%adcH) ;

#

my ($adc_rH) = shift; # Read in wuser’s wariable.
my (%adcH) = %{ $adc_rH }; # De—reference hash.
my ($debug) = $adcH{ debug’ }; # Print out Debug Info.

# Open the ADC Sample file , and read the results into an array for
# manipulating the data array. Strip new lines and carriage returns
# from remove string array, and initialize for loop wvariables. Close file

# when done.

my (@samples_AoH) ;
my (Qtmp) ;
open(inF, 7<”, $adcH{ ’file’ }) or dienice (”$adcH{.’ file’_}_open.failed”);
while (<inF>) {
chomp;
PE (18- = J#)) |
@tmp = split(/,/, $-);
$tmp [2] =" s/[\r[\n]//;
push(@samples_AoH, {OVR => $tmp[0],
Slice7 => $tmp[1],

Slice6 => $tmp[2],

Slice5 => $tmp[3

)

Slice4 => $tmp[4

)

Slice3 => $tmp|[5

3

Slice2 => $tmp|[6

)

Slicel => $tmp|[7

)

Slice0 => $tmp[8
o)

}

close (inF);

print Dumper(@samples_AoH) if $debug;

# Push signals into Hash.

$adcH{ 'samples_AoH '} = \@samples_AoH;
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# Return data to wuser

return \%adcH;

sub parseADCFile {

—head2 Parse ADC Capture File

The B<parseADCFile> sub—routine will extract the ADC capture data from the

file array into its own array and store both the array and the number of

ADC samples in a hash.

=cut
# Parse ADC Capture File
#
# The sub—routine parseADCFile() will parse the input ADC Capture File
# and retrieve the following information :
#
# #begin
# #end
#
# This sub—routine will also extract the actual pattern data into an
# array for conwverting from hexadecimal to decimal.
#
# Usage: $adc_.rH = parseADCFile(\%adcH) ;
#
my ($adc_rH) = shift; # Read in wuser’s wariable.
my (%adcH) = %{ $adc_rH }; # De—reference hash.
my (@samples_AoH) = @{ $adcH{ ’samples_AoH’ } };
my ($debug) = $adcH{ debug’}; # Print out Debug Info.

# Create an array with a single hexadecimal sample per element:

my (8$i) = 0;

my (@samples_hexA);

my ($tmp7);

my ($tmp6) ;

my ($tmp5) ;

my ($tmpd);

my ($tmp3);
($tmp2);

my ($tmpl);
(8tmp0) ;
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for $i ( 0 .. $#samples_AoH ) {
# Grab 8 ADC Samples:
$tmp7 = $samples_AoH [$i]{ Slice7 };
$tmp6 = $samples_AoH[$i]{ Slice6 };
$tmp5 = $samples_AoH [$i]{ Sliceb };
$tmp4 = $samples_AoH[$i]{ Slice4 };
{Slice3 };
{ Slice2 };
$tmpl = $samples_AoH [$i]{ Slicel };

]
]
$tmp3 = $samples_AoH [ $i]
$tmp2 = $samples_AoH [ $i]
]
$tmp0 = $samples_AoH[$i]{ SliceO };

push(@samples_hexA , $tmp7);
push(@samples_hexA , $tmp6);
push(@samples_hexA , $tmp5);
push(@samples_hexA , $tmp4);
push(@samples_hexA , $tmp3);
push(@samples_hexA , $tmp2);
push(@samples_hexA , $tmpl);
push(@samples_hexA , $tmp0);

$adcH{ samples_hexA’} = \@samples_hexA ;

print Dumper(@samples_hexA) if $debug;

# Determine number of samples

$adcH{ ’'NumberSamples’ } = scalar (@Q{ $adcH{ ’samples_hexA’ } });

print (”\n\n”) if $debug;
print (? Total_number_of_lines :_.$adcH{. NumberSamples’_}\n”) if $debug;
print (?\n\n”) if $debug;

# Return data to wuser

return \%adcH;

sub convHex2Dec {

=head2 Convert 16—bit Hexadecimal to Signed 2’s.Complement_Decimal
The_B<convHex2Dec>_sub—routine_will _sign—extend ,_.convert._.the_hexadecimal
value_to.a_signed.2’s complement decimal value, and quantize the data.

It will then write the data to a data file suitable for analysis in Matlab.

=head3 ALGORITHM DESCRIPTION
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=over 4

=item 1. Define the full scale ADC input voltage.

=over 4

=item a. The ADC full scale input voltage is 2.2V.

=back

=item 2. Define the maximum value of a hexadecimal sample using the RES value.

=over 4

=item a. C<$maxValue = 2xx$RES—1>

=item b. The default RES value for the measurment board ADC is 12.

=back

=item 3. Grab a signed 2’s_complement_hexadecimal_value_from_the_data_array.

=item._4.._.Sign—extend._.the_signed_.2’s complement hexadecimal value to 16 bits.

=item 5. Convert the sign—extended hexadecimal data to decimal.

=over 4

=item a. C<$dec = signed_-hex2dec($btc_hex)>

=back

=item 6. Quantize signed 2’s.complement_decimal_.value_to_.RES_bits.

=over.4

=item._a..C<$decQuant._=_($dec./_$maxValue) .x_($fs./_.2)>

=back

=item._8._.Store_the_signed._.2’s complement decimal value in an array in the order provided

by the input ADC capture file.

=item 9. Write the signed 2’s_complement_.decimal_.value_.to_an_output_data_file_for_analysis

~in_Matlab.

=back
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=cut

Ly TR NI NIRRT IR I NI NIRRT IR NI NIRRT IR NIRRT NIRRT NI NIRRT NIRRT NTe] INTRIRIRINIy]
== ST T T e Tt T e (R T T Tt Tt

cewft-Convert _.Hexadecimal _to_Decimal:
i
o The_sub—routine._convHex2Dec () -will _convert._the_hexadecimal_data_to

cewffo_.decimal._data.

R
et Usage: .$adc_rH._=_convHex2Dec ($adcH) ;
SR
DO i L L L e T L B LA T A L e LA T L A T L TR T T L TRt B
ceeemy (SaderH) onnnce=oshift § oo e #_Read_in_user’s variable.
my (%adcH) = %{ $adc_rH }; # De—reference hash.
my ($nsamps) = $adcH{ 'NumberSamples’ };
my (@samples_hexA) = @{ $adcH{ ’samples_hexA’ } };
my ($debug) = $adcH{ debug’}; # Print out Debug Info.

# Convert Waveform Data from Signed 2°s Complement Hexadecimal to Decimal

my ($fs) = 2.2; # 2.2V
my ($res) = 12;
my ($maxValue) = (2xx($res—1)); #—1;

print (?Maximum.Value: .$maxValue\n”) if $debug;

my (@QwaveDecA) ;

my (8$j) = 0;
for ($j=0; $j<$nsamps; $j++) {
my $btc_hex = signextend ($samples_hexA[$j]);
my $dec = signed_hex2dec($btc_hex);
my $decQuant = ($dec/$maxValue)«($fs/2);
print (” Hexadecimal : _$samples_hexA [$j]; _$btc_hex;_Decimal:_$dec,_.Decimal._(
Quantized): .$decQuant\n”) if $debug;
my ($decOut) = $decQuant;
push (@QwaveDecA, $decOut) ;

print (?\n\n”) if $debug;

# Write Waveform Data in Signed 2’s Complement Decimal to Matlab File

my $newfile = $adcH{ ’file’ };
$newfile =~ s/\..x$//;

$newfile .= ” _dec.m”;
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# check to make sure that the file doesn’'t exist.

die 7Oops!_A_file_called._.’$newfile’_already_exists.\n”
# Open Hex File:

open(WF1, 7>", S$newfile);

autoflush WF1 1; # Immediate
select (WF1) ;

my ($Kk) = 0;

for (8k=0; $k<scalar (@QwaveDecA); $k++) {
my ($index) = $k+1;
printf(”wave_p($index)._=_8waveDecA[S$k];”);
printf(”\n”);

# Close the mew waveform file :

select (STDOUT) ;

if —e $newfile;

writes

# Return data to wuser

return \%adcH;

sub testhex {

=head2 Test Hexadecimal Values

The B<testhex> sub—routine will receive a single
hexadecimal value. If the hexadecimal value is less
than 4 digits , then B<testhex> will pre—pend the
appropriate number of zeros in order to provide a
complete 16—bit hexadecimal value. An error flag is
also provided to determine if the hex value is more

than 4 digits.

=cut

Test Hexadecimal Values:

The sub—routine testhex () will receive a single
hexadecimal value. If the hexadecimal value is less
than 4 digits, then testhexz () will prepend the
appropriate number of zeros in order to provide a
complete 16—bit hexadecimal value. An error flag is
also provided to determine if the hex wvalue is more

than 4 digits.

R R L N N R TR R N N
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iR R N

@hexOut = (orig, hex4, len, hflag);

Usage: my (@hexOut) = testhex ($hexIn,$debug);

238

my ($hexIn) = shift;
my ($debug) = shift;
my (@hexInA) = split(//,$hexIn);

my ($hexInALen) =

scalar (@QhexInA) ;

print ("Hex.In:_$hexIn\n”) if ($debug);

print ("Hex_Length
my (@hexOut);
8i);

~In:_$hexInALen\n”) if ($debug);

my (
my ($hexDiff) = 4—8hexInALen;
my (

$hFlag) = 0;

if ($hexDiff ==

) A

print ("hex.length_is_.4\n”) if ($debug);

push (@QhexOut ,
push (@hexOut ,
push (@hexOut ,
push (@hexOut,

$hexIn) ;
$hexIn) ;
$hexInALen) ;
$hFlag)

} elsif ($hexDiff > 0) {

for ($i=0; $i<$hexDiff; $i++) {
unshift (QhexInA ,0) ;

}

push (@QhexOut, $hexIn);

push (@hexOut, join(””, @QhexInA));

push (@hexOut, $hexInALen);

push (@QhexOut, $hFlag);

print (”hex._length._is_$hexInALen,_add_$hexDiff_zeros_to_pad_to.4\n”)

print (?”New_Hex: _.$hexOut [1]\n”) if ($debug);

} else {
$hFlag = 1;
push (@hexOut, $hexIn);
push (@hexOut, $hexIn);
push (@QhexOut, $hexInALen);
push (@QhexOut, $hFlag);

print ("hex_length_is:_ShexInALen\n”) if $debug;

print Dumper(@hexOut) if $debug;

return (@QhexOut) ;

sub signextend {

if ($debug);
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=head2 Signed Extension

The B<signextend> sub—routine will sign—extend a hexadecimal value.

=cut

# Signed Exztension:
#

The sub—routine signextend () will sign—exztend a hexadecimal value.

#
#
# Usage: $hout = signextend ($hin);
#

my ($hex) = shift;

# Remove 70xz” from hexadecimal input value:

#~

$hex =" s/°0x//;

7~

# Split hex input value into multiple hex digits:

my (@QhexA) = split(//,8hex);

# Convert each hex digit to binary:

my (@QtmpBinA) ;
foreach my $i (@QhexA) {

push (@tmpBinA, split(//,hex2bin($i)));
¥

#~

# Check input wvalue bit width and check MSB to determine

# if sign—extension is a 0 or a 1.

my (@tmpB) ;
my ($size) = scalar (QtmpBinA) ;
if ($size eq 12) {
if ($tmpBinA[0] =" m/0/) {
push (@tmpB, 0);
push (@tmpB, 0);
push (@tmpB, 0);
push (@tmpB, 0);
} else {
push (@tmpB, 1);
push (@tmpB, 1);
push (@tmpB, 1);
push (@tmpB, 1);
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# Append binary input value to sign—extended MSB bits :

push (@tmpB, @tmpBinA) ;

# Join sign—extended binary bits:

my ($binTmp) = join(”” ,@tmpB) ;

# Convert to Hex:

my ($hexTmp) = bin2hex ($binTmp) ;

# Make sure value is padded to 16—bits:

my (@hexOut) = testhex ($hexTmp,0) ;
my ($hexNew) = $hexOut[1];

return ($hexNew) ;

sub signed_-hex2dec {

=head2 Signed Hexadecimal to Decimal Conversion

The B<signed_-hex2dec> sub—routine will convert a signed hexadecimal value into its

decimal equivalent.

=cut

# Signed Hexadecimal to Decimal Conwversion:

The sub—routine signed_hex2dec () will convert a signed hexadecimal

value into its decimal equivalent.

Usage: $dout = signed_hex2dec ($hin);

R N N R

my ($hexIn) = shift;

return unpack(’s’,pack ’s’, hex($hexIn));

sub hex2dec {

=head2 Hexadecimal to Decimal Conversion
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The B<hex2bin> sub—routine will convert a hexadecimal value into its

decimal equivalent.

=cut

# Hexadecimal to Decimal Conwversion:

The sub—routine hex2dec() will convert a hezxadecimal value into its

decimal equivalent.

Usage: $dout = hex2dec($hin);

R R N N N N

my $hex = shift;

return hex($hex);

sub dec2hex ($) {

=head2 Decimal to Hexadecimal Conversion

The B<dec2hex> sub—routine will convert a decimal value into its

hexadecimal equivalent.

=cut

# Decimal to Hexadecimal Conwversion:

The sub—routine dec2hex () will convert a decimal value into its

hexadecimal equivalent.

Usage: $hout = dec2hex($din);

R R N N N

my( $dec ) = shift;

return sprintf("%x”, $dec );

sub hex2bin {

=head2 Hexadecimal to Binary Conversion

The B<hex2bin> sub—routine will convert a hexadecimal value into its

binary equivalent.

=cut
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binary equivalent.

R N N N R R

The sub—routine hex2bin () will

Hexadecimal to Binary Conversion :

Usage: $bout = hex2bin ($hin);

convert a hexadecimal value into its

my $hex = shift;

my $binary;

my %h2b = (0 => 700007,
4 = 701007,
8 => 710007,
¢ = 711007,
)3

($binary = S$hex) =" s/ (.

return ($binary);

sub bin2hex {

=head2 Binary to Hexadecimal Conversion

The B<bin2hex> sub—routine will

=cut

1 => 70001”
5 => 70101”
9 => 710017
d = 71101~

) /$h2b{lc $1}/g;

0010”
701107
710107
711107

convert a binary value

- TN W

= 700117,
= 701117,
= 710117,
= 711117,

into its hexadecimal

equivalent .

# Binary to Hezadecimal

R R N N N

The sub—routine binZ2hex () will

Conwversion :

hexadecimal equivalent.

Usage: $hout = binZ2hex ($bin);

convert a binary value into its

my $binary = shift;

return sprintf(”%X”, oct(”0b”.$binary));
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Appendix F

Signal Routing Groups

F.1 DDR SDRAM Routing Constraints

The MicroBlaze soft-core processor running on the Control FPGA of the measurement
board uses a 512-Mbit, 125 MHz DDR SDRAM device for code storage and execution. The Control
FPGA, which is a Xilinx Spartan-3A XC3S1400A, does not contain delay primitives that allow the
timing of each I/O to be adjusted. Therefore the traces must be tightly matched in order for the
memory to run at optimal speed. The DDR SDRAM control interface consists of the following

signals:

1 differential clock

13 address bits

16 bidirectional data bits

2 bidirectional data strobe bits

1 clock enable bit

1 chip select bit

e 1 write enable bit

1 row-address strobe (RAS)

1 column-address strobe (CAS)

2 byte-address bits
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e 2 data mask bits

e 1 feedback clock

The signals are routed as transmission lines. In the case of the unidirectional signals, the transmission
lines are terminated using both series and parallel methods. The series terminations are located
approximately halfway between the Control FPGA and the DDR SDRAM. The bidirectional signals
have an additional parallel termination at the transmitter in order to minimize reflection during
reads and writes. The use of series terminations effectively breaks the signals into two groups. The
trace lengths of each signal group must be matched to within +70 mils or £10 — 15 ps. The DDR
SDRAM memory controller requires the feedback clock signal to have a length equal to the average
length of the data strobe and differential clock. The equation used to calculate the trace length is

shown in Equation F.1.

2

(DDR.SDRAM_LDQS+FPGA_DDR_.SDRAM_LDQS)
Lerkrp =

< (DDR.SDRAM_UDQS+FPGA_DDR_SDRAM_UDQS)
2

n < (FPGA_DDR.SDRAM CLK _N+FPGA_DDR.SDRAM_CLK_P)
2

For the memory interface to operate correctly, the differential clock trace length must be equivalent
to the average length of the pre- and post-series termination signal groups. The equation used to

calculate the trace length is shown in Equation F.1.

Lerk pen = average(Lppr spram) + average(Lppr_spram2) (F.1)

The signal groups and the associated length-matching tolerances are outlined in Table F.1.
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Table F.1: DDR SDRAM Matched Length Sets
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DDR SDRAM Matched Length Sets

Matched Set | Match From Match To Tolerance
FPGA_DDR_SDRAM_ADDR][12:0] | FPGA_DDR_SDRAM_CLK_N + 25 ps
FPGA_DDR_SDRAM_BA[1:0] FPGA_DDR_SDRAM_CLK_P
FPGA_DDR_SDRAM_CASN
FPGA_DDR_SDRAM_CKE
FPGA_DDR_SDRAM_CSN
FPGA_DDR_SDRAM_RASN

DDR-SDRAMI FPGA_DDR_SDRAM_WEN
FPGA_DDR_SDRAM_DATA[15:0] | FPGA_DDR_SDRAM_LDQS + 25 ps
FPGA_DDR_SDRAM_LDM FPGA_DDR_SDRAM_UDQS
FPGA_DDR_SDRAM_UDM
FPGA_DDR_SDRAM_LDQS FPGA_DDR_SDRAM_CLK_N | =4 100 ps
FPGA_DDR_SDRAM_UDQS FPGA_DDR_SDRAM_CLK_P
DDR_SDRAM_ADDR][12:0] FPGA_DDR_SDRAM_CLK_N + 25 ps
DDR_SDRAM _BA[1:0] FPGA_DDR_SDRAM_CLK_P
DDR_SDRAM_CASN
DDR_SDRAM_CKE
DDR_SDRAM_CSN
DDR_SDRAM_RASN

DDR_SDRAM2 DDR_SDRAM_WEN
DDR_SDRAM_DATA[15:0] DDR_SDRAM_LDQS + 25 ps
DDR_SDRAM_LDM DDR_SDRAM_UDQS
DDR_SDRAM_UDM
DDR_SDRAM_LDQS FPGA_ DDR_SDRAM_CLK_N | =+ 100 ps
DDR_SDRAM_UDQS FPGA_DDR_SDRAM_CLK_P

DDR_SDRAM3 FPGA_DDR_SDRAM_CLKFB + 25 ps
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F.2 DDR2 SDRAM SODIMM Routing Constraints
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The DDR2 SDRAM SODIMM interface can be routed using a shortest length method.

The signals in this group are shown in Table F.2.

Table F.2: DDR2 SDRAM SODIMM Matched Length Sets

DDR2 SDRAM SODIMM Matched Length Sets

Matched Set

Signal Name

Tolerance

DDR2_SDRAM1

FPGA_DDR2_SDRAM_A[13:0]
FPGA_DDR2_SDRAM_CK_P0
FPGA_DDR2_SDRAM_CK_NO
FPGA_DDR2_SDRAM_CK_P1
FPGA_DDR2.SDRAM_CK_N1
FPGA_DDR2_SDRAM_BA [2:0]
FPGA_DDR2_SDRAM_WDATA [35:0]
FPGA_DDR2.SDRAM_CASN
FPGA_DDR2_SDRAM_RASN
FPGA_DDR2_SDRAM_CKE][1:0]
FPGA_DDR2_SDRAM_SN([1:0]
FPGA_DDR2_SDRAM_ODTJ[1:0]
FPGA_DDR2.SDRAM_WEN

NA

DDR2_SDRAM?2

FPGA_DDR2_SDRAM_DMO0
FPGA_DDR2_SDRAM_DQS0
FPGA_DDR2_SDRAM_DQSN_NC0
FPGA_DDR2_SDRAM_DQS|[7:0]

NA

DDR2_SDRAM3

FPGA_DDR2_SDRAM_DM1
FPGA_DDR2.SDRAM_DQS1
FPGA_DDR2_SDRAM_DQSN_NC1
FPGA_DDR2_SDRAM_DQS[15:8]

NA

DDR2_SDRAM4

FPGA_DDR2_SDRAM_DM2
FPGA_DDR2_.SDRAM_DQS2
FPGA_DDR2_SDRAM_DQSN_NC2
FPGA_DDR2_.SDRAM_DQS[23:16]

NA

DDR2_SDRAMS5

FPGA_DDR2_SDRAM_DM3
FPGA_DDR2_SDRAM_DQS3
FPGA_DDR2_SDRAM_DQSN_NC3
FPGA_DDR2_SDRAM_DQS[31:24]

NA

Continued on Next Page...
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DDR2 SDRAM SODIMM Matched Length Sets

Matched Set

Signal Name

Tolerance

DDR2_SDRAM6

FPGA_DDR2_SDRAM_DM4
FPGA_DDR2.SDRAM_DQS4
FPGA_DDR2_SDRAM_DQSN_NC4
FPGA_DDR2_SDRAM_DQS[39:32]

NA

DDR2_SDRAMTY

FPGA_DDR2_SDRAM_DM5
FPGA_DDR2_.SDRAM_DQS5
FPGA_DDR2_.SDRAM_DQSN_NC5
FPGA_DDR2_SDRAM_DQS[47:40]

NA

DDR2_SDRAMS

FPGA_DDR2_SDRAM_DM6
FPGA_DDR2_SDRAM_DQS6
FPGA_DDR2_SDRAM_DQSN_NC6
FPGA_DDR2_SDRAM_DQS[55:48]

NA

DDR2_SDRAMY

FPGA_DDR2_SDRAM_DM?7
FPGA_DDR2_SDRAM_DQS7
FPGA_DDR2_SDRAM_DQSN_NC7
FPGA_DDR2_SDRAM_DQS[63:56]

NA
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F.3 QDR-II SRAM Routing Constraints

The trace lengths of the QDR-IT memory device input signals (QDR-K, QDR_-K_n, QDR_C,
QDR_Cn, QDR_WR.n, QDR_RD_n, QDR_SA, QDR_BW_n, and QDR_D) must be well matched
within + 20ps to present the control, address, and data lines to the memory device with adequate
setup and hold margins. The implementation of the physical interface ensures these signals are
center aligned to the QDR_K and QDR_K_n clock edges when leaving the FPGA device outputs.
The board traces must ensure that this relationship continues to the memory device inputs.

Similarly, the QDR-~IT memory device output signals (QDR_Q, QDR_CQ, and QDR_CQ_n)
must have well-matched trace lengths within 420 ps for the signals to all arrive edge aligned at the
inputs to the Virtex-5 SX50T FPGA. This trace length matching is critical to the implementation
of the direct-clocking Read data capture methodology. Any reasonable board design tool can match

these traces within an acceptable tolerance with little effort.

Table F.3: QDR-II SRAM Matched Length Sets

QDR-IT SRAM Matched Length Sets
Matched Set | Signal Name Tolerance
FPGA_SRAM_ADDR]20:0] NA
FPGA_SRAM_K_CLK_P
FPGA_SRAM_K_CLK_N
FPGA_SRAM_C_CLK_P
FPGA_SRAM_C_CLK_N
FPGA_SRAM_BWN]3:0]
FPGA_SRAM_WDATA|35:0]
FPGA_SRAM_RDN
FPGA_SRAM_WRN
FPGA_SRAM_DLL_OFFN
FPGA_SRAM_CQ_CLK_N NA
FPGA_SRAM_RDATA[35:18]
FPGA_SRAM_CQ_CLK_P NA
FPGA_SRAM_RDATA[17:0]

SRAM1

SRAM?2

SRAMS3

Parameter Definitions:
e w: trace width

e s: trace spacing between differential lines
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Routing guidelines:

Single-Ended Trace Spacing > 3-w.

Differential Pair Spacing > 3-s.

Minimum Bend Radius > 2-w (to inside edge of trace).

Serpentine Spacing > 4-w.

F.4 High-Speed ADC Routing Constraints

The high-speed ADC interface can be routed using a shortest length method. The signals

in this group are shown in Table F.4.

Table F.4: High-Speed ADC Matched Length Sets

High-Speed ADC Matched Length Sets
Matched Set | Signal Name Tolerance
FPGA_ADC_OVR_P NA
FPGA_ADC_OVR-N
FPGA_ADC_DATA RDY_P
FPGA_ADC_DATA_RDY_N
FPGA_ADC_DATA P[15:0]
FPGA_ADC_DATA N[15:0]

ADC_DIFF
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F.5 High-Speed DAC Routing Constraints

The high-speed DAC interface can be routed using a shortest length method. The signals

in this group are shown in Table F

5.

Table F.5: High-Speed DAC Matched Length Sets

High-Speed DAC Matched Length Sets

Matched Set

Signal Name

Tolerance

DAC_DIFF

FPGA_DAC_CLK_P
FPGA_DAC_CLK_N
FPGA_DAC_SYNC_P
FPGA_DAC_SYNCN
FPGA_DAC_DATA_P[15:0]
FPGA_DAC_DATA N[15:0]

NA

F.6 High-Speed AsAP Routing Constraints

The high-speed AsAP interfaces can be routed using a shortest length method. The signals

in this group are shown in Table F

6.

Table F.6: AsAP Matched Length Sets

AsAP Matched Length Sets

Matched Set

Signal Name

Tolerance

ASAP1.A

FPGA_ASAP1_ REQ OUT
FPGA_ASAPI_VLD_OUT
FPGA_ASAP1_CLK_OUT
FPGA_ASAP1_DATA_OUTJ[15:0]

NA

ASAP1 B

FPGA_ASAP1_REQIN
FPGA_ASAP1_VLD_IN
FPGA_ASAP1_CLK_IN
FPGA_ASAP1_DATA_IN[15:0]

NA

ASAP2_A

FPGA_ASAP2_REQ_-OUT
FPGA_ASAP2 VLD OUT
FPGA_ASAP2_CLK_OUT
FPGA_ASAP2_DATA_OUTI[15:0]

NA

Continued on Next Page...
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AsAP Matched Length Sets

Matched Set

Signal Name

Tolerance

ASAP2 B

FPGA_ASAP2_REQ_IN
FPGA_ASAP2_VLD_IN
FPGA_ASAP2_CLK_IN
FPGA_ASAP2_DATA _INJ15:0]

NA
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Appendix G

Printed Circuit Board Net Type

Assignments

Table G.1: Nets assigned to Net Types

Net Name Net Type (Inner) | Net Type (Outer)
AD9516_.1GHZ_VCO_OUT SE_50 SE_50
AD9516_.10MHZ_REF_N DIFF_100 DIFF_100
AD9516_.10MHZ_REF_P DIFF_100 DIFF_100
AD9516_.BYPASS POWER_15MIL POWER_15MIL
ADC_N_N DIFF_100-O DIFF_100-O
ADC_IN_P DIFF_100_-O DIFF_100_-O
ADC_VREF POWER_15MIL POWER_15MIL
AIF_ADC_CLKIN_N DIFF_100 DIFF_100
AIF_ADC_CLKIN_P DIFF_100 DIFF_100
AIF_ADC_CLK_N DIFF_100 DIFF_100
AIF_ADC_CLK_P DIFF_100 DIFF_100
AMC6821_FAN1_A0 DEFAULT DEFAULT
AMC6821_FAN1_A1 DEFAULT DEFAULT
AMC6821_FAN1_FAULTN DEFAULT DEFAULT
AMC6821_FAN1_OVRN DEFAULT DEFAULT
AMC6821_FAN1I_THERMN DEFAULT DEFAULT
AMCG6821_FAN2_A0 DEFAULT DEFAULT
AMC6821_FAN2_A1 DEFAULT DEFAULT
AMC6821_FAN2_FAULTN DEFAULT DEFAULT
AMC6821_FAN2_OVRN DEFAULT DEFAULT

Continued on Next Page...

252



APPENDIX G. PRINTED CIRCUIT BOARD NET TYPE ASSIGNMENTS

Net Name Net Type (Inner) | Net Type (Outer)
AMCG6821_FAN2_THERMN DEFAULT DEFAULT
ANLG_INHIBIT POWER_15MIL POWER_15MIL
ASAP1_ANLG1 SE_50 SE_50
ASAP1_ANLG2 SE_50 SE_50
ASAP1_ANLG3 SE_50 SE_50
ASAP1_ANLG4 SE_50 SE_50
ASAP1_CFG_CLK SE_50 SE_50
ASAP1_CFG_VALID SE_50 SE_50
ASAP1_EXT_CLK_IN SE_50 SE_50
ASAP1_RESET_COLD SE_50 SE_50
ASAP1 RST CNTCLK SE_50 SE_50
ASAP1 SPI.CLK SE_50 SE_50
ASAP1_SPI.CSN SE_50 SE_50
ASAP1_SPI.LOAD SE_50 SE_50
ASAP1_SPI_MISO SE_50 SE_50
ASAP1_SPI_MOSI SE_50 SE_50
ASAP1_TESTO SE_50 SE_50
ASAP1_TEST1 SE_50 SE_50
ASAP1_TEST2 SE_50 SE_50
ASAP1_TEST3 SE_50 SE_50
ASAP1_TEST4 SE_50 SE_50
ASAP1.TEST5 SE_50 SE_50
ASAP1.TEST6 SE_50 SE_50
ASAP1_TEST7 SE_50 SE_50
ASAP1_TESTS SE_50 SE_50
ASAP1_TEST_OUTO SE_50 SE_50
ASAP1_TEST_OUT1 SE_50 SE_50
ASAP1_TEST_OUT2 SE_50 SE_50
ASAP1I_TEST_OUTS SE_50 SE_50
ASAP1_TEST OUT4 SE_50 SE_50
ASAP1_TEST_OUT5 SE_50 SE_50
ASAP1_TEST_OUT6 SE_50 SE_50
ASAP1_TEST_OUT7 SE_50 SE_50
ASAP1_TEST_OUTS SE_50 SE_50
ASAP2_ANLG1 SE_50 SE_50
ASAP2_ANLG2 SE_50 SE_50
ASAP2_ANLG3 SE_50 SE_50
ASAP2_ANLG4 SE_50 SE_50
ASAP2_CFG_CLK SE_50 SE_50
ASAP2_CFG_VALID SE_50 SE_50

Continued on Next Page...
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Net Name Net Type (Inner) | Net Type (Outer)
ASAP2_ EXT_CLK_IN SE_50 SE_50
ASAP2_RESET_COLD SE_50 SE_50
ASAP2_RST_CNTCLK SE_50 SE_50
ASAP2_SPI_.CLK SE_50 SE_50
ASAP2_SPI_.CSN SE_50 SE_50
ASAP2_SPI.LOAD SE_50 SE_50
ASAP2_SPI_MISO SE_50 SE_50
ASAP2_SPI_MOSI SE_50 SE_50
ASAP2_TESTO SE_50 SE_50
ASAP2_TEST1 SE_50 SE_50
ASAP2_TEST2 SE_50 SE_50
ASAP2_TEST3 SE_50 SE_50
ASAP2_TEST4 SE_50 SE_50
ASAP2_TEST5 SE_50 SE_50
ASAP2_TEST6 SE_50 SE_50
ASAP2_TEST7 SE_50 SE_50
ASAP2_TESTS SE_50 SE_50
ASAP2_TEST_OUTO SE_50 SE_50
ASAP2_TEST_OUT1 SE_50 SE_50
ASAP2_TEST_OUT2 SE_50 SE_50
ASAP2_TEST_OUTS3 SE_50 SE_50
ASAP2_TEST_OUT4 SE_50 SE_50
ASAP2_TEST_OUT5 SE_50 SE_50
ASAP2_TEST_OUT6 SE_50 SE_50
ASAP2_TEST_OUT7 SE_50 SE_50
ASAP2_TEST_OUTS SE_50 SE_50

ASAP_INHIBIT

POWER_15MIL

POWER_15MIL

ASAP_TRACK_CTRLI1

POWER_15MIL

POWER_15MIL

ASAP_TRACK_CTRL_.OUT1

POWER_15MIL

POWER_15MIL

ASAP TRACK_CTRL_.OUT?2

POWER_15MIL

POWER_15MIL

AUX_IN SE_50_0 SE_50_0
CLK10MHZ_CPLD SE_50 SE_50

CLK10MHZ_CPLD_OUT SE_50 SE_50

CLK10MHZ_EXT_BUF_N DIFF_100 DIFF_100
CLK10MHZ_EXT_BUF_P DIFF_100 DIFF_100
CLK10MHZ_INT_BUF_N DIFF_100 DIFF_100
CLK10MHZ_INT_BUF_P DIFF_100 DIFF_100
CLK10MHZ_REFOUT_N DIFF_100 DIFF_100
CLK10MHZ_REFOUT_P DIFF_100 DIFF_100
CLK10MHZ_REF_AD9516_N DIFF_100 DIFF_100

Continued on Next Page...
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Net Name Net Type (Inner) | Net Type (Outer)
CLK10MHZ_REF_AD9516_P DIFF_100 DIFF_100
CLK10MHZ_REF_INT_LVDS_N DIFF_100 DIFF_100
CLK10MHZ_REF_INT_LVDS_P DIFF_100 DIFF_100
CLK10MHZ_REF_N DIFF_100 DIFF_100
CLK10MHZ_REF_P DIFF_100 DIFF_100
CLK10MHZ_REF_OSC SE_50 SE_50
CLK10MHZ _REF_OUT SE_50 SE_50
CPLD_BOARD_RSTN SE_FPGA SE_FPGA
CPLD_BUTTON SE_FPGA SE_FPGA
CPLD_CLK10MHZ_LVDS_N DIFF_100 DIFF_100
CPLD_CLK10MHZ_LVDS_P DIFF_100 DIFF_100
CPLD_LED SE_FPGA SE_FPGA
CPLD_TCK SE_FPGA SE_FPGA
CPLD_TDI SE_FPGA SE_FPGA
CPLD_TDO SE_FPGA SE_FPGA
CPLD_TMS SE_FPGA SE_FPGA
CUST_CCLK SE_50 SE_50
CUST_CFG_DONE SE_FPGA SE_FPGA
CUST_INIT_B SE_FPGA SE_FPGA
CUST_PROG_B SE_FPGA SE_FPGA
CUST_TCK SE_FPGA SE_FPGA
CUST_TDI SE_FPGA SE_FPGA
CUST_TDO SE_FPGA SE_FPGA
CUST_TMS SE_FPGA SE_FPGA
DAC5682_.EXTLO SE_50 SE_50
DAC5682_.UNUSED_N DIFF_100-O DIFF_100-O
DAC5682_.UNUSED_P DIFF_100-O DIFF_100-O
DAC_SS-N DIFF_100-O DIFF_100-O
DAC_SS_P DIFF_100-O DIFF_100-O
DDR_SDRAM_ADDRO SE_50 SE_50
DDR_SDRAM_ADDRI1 SE_50 SE_50
DDR_SDRAM_ADDR2 SE_50 SE_50
DDR_SDRAM_ADDR3 SE_50 SE_50
DDR_SDRAM_ADDRA4 SE_50 SE_50
DDR_SDRAM_ADDR5 SE_50 SE_50
DDR_SDRAM_ADDRG6 SE_50 SE_50
DDR_SDRAM_ADDRY SE_50 SE_50
DDR_SDRAM_ADDRS SE_50 SE_50
DDR_SDRAM_ADDR9 SE_50 SE_50
DDR_-SDRAM_ADDRI10 SE_50 SE_50
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Net Name Net Type (Inner) | Net Type (Outer)
DDR_SDRAM_ADDRI11 SE_50 SE_50
DDR_-SDRAM_ADDRI12 SE_50 SE_50
DDR_SDRAM_BAO SE_50 SE_50
DDR_SDRAM_BA1 SE_50 SE_50
DDR_SDRAM_CASN SE_50 SE_50
DDR_SDRAM_CKE SE_50 SE_50
DDR_SDRAM_CLK_N DIFF_100 DIFF_100
DDR_SDRAM_CLK_P DIFF_100 DIFF_100
DDR_SDRAM_CSN SE_50 SE_50
DDR_SDRAM_DATAO SE_50 SE_50
DDR_SDRAM _DATA1 SE_50 SE_50
DDR_SDRAM _DATA2 SE_50 SE_50
DDR_SDRAM _DATA3 SE_50 SE_50
DDR_SDRAM _DATA4 SE_50 SE_50
DDR_SDRAM _DATA5 SE_50 SE_50
DDR_SDRAM _DATAG6 SE_50 SE_50
DDR_SDRAM _DATAT7 SE_50 SE_50
DDR_SDRAM_DATAS SE_50 SE_50
DDR_SDRAM_DATA9 SE_50 SE_50
DDR_SDRAM_DATA10 SE_50 SE_50
DDR_SDRAM_DATA11 SE_50 SE_50
DDR_SDRAM_DATA12 SE_50 SE_50
DDR_SDRAM_DATA13 SE_50 SE_50
DDR_SDRAM_DATA14 SE_50 SE_50
DDR_SDRAM_DATA15 SE_50 SE_50
DDR_SDRAM_LDM SE_50 SE_50
DDR_SDRAM_LDQS SE_50 SE_50
DDR_SDRAM_RASN SE_50 SE_50
DDR_SDRAM_UDM SE_50 SE_50
DDR_SDRAM_UDQS SE_50 SE_50
DDR_SDRAM_WEN SE_50 SE_50

DIG2_INHIBIT

POWER_15MIL

POWER_15MIL

DIG_INHIBIT

POWER_15MIL

POWER_15MIL

EXT_CLK10MHZ_REF

SE_50_0

SE_50_0

EXT_CLK10MHZ_REFOUT

SE_50_0

SE_50_0

FAN1_TACH POWER_15MIL POWER_15MIL
FAN2_TACH POWER_15MIL POWER_15MIL
FIFO_USB_N DIFF_100 DIFF_100
FIFO_USB_P DIFF_100 DIFF_100
FOX_10MHZ_REF SE_50_0 SE_50_0
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_ADY9516_.CSB SE_FPGA SE_FPGA
FPGA_ADY9516_LLD SE_FPGA SE_FPGA
FPGA_ADY9516_PD SE_FPGA SE_FPGA
FPGA_AD9516_REFMON SE_FPGA SE_FPGA
FPGA_AD9516_REF_SEL SE_FPGA SE_FPGA
FPGA_AD9516_RESET SE_FPGA SE_FPGA
FPGA_AD9516.SCLK SE_FPGA SE_FPGA
FPGA_AD9516_SDIO SE_FPGA SE_FPGA
FPGA_AD9516_SDO SE_FPGA SE_FPGA
FPGA_ADY9516_STATUS SE_FPGA SE_FPGA
FPGA_AD9516_SYNC SE_FPGA SE_FPGA
FPGA_ADC_DATA_NO DIFF_100 DIFF_100
FPGA_ADC_DATA N1 DIFF_100 DIFF_100
FPGA_ADC_DATA_N2 DIFF_100 DIFF_100
FPGA_ADC_DATA_N3 DIFF_100 DIFF_100
FPGA_ADC_DATA N4 DIFF_100 DIFF_100
FPGA_ADC_DATA_N5 DIFF_100 DIFF_100
FPGA_ADC_DATA_N6 DIFF_100 DIFF_100
FPGA_ADC_DATA_N7 DIFF_100 DIFF_100
FPGA_ADC_DATA_N8 DIFF_100 DIFF_100
FPGA_ADC_DATA_N9 DIFF_100 DIFF_100
FPGA_ADC_DATA_N10 DIFF_100 DIFF_100
FPGA_ADC_DATA_N11 DIFF_100 DIFF_100
FPGA_ADC_DATA_N12 DIFF_100 DIFF_100
FPGA_ADC_DATA_N13 DIFF_100 DIFF_100
FPGA_ADC_DATA_N14 DIFF_100 DIFF_100
FPGA_ADC_DATA_N15 DIFF_100 DIFF_100
FPGA_ADC_DATA_PO DIFF_100 DIFF_100
FPGA_ADC_DATA_P1 DIFF_100 DIFF_100
FPGA_ADC_DATA P2 DIFF_100 DIFF_100
FPGA_ADC_DATA_P3 DIFF_100 DIFF_100
FPGA_ADC_DATA P4 DIFF_100 DIFF_100
FPGA_ADC_DATA_P5 DIFF_100 DIFF_100
FPGA_ADC_DATA_P6 DIFF_100 DIFF_100
FPGA_ADC_DATA _P7 DIFF_100 DIFF_100
FPGA_ADC_DATA_P8 DIFF_100 DIFF_100
FPGA_ADC_DATA_P9 DIFF_100 DIFF_100
FPGA_ADC_DATA_P10 DIFF_100 DIFF_100
FPGA_ADC_DATA P11 DIFF_100 DIFF_100
FPGA_ADC_DATA P12 DIFF_100 DIFF_100
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_ADC_DATA P13 DIFF_100 DIFF_100
FPGA_ADC_DATA P14 DIFF_100 DIFF_100
FPGA_ADC_DATA_P15 DIFF_100 DIFF_100
FPGA_ADC_DATA_RDY_N DIFF_100 DIFF_100
FPGA_ADC_DATA_RDY_P DIFF_100 DIFF_100
FPGA_ADC_.OVR.N DIFF_100 DIFF_100
FPGA_ADC_OVR_P DIFF_100 DIFF_100
FPGA_AMCG6821_FAN1_FAULTN SE_FPGA SE_FPGA
FPGA_AMCG6821_FAN1_OVRN SE_FPGA SE_FPGA
FPGA_AMCG6821_FAN1_SCK SE_FPGA SE_FPGA
FPGA_AMCG6821_FAN1 _SDA SE_FPGA SE_FPGA
FPGA_AMCG6821_FAN1 SMBALERTN SE_FPGA SE_FPGA
FPGA_AMC6821_FAN1_THERMN SE_FPGA SE_FPGA
FPGA_AMCG6821 FAN2 FAULTN SE_FPGA SE_FPGA
FPGA_AMCG6821_FAN2_ OVRN SE_FPGA SE_FPGA
FPGA_AMC6821_FAN2_SCK SE_FPGA SE_FPGA
FPGA_AMC6821_FAN2_SDA SE_FPGA SE_FPGA
FPGA_AMC6821_FAN2_SMBALERTN SE_FPGA SE_FPGA
FPGA_AMC6821_FAN2_THERMN SE_FPGA SE_FPGA
FPGA_ASAP1_CFG_CLK SE_50 SE_50
FPGA_ASAP1_CFG_VALID SE_50 SE_50
FPGA_ASAP1 CLK.IN SE_50 SE_50
FPGA_ASAP1_CLK_OUT SE_50 SE_50
FPGA_ASAP1_DATA_INO SE_50 SE_50
FPGA_ASAP1_DATA_IN1 SE_50 SE_50
FPGA_ASAP1_DATA_IN2 SE_50 SE_50
FPGA_ASAP1_DATA_IN3 SE_50 SE_50
FPGA_ASAP1_DATA_IN4 SE_50 SE_50
FPGA_ASAP1_DATA_IN5S SE_50 SE_50
FPGA_ASAP1 DATA_IN6 SE_50 SE_50
FPGA_ASAP1 DATA_IN7 SE_50 SE_50
FPGA_ASAP1 DATA_INS SE_50 SE_50
FPGA_ASAP1 DATA_IN9 SE_50 SE_50
FPGA_ASAP1_DATA_IN10 SE_50 SE_50
FPGA_ASAP1_DATA_IN11 SE_50 SE_50
FPGA_ASAP1_DATA_IN12 SE_50 SE_50
FPGA_ASAP1_DATA_IN13 SE_50 SE_50
FPGA_ASAP1_DATA_IN14 SE_50 SE_50
FPGA_ASAP1_DATA _IN15 SE_50 SE_50
FPGA_ASAP1_DATA_OUTO SE_50 SE_50
Continued on Next Page...
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_ASAP1_DATA_OUT1 SE_50 SE_50
FPGA_ASAP1_DATA_OUT?2 SE_50 SE_50
FPGA_ASAP1.DATA_OUT3 SE_50 SE_50
FPGA_ASAP1.DATA_OUT4 SE_50 SE_50
FPGA_ASAP1_DATA_OUT5 SE_50 SE_50
FPGA_ASAP1_DATA_OUT6 SE_50 SE_50
FPGA_ASAP1_DATA_OUT7 SE_50 SE_50
FPGA_ASAP1_DATA_OUTS SE_50 SE_50
FPGA_ASAP1_DATA_OUT9 SE_50 SE_50
FPGA_ASAP1_DATA_OUT10 SE_50 SE_50
FPGA_ASAP1 DATA_ OUT11 SE_50 SE_50
FPGA_ASAP1 DATA_OUT12 SE_50 SE_50
FPGA_ASAP1 DATA_OUT13 SE_50 SE_50
FPGA_ASAP1 DATA_OUT14 SE_50 SE_50
FPGA_ASAP1 DATA_OUT15 SE_50 SE_50
FPGA_ASAP1_MISO SE_50 SE_50
FPGA_ASAP1_MOSI SE_50 SE_50
FPGA_ASAP1_REQ_IN SE_50 SE_50
FPGA_ASAP1_REQ_-OUT SE_50 SE_50
FPGA_ASAP1_RESET_COLD SE_50 SE_50
FPGA_ASAP1_RST_CNTCLK SE_50 SE_50
FPGA_ASAP1_SPI CLK SE_50 SE_50
FPGA_ASAP1_SPI.CSN SE_50 SE_50
FPGA_ASAP1_SPI.LOAD SE_50 SE_50
FPGA_ASAP1_VLD_IN SE_50 SE_50
FPGA_ASAP1.VLD_OUT SE_50 SE_50
FPGA_ASAP2_CFG_CLK SE_50 SE_50
FPGA_ASAP2_CFG_VALID SE_50 SE_50
FPGA_ASAP2_CLK_IN SE_50 SE_50
FPGA_ASAP2 CLK_OUT SE_50 SE_50
FPGA_ASAP2 DATA_INO SE_50 SE_50
FPGA_ASAP2_DATA_IN1 SE_50 SE_50
FPGA_ASAP2_DATA _IN2 SE_50 SE_50
FPGA_ASAP2 DATA_IN3 SE_50 SE_50
FPGA_ASAP2_DATA IN4 SE_50 SE_50
FPGA_ASAP2 DATA_IN5 SE_50 SE_50
FPGA_ASAP2 DATA_IN6 SE_50 SE_50
FPGA_ASAP2_DATA_IN7 SE_50 SE_50
FPGA_ASAP2_DATA_INS8 SE_50 SE_50
FPGA_ASAP2_DATA_IN9 SE_50 SE_50
Continued on Next Page...
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_ASAP2_DATA_IN10 SE_50 SE_50
FPGA_ASAP2 DATA_IN11 SE_50 SE_50
FPGA_ASAP2 DATA_IN12 SE_50 SE_50
FPGA_ASAP2 DATA_IN13 SE_50 SE_50
FPGA_ASAP2_ DATA_IN14 SE_50 SE_50
FPGA_ASAP2_DATA_IN15 SE_50 SE_50
FPGA_ASAP2_DATA_OUTO SE_50 SE_50
FPGA_ASAP2_ DATA_OUT1 SE_50 SE_50
FPGA_ASAP2_DATA_OUT2 SE_50 SE_50
FPGA_ASAP2_DATA_OUT3 SE_50 SE_50
FPGA_ASAP2 DATA_OUT4 SE_50 SE_50
FPGA_ASAP2 DATA_OUT5 SE_50 SE_50
FPGA_ASAP2 DATA_OUT6 SE_50 SE_50
FPGA_ASAP2 DATA_OUT7 SE_50 SE_50
FPGA_ASAP2 DATA_OUTS SE_50 SE_50
FPGA_ASAP2 DATA_OUT9 SE_50 SE_50
FPGA_ASAP2 DATA_OUT10 SE_50 SE_50
FPGA_ASAP2_DATA_OUT11 SE_50 SE_50
FPGA_ASAP2_.DATA_OUT12 SE_50 SE_50
FPGA_ASAP2_.DATA_OUT13 SE_50 SE_50
FPGA_ASAP2 DATA_OUT14 SE_50 SE_50
FPGA_ASAP2 DATA_OUT15 SE_50 SE_50
FPGA_ASAP2_MISO SE_50 SE_50
FPGA_ASAP2_MOSI SE_50 SE_50
FPGA_ASAP2 REQ_IN SE_50 SE_50
FPGA_ASAP2_ REQ_-OUT SE_50 SE_50
FPGA_ASAP2_RESET_COLD SE_50 SE_50
FPGA_ASAP2_ RST_CNTCLK SE_50 SE_50
FPGA_ASAP2_SPI.CLK SE_50 SE_50
FPGA_ASAP2 SPI CSN SE_50 SE_50
FPGA_ASAP2 SPI LOAD SE_50 SE_50
FPGA_ASAP2 VLD_IN SE_50 SE_50
FPGA_ASAP2 VLD OUT SE_50 SE_50
FPGA_ASAP _CLKIN_N DIFF_100 DIFF_100
FPGA_ASAP _CLKIN_P DIFF_100 DIFF_100
FPGA_ASAP _CLK.N DIFF_100 DIFF_100
FPGA_ASAP_CLK_P DIFF_100 DIFF_100
FPGA_AUX_IN_N DIFF_100 DIFF_100
FPGA_AUX_IN_P DIFF_100 DIFF_100
FPGA_BANK3_VRN POWER_15MIL POWER_15MIL
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Net Name

Net Type (Inner)

Net Type (Outer)

FPGA_BANK3_VRP

POWER_15MIL

POWER_15MIL

FPGA_BANK11_VRN

POWER_15MIL

POWER_15MIL

FPGA_BANKI11_VRP

POWER_15MIL

POWER_15MIL

FPGA_BANKI12_.VRN

POWER_15MIL

POWER_15MIL

FPGA_BANKI12_VRP

POWER_15MIL

POWER_15MIL

FPGA_BANKI15_-VRN

POWER_15MIL

POWER_15MIL

FPGA_BANKI15_-VRP

POWER_15MIL

POWER_15MIL

FPGA_BANKI19_-VRN

POWER_15MIL

POWER_15MIL

FPGA_BANKI19_VRP

POWER_15MIL

POWER_15MIL

FPGA_BANK20_-VRN

POWER_15MIL

POWER_15MIL

FPGA_BANK20_VRP

POWER_15MIL

POWER_15MIL

FPGA_BANK21 VRN

POWER_15MIL

POWER_15MIL

FPGA_BANK21 _VRP

POWER_15MIL

POWER_15MIL

FPGA_BOARD_RSTN SE_FPGA SE_FPGA
FPGA_CCLK SE_50 SE_50

FPGA_CLK10MHZ_REF_CTRLO SE_FPGA SE_FPGA
FPGA_CLK10MHZ_REF_CTRIL1 SE_FPGA SE_FPGA
FPGA_CLK10MHZ_REF_CTRL2 SE_FPGA SE_FPGA
FPGA_CLK10MHZ_REF_CTRL3 SE_FPGA SE_FPGA
FPGA_CLK100MHZ_N DIFF_100 DIFF_100
FPGA_CLK100MHZ_P DIFF_100 DIFF_100
FPGA_CONFIG_DONE SE_FPGA SE_FPGA
FPGA_CS_B SE_FPGA SE_FPGA
FPGA_DAC5682_RSTB SE_FPGA SE_FPGA
FPGA_DAC5682_SCLK SE_FPGA SE_FPGA
FPGA_DAC5682_SDENB SE_FPGA SE_FPGA
FPGA_DAC5682_SDIO SE_FPGA SE_FPGA
FPGA_DAC5682_SDO SE_FPGA SE_FPGA
FPGA_DAC_CLK-N DIFF_100 DIFF_100
FPGA_DAC_CLK_P DIFF_100 DIFF_100
FPGA_DAC_DATA_NO DIFF_100 DIFF_100
FPGA_DAC_DATA N1 DIFF_100 DIFF_100
FPGA_DAC_DATA N2 DIFF_100 DIFF_100
FPGA_DAC_DATA N3 DIFF_100 DIFF_100
FPGA_DAC_DATA N4 DIFF_100 DIFF_100
FPGA_DAC_DATA N5 DIFF_100 DIFF_100
FPGA_DAC_DATA _N6 DIFF_100 DIFF_100
FPGA_DAC_DATA N7 DIFF_100 DIFF_100
FPGA_DAC_DATA _N8 DIFF_100 DIFF_100
FPGA_DAC_DATA_N9 DIFF_100 DIFF_100

Continued on Next Page...

261



APPENDIX G. PRINTED CIRCUIT BOARD NET TYPE ASSIGNMENTS 262

Net Name Net Type (Inner) | Net Type (Outer)
FPGA_DAC_DATA _N10 DIFF_100 DIFF_100
FPGA_DAC_DATA _N11 DIFF_100 DIFF_100
FPGA_DAC_DATA_N12 DIFF_100 DIFF_100
FPGA_DAC_DATA_N13 DIFF_100 DIFF_100
FPGA_DAC_DATA_N14 DIFF_100 DIFF_100
FPGA_DAC_DATA_N15 DIFF_100 DIFF_100
FPGA_DAC_DATA_PO DIFF_100 DIFF_100
FPGA_DAC_DATA_P1 DIFF_100 DIFF_100
FPGA_DAC_DATA_P2 DIFF_100 DIFF_100
FPGA_DAC_DATA_P3 DIFF_100 DIFF_100
FPGA_DAC_DATA P4 DIFF_100 DIFF_100
FPGA_DAC_DATA P5 DIFF_100 DIFF_100
FPGA_DAC_DATA _P6 DIFF_100 DIFF_100
FPGA_DAC_DATA P7 DIFF_100 DIFF_100
FPGA_DAC_DATA P8 DIFF_100 DIFF_100
FPGA_DAC_DATA P9 DIFF_100 DIFF_100
FPGA_DAC_DATA P10 DIFF_100 DIFF_100
FPGA_DAC_DATA P11 DIFF_100 DIFF_100
FPGA_DAC_DATA P12 DIFF_100 DIFF_100
FPGA_DAC_DATA P13 DIFF_100 DIFF_100
FPGA_DAC_DATA P14 DIFF_100 DIFF_100
FPGA_DAC_DATA_P15 DIFF_100 DIFF_100
FPGA_DAC_SYNC_N DIFF_100 DIFF_100
FPGA_DAC_SYNC_P DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_A0Q SE_50 SE_50
FPGA_DDR2_SDRAM_A1l SE_50 SE_50
FPGA_DDR2_SDRAM_A2 SE_50 SE_50
FPGA_DDR2_SDRAM_A3 SE_50 SE_50
FPGA_DDR2_SDRAM_A4 SE_50 SE_50
FPGA_DDR2 SDRAM_A5 SE_50 SE_50
FPGA_DDR2 SDRAM_A6 SE_50 SE_50
FPGA_DDR2 SDRAM_A7 SE_50 SE_50
FPGA_DDR2_ SDRAM_AS SE_50 SE_50
FPGA_DDR2_SDRAM_A9 SE_50 SE_50
FPGA_DDR2_SDRAM_A10 SE_50 SE_50
FPGA_DDR2 SDRAM_A11l SE_50 SE_50
FPGA_DDR2_SDRAM_A12 SE_50 SE_50
FPGA_DDR2_SDRAM_A13 SE_50 SE_50
FPGA_DDR2_.SDRAM_A14 SE_50 SE_50
FPGA_DDR2_SDRAM_A15 SE_50 SE_50
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_DDR2_SDRAM_BAO SE_50 SE_50
FPGA_DDR2_.SDRAM_BA1 SE_50 SE_50
FPGA_DDR2_SDRAM_BA2 SE_50 SE_50
FPGA_DDR2_SDRAM_CASN SE_50 SE_50
FPGA_DDR2_SDRAM_CKEOQ SE_50 SE_50
FPGA_DDR2_SDRAM_CKE1 SE_50 SE_50
FPGA_DDR2_SDRAM_CK_NO DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_CK_N1 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_CK_P0 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_CK_P1 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DMO SE_50 SE_50
FPGA_DDR2_SDRAM_DM1 SE_50 SE_50
FPGA_DDR2_SDRAM_DM2 SE_50 SE_50
FPGA_DDR2_SDRAM_DM3 SE_50 SE_50
FPGA_DDR2_SDRAM_DM4 SE_50 SE_50
FPGA_DDR2_SDRAM_DM5 SE_50 SE_50
FPGA_DDR2_SDRAM_DM6 SE_50 SE_50
FPGA_DDR2_SDRAM_DM7 SE_50 SE_50
FPGA_DDR2_SDRAM_DQO SE_50 SE_50
FPGA_DDR2_SDRAM_DQ1 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ2 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ3 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ4 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ5 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ6 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ7 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ8 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ9 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ10 SE_50 SE_50
FPGA_DDR2 SDRAM DQ11 SE_50 SE_50
FPGA_DDR2_ SDRAM _DQ12 SE_50 SE_50
FPGA_DDR2_SDRAM _DQ13 SE_50 SE_50
FPGA_DDR2_ SDRAM _DQ14 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ15 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ16 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ17 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ18 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ19 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ20 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ21 SE_50 SE_50
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_DDR2_SDRAM_DQ22 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ23 SE_50 SE_50
FPGA_DDR2_SDRAM_D@Q24 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ25 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ26 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ27 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ28 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ29 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ30 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ31 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ32 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ33 SE_50 SE_50
FPGA_DDR2_ SDRAM_DQ34 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ35 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ36 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ37 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ38 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ39 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ40 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ41 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ42 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ43 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ44 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ45 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ46 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ47 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ48 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ49 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ50 SE_50 SE_50
FPGA_DDR2 SDRAM _DQ51 SE_50 SE_50
FPGA_DDR2_ SDRAM_DQ52 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ53 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ54 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ55 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ56 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ57 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ58 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ59 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ60 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ61 SE_50 SE_50
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FPGA_DDR2_SDRAM_DQ62 SE_50 SE_50
FPGA_DDR2_SDRAM_DQ63 SE_50 SE_50
FPGA_DDR2_SDRAM_DQSO0 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS1 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS2 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS3 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS4 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS5 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS6 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQS7 DIFF_100 DIFF_100
FPGA_DDR2_ SDRAM_DQSN_NCO0 DIFF_100 DIFF_100
FPGA_DDR2_ SDRAM _DQSN_NC1 DIFF_100 DIFF_100
FPGA_DDR2_ SDRAM_DQSN_NC2 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQSN_NC3 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQSN_NC4 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQSN_NC5 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQSN_NC6 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_DQSN_NC7 DIFF_100 DIFF_100
FPGA_DDR2_SDRAM_ODT0 SE_50 SE_50
FPGA_DDR2_SDRAM_ODT1 SE_50 SE_50
FPGA_DDR2_.SDRAM_RASN SE_50 SE_50
FPGA_DDR2_SDRAM_SCL SE_50 SE_50
FPGA_DDR2_SDRAM_SDA SE_50 SE_50
FPGA_DDR2_SDRAM_SNO SE_50 SE_50
FPGA_DDR2_SDRAM_SN1 SE_50 SE_50
FPGA_DDR2_SDRAM_WEN SE_50 SE_50
FPGA_DDR_SDRAM_ADDRO SE_50 SE_50
FPGA_DDR_SDRAM_ADDRI1 SE_50 SE_50
FPGA_DDR_SDRAM_ADDR2 SE_50 SE_50
FPGA_DDR_SDRAM_ADDRS3 SE_50 SE_50
FPGA_DDR_SDRAM_ADDRA4 SE_50 SE_50
FPGA_DDR_SDRAM_ADDR5 SE_50 SE_50
FPGA_DDR_SDRAM_ADDRG6 SE_50 SE_50
FPGA_DDR_SDRAM_ADDR7 SE_50 SE_50
FPGA_DDR_SDRAM_ADDRS SE_50 SE_50
FPGA_DDR_SDRAM_ADDRY SE_50 SE_50
FPGA_DDR_SDRAM_ADDRI10 SE_50 SE_50
FPGA_DDR_SDRAM_ADDRI11 SE_50 SE_50
FPGA_DDR_.SDRAM_ADDRI12 SE_50 SE_50
FPGA_DDR_SDRAM_BAO SE_50 SE_50
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FPGA_DDR_SDRAM_BA1 SE_50 SE_50
FPGA_DDR_SDRAM_CASN SE_50 SE_50
FPGA_DDR_SDRAM_CKE SE_50 SE_50
FPGA_DDR_SDRAM_CLKFB SE_50 SE_50
FPGA_DDR_SDRAM_CLK_N DIFF_100 DIFF_100
FPGA_DDR_SDRAM_CLK_P DIFF_100 DIFF_100
FPGA_DDR_SDRAM_CSN SE_50 SE_50
FPGA_DDR_SDRAM_DATA0 SE_50 SE_50
FPGA_DDR_SDRAM_DATA1 SE_50 SE_50
FPGA_DDR_SDRAM_DATA2 SE_50 SE_50
FPGA_DDR_SDRAM _DATA3 SE_50 SE_50
FPGA_DDR_SDRAM _DATA4 SE_50 SE_50
FPGA_DDR_SDRAM_DATAS5 SE_50 SE_50
FPGA_DDR_SDRAM_DATAG6 SE_50 SE_50
FPGA_DDR_SDRAM _DATA7 SE_50 SE_50
FPGA_DDR_SDRAM_DATAS SE_50 SE_50
FPGA_DDR_SDRAM_DATA9 SE_50 SE_50
FPGA_DDR_SDRAM_DATA10 SE_50 SE_50
FPGA_DDR_SDRAM_DATA11 SE_50 SE_50
FPGA_DDR_SDRAM_DATA12 SE_50 SE_50
FPGA_DDR_SDRAM_DATA13 SE_50 SE_50
FPGA_DDR_SDRAM_DATA14 SE_50 SE_50
FPGA_DDR_SDRAM_DATA15 SE_50 SE_50
FPGA_DDR_SDRAM_LDM SE_50 SE_50
FPGA_DDR_SDRAM_LDQS SE_50 SE_50
FPGA_DDR_SDRAM_RASN SE_50 SE_50
FPGA_DDR_SDRAM_UDM SE_50 SE_50
FPGA_DDR_SDRAM_UDQS SE_50 SE_50
FPGA_DDR_SDRAM_WEN SE_50 SE_50
FPGA_DP_CTRL_CSN SE_FPGA SE_FPGA
FPGA_DP_CTRL_GPIOO0 SE_FPGA SE_FPGA
FPGA_DP_CTRL_GPIO1 SE_FPGA SE_FPGA
FPGA_DP_CTRL_GPIO2 SE_FPGA SE_FPGA
FPGA_DP_CTRL_GPIO3 SE_FPGA SE_FPGA
FPGA_DP_CTRL_GPIO4 SE_FPGA SE_FPGA
FPGA_DP_CTRL_INTN SE_FPGA SE_FPGA
FPGA_DP_CTRL_MISO SE_FPGA SE_FPGA
FPGA_DP_CTRL_MOSI SE_FPGA SE_FPGA
FPGA_DP_CTRL_RSTN SE_FPGA SE_FPGA
FPGA_DP_CTRL_SCK SE_FPGA SE_FPGA
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FPGA_DSP_CLKIN_N DIFF_100 DIFF_100
FPGA_DSP_CLKIN_P DIFF_100 DIFF_100
FPGA_DSP_CLK_N DIFF_100 DIFF_100
FPGA_DSP_CLK_P DIFF_100 DIFF_100
FPGA_EXT_CLK10MHZ_LOS SE_FPGA SE_FPGA
FPGA_EXT_CLK10MHZ_REF_N DIFF_100 DIFF_100
FPGA_EXT_CLK10MHZ_REF_P DIFF_100 DIFF_100
FPGA_FTDI_DATAO SE_FPGA SE_FPGA
FPGA_FTDI_DATA1 SE_FPGA SE_FPGA
FPGA_FTDI_DATA2 SE_FPGA SE_FPGA
FPGA_FTDI_DATAS3 SE_FPGA SE_FPGA
FPGA_FTDI_.DATA4 SE_FPGA SE_FPGA
FPGA_FTDI_.DATA5 SE_FPGA SE_FPGA
FPGA_FTDI_DATAG6 SE_FPGA SE_FPGA
FPGA_FTDI_DATA7 SE_FPGA SE_FPGA
FPGA_FTDI_PWRENN SE_FPGA SE_FPGA
FPGA_FTDI_RDN SE_FPGA SE_FPGA
FPGA_FTDI_LRSTOUTN SE_FPGA SE_FPGA
FPGA_FTDI_RXFN SE_FPGA SE_FPGA
FPGA_FTDI_SI. WU SE_FPGA SE_FPGA
FPGA_FTDI. TXEN SE_FPGA SE_FPGA
FPGA_FTDI_-WRN SE_FPGA SE_FPGA
FPGA_HWIDO SE_FPGA SE_FPGA
FPGA_HWID1 SE_FPGA SE_FPGA
FPGA_INIT B SE_FPGA SE_FPGA
FPGA_INT_CLK10MHZ_REF_N DIFF_100 DIFF_100
FPGA_INT_CLK10MHZ_REF_P DIFF_100 DIFF_100
FPGA_IODELAY_CLK_N DIFF_100 DIFF_100
FPGA_IODELAY_CLK_P DIFF_100 DIFF_100
FPGA_LA _CLK SE_FPGA SE_FPGA
FPGA_LA _DATAQ SE_FPGA SE_FPGA
FPGA_LA _DATA1 SE_FPGA SE_FPGA
FPGA_LA _DATA2 SE_FPGA SE_FPGA
FPGA_LA _DATA3 SE_FPGA SE_FPGA
FPGA_LA _DATA4 SE_FPGA SE_FPGA
FPGA_LA _DATA5S SE_FPGA SE_FPGA
FPGA_LA _DATAG6 SE_FPGA SE_FPGA
FPGA_LA _DATAT7Y SE_FPGA SE_FPGA
FPGA_LEDSO SE_FPGA SE_FPGA
FPGA_LEDS1 SE_FPGA SE_FPGA
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FPGA_LEDS2 SE_FPGA SE_FPGA
FPGA_LEDS3 SE_FPGA SE_FPGA
FPGA_LOCAL_RSTN SE_FPGA SE_FPGA
FPGA_PROG.B SE_FPGA SE_FPGA
FPGA_PUSHBUTTONO SE_FPGA SE_FPGA
FPGA_PUSHBUTTONI1 SE_FPGA SE_FPGA
FPGA_PUSHBUTTON2 SE_FPGA SE_FPGA
FPGA_RDWR_B SE_FPGA SE_FPGA
FPGA_REACH_RX SE_FPGA SE_FPGA
FPGA_REACH_TX SE_FPGA SE_FPGA
FPGA_RS232_CTS SE_FPGA SE_FPGA
FPGA_RS232_RTS SE_FPGA SE_FPGA
FPGA_RS232_RX SE_FPGA SE_FPGA
FPGA_RS232_.TX SE_FPGA SE_FPGA
FPGA_S3A_BOARD_RSTN SE_FPGA SE_FPGA
FPGA_SDRAM_CLK_N DIFF_100 DIFF_100
FPGA_SDRAM_CLK_P DIFF_100 DIFF_100
FPGA_SD_BUSY_LED SE_FPGA SE_FPGA
FPGA_SD_CARD_DETECT SE_FPGA SE_FPGA
FPGA_SD_CLK SE_FPGA SE_FPGA
FPGA_SD_RXD SE_FPGA SE_FPGA
FPGA_SD_TXD SE_FPGA SE_FPGA
FPGA_SLOTIDO SE_FPGA SE_FPGA
FPGA_SLOTID1 SE_FPGA SE_FPGA
FPGA_SLOTID2 SE_FPGA SE_FPGA
FPGA_SRAM_ADDRO SE_50 SE_50
FPGA_SRAM_ADDRI1 SE_50 SE_50
FPGA_SRAM_ADDR2 SE_50 SE_50
FPGA_SRAM_ADDRS3 SE_50 SE_50
FPGA_SRAM_ADDRA4 SE_50 SE_50
FPGA_SRAM_ADDR5 SE_50 SE_50
FPGA_SRAM_ADDRG6 SE_50 SE_50
FPGA_SRAM_ADDRY SE_50 SE_50
FPGA_SRAM_ADDRS SE_50 SE_50
FPGA_SRAM_ADDRY SE_50 SE_50
FPGA_SRAM_ADDRI10 SE_50 SE_50
FPGA_SRAM_ADDRI1 SE_50 SE_50
FPGA_SRAM_ADDRI12 SE_50 SE_50
FPGA_SRAM_ADDRI13 SE_50 SE_50
FPGA_SRAM_ADDRI14 SE_50 SE_50
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FPGA_SRAM_ADDRI15 SE_50 SE_50
FPGA_SRAM_ADDRI16 SE_50 SE_50
FPGA_SRAM_ADDRI17 SE_50 SE_50
FPGA_SRAM_BWNO SE_50 SE_50
FPGA_SRAM_BWNI1 SE_50 SE_50
FPGA_SRAM_BWN2 SE_50 SE_50
FPGA_SRAM_BWN3 SE_50 SE_50
FPGA_SRAM_CLK_N DIFF_100 DIFF_100
FPGA_SRAM_CLK_P DIFF_100 DIFF_100
FPGA_SRAM_CQ_CLK_N DIFF_100 DIFF_100
FPGA_SRAM_CQ_CLK_P DIFF_100 DIFF_100
FPGA_SRAM_C_CLK_N DIFF_100 DIFF_100
FPGA_SRAM_C_CLK_P DIFF_100 DIFF_100
FPGA_SRAM_K_CLK_N DIFF_100 DIFF_100
FPGA_SRAM_K_CLK_P DIFF_100 DIFF_100
FPGA_SRAM_RDATAO SE_50 SE_50
FPGA_SRAM_RDATA1 SE_50 SE_50
FPGA_SRAM_RDATA2 SE_50 SE_50
FPGA_SRAM_RDATA3 SE_50 SE_50
FPGA_SRAM_RDATA4 SE_50 SE_50
FPGA_SRAM_RDATA5 SE_50 SE_50
FPGA_SRAM_RDATAG6 SE_50 SE_50
FPGA_SRAM_RDATAT7 SE_50 SE_50
FPGA_SRAM_RDATAS SE_50 SE_50
FPGA_SRAM_RDATA9 SE_50 SE_50
FPGA_SRAM_RDATA10 SE_50 SE_50
FPGA_SRAM_RDATA11 SE_50 SE_50
FPGA_SRAM_RDATA12 SE_50 SE_50
FPGA_SRAM_RDATA13 SE_50 SE_50
FPGA_SRAM _RDATA14 SE_50 SE_50
FPGA_SRAM_RDATA15 SE_50 SE_50
FPGA_SRAM_RDATA16 SE_50 SE_50
FPGA_SRAM _RDATA17 SE_50 SE_50
FPGA_SRAM_RDATA18 SE_50 SE_50
FPGA_SRAM_RDATA19 SE_50 SE_50
FPGA_SRAM_RDATA20 SE_50 SE_50
FPGA_SRAM_RDATA21 SE_50 SE_50
FPGA_SRAM_RDATA22 SE_50 SE_50
FPGA_SRAM_RDATA23 SE_50 SE_50
FPGA_SRAM_RDATA24 SE_50 SE_50
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FPGA_SRAM_RDATA25 SE_50 SE_50
FPGA_SRAM_RDATA26 SE_50 SE_50
FPGA_SRAM_RDATA27 SE_50 SE_50
FPGA_SRAM_RDATA28 SE_50 SE_50
FPGA_SRAM_RDATA29 SE_50 SE_50
FPGA_SRAM_RDATA30 SE_50 SE_50
FPGA_SRAM_RDATA31 SE_50 SE_50
FPGA_SRAM_RDATA32 SE_50 SE_50
FPGA_SRAM_RDATA33 SE_50 SE_50
FPGA_SRAM_RDATA34 SE_50 SE_50
FPGA_SRAM_RDATA35 SE_50 SE_50
FPGA_SRAM_RDN SE_50 SE_50
FPGA_SRAM_WDATAO SE_50 SE_50
FPGA_SRAM_WDATA1 SE_50 SE_50
FPGA_SRAM_WDATA2 SE_50 SE_50
FPGA_SRAM_WDATA3 SE_50 SE_50
FPGA_SRAM_WDATA4 SE_50 SE_50
FPGA_SRAM_WDATA5 SE_50 SE_50
FPGA_SRAM_WDATAG6 SE_50 SE_50
FPGA_SRAM_WDATA7Y SE_50 SE_50
FPGA_SRAM_WDATAS SE_50 SE_50
FPGA_SRAM_WDATA9 SE_50 SE_50
FPGA_SRAM_WDATA10 SE_50 SE_50
FPGA_SRAM_WDATA11 SE_50 SE_50
FPGA_SRAM_WDATA12 SE_50 SE_50
FPGA_SRAM_WDATA13 SE_50 SE_50
FPGA_SRAM_WDATA14 SE_50 SE_50
FPGA_SRAM_WDATA15 SE_50 SE_50
FPGA_SRAM_WDATA16 SE_50 SE_50
FPGA_SRAM _WDATA17 SE_50 SE_50
FPGA_SRAM_WDATA18 SE_50 SE_50
FPGA_SRAM_WDATA19 SE_50 SE_50
FPGA_SRAM_WDATA20 SE_50 SE_50
FPGA_SRAM_WDATA21 SE_50 SE_50
FPGA_SRAM_WDATA22 SE_50 SE_50
FPGA_SRAM_WDATA23 SE_50 SE_50
FPGA_SRAM _WDATA24 SE_50 SE_50
FPGA_SRAM_WDATAZ25 SE_50 SE_50
FPGA_SRAM_WDATA26 SE_50 SE_50
FPGA_SRAM_WDATA27 SE_50 SE_50
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FPGA_SRAM_WDATAZ28 SE_50 SE_50
FPGA_SRAM_WDATA?29 SE_50 SE_50
FPGA_SRAM_WDATA30 SE_50 SE_50
FPGA_SRAM_WDATA31 SE_50 SE_50
FPGA_SRAM_WDATA32 SE_50 SE_50
FPGA_SRAM_WDATA33 SE_50 SE_50
FPGA_SRAM_WDATA34 SE_50 SE_50
FPGA_SRAM_WDATA35 SE_50 SE_50
FPGA_SRAM_WRN SE_50 SE_50
FPGA_TMPSENS_1A_CSN SE_FPGA SE_FPGA
FPGA_TMPSENS_1A_MISO SE_FPGA SE_FPGA
FPGA_TMPSENS_1A_MOSI SE_FPGA SE_FPGA
FPGA_TMPSENS_1A_SCK SE_FPGA SE_FPGA
FPGA_TMPSENS_1B_CSN SE_FPGA SE_FPGA
FPGA_TMPSENS_1B_MISO SE_FPGA SE_FPGA
FPGA_TMPSENS_1B_MOSI SE_FPGA SE_FPGA
FPGA_TMPSENS_1B_SCK SE_FPGA SE_FPGA
FPGA_TMPSENS_1C_CSN SE_FPGA SE_FPGA
FPGA_TMPSENS_1C_MISO SE_FPGA SE_FPGA
FPGA_TMPSENS_1C_MOSI SE_FPGA SE_FPGA
FPGA_TMPSENS_1C_SCK SE_FPGA SE_FPGA
FPGA_TMPSENS_2A_CSN SE_FPGA SE_FPGA
FPGA_TMPSENS_2A_MISO SE_FPGA SE_FPGA
FPGA_TMPSENS_2A_MOSI SE_FPGA SE_FPGA
FPGA_TMPSENS_2A_SCK SE_FPGA SE_FPGA
FPGA_TMPSENS_2B_CSN SE_FPGA SE_FPGA
FPGA_TMPSENS_2B_MISO SE_FPGA SE_FPGA
FPGA_TMPSENS_2B_MOSI SE_FPGA SE_FPGA
FPGA_TMPSENS_2B_SCK SE_FPGA SE_FPGA
FPGA_TMPSENS 2C_CSN SE_FPGA SE_FPGA
FPGA_TMPSENS_2C_MISO SE_FPGA SE_FPGA
FPGA_TMPSENS_2C_MOSI SE_FPGA SE_FPGA
FPGA_TMPSENS 2C_SCK SE_FPGA SE_FPGA
FPGA_TRIG_IN_N DIFF_100 DIFF_100
FPGA_TRIG_IN_P DIFF_100 DIFF_100
FPGA_TRIG.OUT.N DIFF_100 DIFF_100
FPGA_TRIG_.OUT_P DIFF_100 DIFF_100
FPGA_UI_CSN SE_FPGA SE_FPGA
FPGA_ULINTN SE_FPGA SE_FPGA
FPGA_UI_MISO SE_FPGA SE_FPGA
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_UI_MOSI SE_FPGA SE_FPGA
FPGA_UI_.PROGO SE_FPGA SE_FPGA
FPGA_UI_.PROG1 SE_FPGA SE_FPGA
FPGA_UI_.PROG2 SE_FPGA SE_FPGA
FPGA_UI.LRDY SE_FPGA SE_FPGA
FPGA_UI_LRSTN SE_FPGA SE_FPGA
FPGA_UISCK SE_FPGA SE_FPGA
FPGA_V5_BOARD_RSTN SE_FPGA SE_FPGA
FPGA_V5_.CLK100MHZ_N DIFF_100 DIFF_100
FPGA_V5_CLK100MHZ_P DIFF_100 DIFF_100
FPGA_V5_FTDI_DATAOQ SE_FPGA SE_FPGA
FPGA_V5_FTDI_DATA1 SE_FPGA SE_FPGA
FPGA_V5_FTDI_DATA2 SE_FPGA SE_FPGA
FPGA_V5_ FTDI_DATA3 SE_FPGA SE_FPGA
FPGA_V5_ FTDI_DATA4 SE_FPGA SE_FPGA
FPGA_V5_FTDI_DATA5 SE_FPGA SE_FPGA
FPGA_V5_FTDI_DATAG6 SE_FPGA SE_FPGA
FPGA_V5_FTDI_DATA7 SE_FPGA SE_FPGA
FPGA_V5_FTDI_ PWRENN SE_FPGA SE_FPGA
FPGA_V5_FTDI_RDN SE_FPGA SE_FPGA
FPGA_V5_FTDI.RSTOUTN SE_FPGA SE_FPGA
FPGA_V5_FTDI.RXFN SE_FPGA SE_FPGA
FPGA_V5_FTDI_SI. WU SE_FPGA SE_FPGA
FPGA_V5_FTDI.TXEN SE_FPGA SE_FPGA
FPGA_V5_FTDI_.WRN SE_FPGA SE_FPGA
FPGA_V5_LA_CLK SE_FPGA SE_FPGA
FPGA_V5_LA_DATAOQ SE_FPGA SE_FPGA
FPGA_V5_LA_DATA1 SE_FPGA SE_FPGA
FPGA_V5_LA_DATA2 SE_FPGA SE_FPGA
FPGA_V5_LA _DATA3 SE_FPGA SE_FPGA
FPGA_V5_LA _DATA4 SE_FPGA SE_FPGA
FPGA_V5_LA _DATA5S SE_FPGA SE_FPGA
FPGA_V5_LA_DATAG6 SE_FPGA SE_FPGA
FPGA_V5_LA _DATA7 SE_FPGA SE_FPGA
FPGA_V5_LEDSO SE_FPGA SE_FPGA
FPGA_V5_LEDSI1 SE_FPGA SE_FPGA
FPGA_V5_LEDS2 SE_FPGA SE_FPGA
FPGA_V5_LEDS3 SE_FPGA SE_FPGA
FPGA_V5_PUSHBUTTONO SE_FPGA SE_FPGA
FPGA_V5_PUSHBUTTONI1 SE_FPGA SE_FPGA
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Net Name Net Type (Inner) | Net Type (Outer)
FPGA_V5_RS232_CTS SE_FPGA SE_FPGA
FPGA_V5_RS232_RTS SE_FPGA SE_FPGA
FPGA_V5_RS232_RX SE_FPGA SE_FPGA
FPGA_V5_RS232_.TX SE_FPGA SE_FPGA
FPGA_V5.SD_BUSY_LED SE_FPGA SE_FPGA
FPGA_V5_.SD_CARD_DETECT SE_FPGA SE_FPGA
FPGA_V5_.SD_CLK SE_FPGA SE_FPGA
FPGA_V5.SD_RXD SE_FPGA SE_FPGA
FPGA_V5.SD_TXD SE_FPGA SE_FPGA
FP_AUX_IN SE_50 SE_50
FP_TRIG_IN SE_50 SE_50
FTDI_EECS SE_FPGA SE_FPGA
FTDI_EESCK SE_FPGA SE_FPGA
FTDI_EESDIO SE_FPGA SE_FPGA
FTDI. POWER POWER_25MIL POWER_25MIL
FTDI_RESETN SE_FPGA SE_FPGA
FTDI_.USBDM DIFF_100 DIFF_100
FTDI_USBDP DIFF_100 DIFF_100
FTDIXTAL_IN SE_50 SE_50
FTDI.XTAL.OUT SE_50 SE_50

GND POWER_25MIL POWER_25MIL
GNDA_FPGA POWER_15MIL POWER_15MIL
GND_MAIN POWER_50MIL POWER_50MIL
IF_AAF_IN SE_50_0 SE_50_-0
IF_.AAF_OUT SE_50_0 SE_50_-0
IF_IN SE_50_0 SE_50_0
IF_LNA_IN SE_50_0 SE_50_-0
IF_LNA_OUT SE_50_0 SE_50_-0
IF_.PREAMP_CM SE_50 SE_50

IF_ PREAMP_IN SE_50_0 SE_50_0

IF_ PREAMP_OUT_N DIFF_100_-O DIFF_100_-O
IF_ PREAMP_OUT_P DIFF_100_0O DIFF_100_0O
JTAG_CCN SE_FPGA SE_FPGA
N2V5A_ATF POWER_25MIL POWER_25MIL
N2V5A_TIFLNA POWER_25MIL POWER_25MIL
N5V2AF_AIF POWER_25MIL POWER_25MIL
N5V2AF_AIF_IN POWER_25MIL POWER_25MIL
N5V2A_ATF POWER_25MIL POWER_25MIL
N5V2A_SS POWER_25MIL POWER_25MIL

N5V2A_SS_AMPF

POWER_25MIL

POWER_25MIL
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Net Name Net Type (Inner) | Net Type (Outer)
N6VA POWER_25MIL POWER_25MIL
N6VAF _ATF POWER_25MIL POWER_25MIL
N6VAF_AIF_IN POWER_25MIL POWER_25MIL
N6VAF_SS POWER_25MIL POWER_25MIL
N6VAF_SS_IN POWER_25MIL POWER_25MIL
N6VA_OUT POWER_25MIL POWER_25MIL

POVOD_MEM_VREF

POWER_15MIL

POWER_15MIL

POVID_SDRAM_VREF

POWER_15MIL

POWER_15MIL

POVID_SDRAM_VTT

POWER_15MIL

POWER_15MIL

POVID_SRAM_VREF

POWER_15MIL

POWER_15MIL

POVID_SRAM_VTT

POWER_15MIL

POWER_15MIL

POVID_VREF POWER_15MIL POWER_15MIL
POVID_VTT POWER_15MIL POWER_15MIL
P1VOD POWER_25MIL POWER_25MIL
P1VOD_ASAP POWER_25MIL POWER_25MIL
P1VOD_V5 POWER_25MIL POWER_25MIL
P1V2D POWER_25MIL POWER_25MIL
P1V2D_S3A POWER_15MIL POWER_15MIL
P1V3D_ASAP POWER_25MIL POWER_25MIL
P1V8A_SS POWER_25MIL POWER_25MIL
P1V8A_SSF POWER_25MIL POWER_25MIL
P1V8D POWER_25MIL POWER_25MIL
P1V8D_SDRAM POWER_25MIL POWER_25MIL
P1V8D_SRAM POWER_25MIL POWER_25MIL
P1V8D_V5 POWER_25MIL POWER_25MIL

P1V25D_DDR_VREF

POWER_15MIL

POWER_15MIL

P1V25D_DDR_VTT

POWER_15MIL

POWER_15MIL

P2V5A POWER_25MIL POWER_25MIL
P2V5A_AIF POWER_25MIL POWER_25MIL
P2V5A_IFLNA POWER_25MIL POWER_25MIL
P2V5A_TRIG POWER_25MIL POWER_25MIL
P2V5D POWER_25MIL POWER_25MIL
P2V5D_10MHZREF POWER_25MIL POWER_25MIL
P2V5D_S3A POWER_25MIL POWER_25MIL
P2V5D_V5 POWER_25MIL POWER_25MIL
P2V5F_AUX_IN POWER_15MIL POWER_15MIL

P2V5F_TRIG_IN

POWER_15MIL

POWER_15MIL

P2V5F_TRIG_-OUT

POWER_15MIL

POWER_15MIL

P2V5REF

POWER_15MIL

POWER_15MIL

P2V5REF _FPGA

POWER_15MIL

POWER_15MIL
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Net Name Net Type (Inner) | Net Type (Outer)
P3V3A_10MHZREF POWER_25MIL POWER_25MIL
P3V3A_ADY9516 POWER_25MIL POWER_25MIL
P3V3A_ADC POWER_25MIL POWER_25MIL
P3V3A_AIF POWER_25MIL POWER_25MIL
P3V3A_CLK POWER_25MIL POWER_25MIL

P3V3A_CLKDIV

POWER_25MIL

POWER_25MIL

P3V3A_CLKDIVREF

POWER_25MIL

POWER_25MIL

P3V3A_SS POWER_25MIL POWER_25MIL
P3V3A_SSF POWER_25MIL POWER_25MIL
P3V3D POWER_25MIL POWER_25MIL
P3V3D_ADC POWER_25MIL POWER_25MIL
P3V3D_AIF POWER_25MIL POWER_25MIL
P3V3D_CP2102 POWER_25MIL POWER_25MIL
P3V3D_CPLD POWER_25MIL POWER_25MIL
P3V3D_FAN1 POWER_25MIL POWER_25MIL
P3V3D_FAN2 POWER_25MIL POWER_25MIL
P3V3D_REACH POWER_25MIL POWER_25MIL
P3V3D_RST POWER_25MIL POWER_25MIL
P3V3D_S3A POWER_25MIL POWER_25MIL
P3V3D_SD POWER_25MIL POWER_25MIL

P3V3D_SDRAM

POWER_25MIL

POWER_25MIL

P3V3D_TPS74201

POWER_25MIL

POWER_25MIL

P3V3D_TRACK_CTRL

POWER_15MIL

POWER_15MIL

P3V3D_TRACK_CTRL_.OUT

POWER_15MIL

POWER_15MIL

P3V3D_USB POWER_25MIL POWER_25MIL
P3V3D_V5 POWER_15MIL POWER_15MIL
P3V3D_V5.CP2102 POWER_15MIL POWER_15MIL
P3V3D_V5.SD POWER_25MIL POWER_25MIL
P3V3D_V5.USB POWER_25MIL POWER_25MIL
P5V2A POWER_25MIL POWER_25MIL
P5V2A_ADC POWER_25MIL POWER_25MIL

P5V2A_ PREAMP

POWER_25MIL

POWER_25MIL

P5V2A_SS_AMPF

POWER_25MIL

POWER_25MIL

P5V2A_SS_FILT

POWER_25MIL

POWER_25MIL

P5V2A_VCO POWER_25MIL POWER_25MIL
P5V5A POWER_25MIL POWER_25MIL
P5V5AF POWER_25MIL POWER_25MIL
P5VHAF_ATF POWER_25MIL POWER_25MIL
P5V5AF_CLK POWER_25MIL POWER_25MIL

P5V5AF_CLKDIV

POWER_25MIL

POWER_25MIL
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Net Name

Net Type (Inner)

Net Type (Outer)

P5V5AF_SS

POWER_25MIL

POWER_25MIL

P5V5AF_THS4302

POWER_25MIL

POWER_25MIL

P5V5AF_TRIG

POWER_25MIL

POWER_25MIL

P5V5DF_AIF POWER_25MIL POWER_25MIL
P5VA_USB POWER_25MIL POWER_25MIL
P5VA_V5_USB POWER_25MIL POWER_25MIL
P5VD POWER_25MIL POWER_25MIL
P5VD_UI POWER_25MIL POWER_25MIL
P5VD_USB POWER_25MIL POWER_25MIL
P5VD_V5_.USB POWER_25MIL POWER_25MIL
P8VAF_VCO POWER_25MIL POWER_25MIL

P8VA_CLKDIV

POWER_25MIL

POWER_25MIL

P12VA_TRACK_CTRL1

POWER_15MIL

POWER_15MIL

P12VA_TRACK_CTRL2

POWER_15MIL

POWER_15MIL

P12VD_TRACK_CTRL1

POWER_15MIL

POWER_15MIL

P12VFA POWER_25MIL POWER_25MIL
P12VFD POWER_25MIL POWER_25MIL
P12VFD_FAN POWER_25MIL POWER_25MIL
P12VFD_REACH POWER_25MIL POWER_25MIL
P12VF_FAN1 POWER_25MIL POWER_25MIL
P12VF_FAN2 POWER_25MIL POWER_25MIL
P12VF_IN POWER_50MIL POWER_50MIL
P12V_IN POWER_50MIL POWER_50MIL
P12V_MAIN POWER_50MIL POWER_50MIL
PTH08T220_-SOUT1 SE_50 SE_50
PTHO08T220_SOUT2 SE_50 SE_50
PTH08T220_-SOUT3 SE_50 SE_50
PTH08T220_-SOUT4 SE_50 SE_50
PTHO08T220_-SOUT5 SE_50 SE_50
PTHO08T220_SOUT6 SE_50 SE_50
PTHO08T220_SOUT7 SE_50 SE_50
PTHO8T220_SYNC1 SE_50 SE_50
PTHO8T220_SYNC2 SE_50 SE_50
PTHO8T220_SYNC3 SE_50 SE_50
PTHO08T220_SYNC4 SE_50 SE_50
PTHO8T220_SYNC5 SE_50 SE_50
PTHO08T220_SYNC6 SE_50 SE_50
PTHO8T220_SYNC7 SE_50 SE_50
PTHO08T260_SOUT8 SE_50 SE_50
PTHO08T260_SOUTY9 SE_50 SE_50
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Net Name Net Type (Inner) | Net Type (Outer)
PTHO8T260_SYNCS8 SE_50 SE_50
PTHO08T260_SYNC9 SE_50 SE_50
REACH_RX SE_FPGA SE_FPGA
REACH.TX SE_FPGA SE_FPGA
S3A_CCLK SE_50 SE_50
S3A_CONFIG_DONE SE_FPGA SE_FPGA
S3A_INIT_B SE_FPGA SE_FPGA
S3A_MO SE_FPGA SE_FPGA
S3A_M1 SE_FPGA SE_FPGA
S3A_M2 SE_FPGA SE_FPGA
S3A_PROG_B SE_FPGA SE_FPGA
S3A_SPI_CSO SE_FPGA SE_FPGA
S3A_SPI.DATA_TO_V5 SE_FPGA SE_FPGA
S3A_SPI_ HOLDN SE_FPGA SE_FPGA
S3A_SPI_MISO SE_FPGA SE_FPGA
S3A_SPI_MOSI SE_FPGA SE_FPGA
S3A_SPI. WPN SE_FPGA SE_FPGA
S3A_VO SE_FPGA SE_FPGA
S3A_V1 SE_FPGA SE_FPGA
S3A_V2 SE_FPGA SE_FPGA
SRAM_DLL_OFFN SE_FPGA SE_FPGA
SS_AIF_IN_N DIFF_100-O DIFF_100-O
SS_AIF_IN_P DIFF_100_O DIFF_100_O
SS_AIF_OUT_N DIFF_100_O DIFF_100_-O
SS_AIF_OUT_P DIFF_100_-O DIFF_100_-O
SS_AMP_OUT SE_50-0 SE_50_0
SS_.DAC_CLKIN_N DIFF_100 DIFF_100
SS_.DAC_CLKIN_P DIFF_100 DIFF_100
SS_.DAC_CLK_N DIFF_100 DIFF_100
SS_.DAC_CLK_P DIFF_100 DIFF_100
SS_OUT SE_50_0 SE_50_0
TCK SE_FPGA SE_FPGA
TCK_SRAM SE_FPGA SE_FPGA
TDI.SRAM SE_FPGA SE_FPGA
TDI.TO_S3A SE_FPGA SE_FPGA
TDI.TO_V5 SE_FPGA SE_FPGA
TDO_SRAM SE_FPGA SE_FPGA
TDO_TO_JTAG SE_FPGA SE_FPGA
TEST_CLK_N DIFF_100 DIFF_100
TEST_CLK_P DIFF_100 DIFF_100
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Net Name Net Type (Inner) | Net Type (Outer)
TMS SE_FPGA SE_FPGA
TMS_SRAM SE_FPGA SE_FPGA
TOUTN SE_50_0 SE_50_0
TOUTP SE_50_0 SE_50_0
TRIG_IN SE_50_0 SE_50_0
TRIG_OUT SE_50_0 SE_50_-0
UI.CSN SE_FPGA SE_FPGA
ULINTN SE_FPGA SE_FPGA
UI_MISO SE_FPGA SE_FPGA
UIMOSI SE_FPGA SE_FPGA
UI_.PROGO SE_FPGA SE_FPGA
UI_.PROG1 SE_FPGA SE_FPGA
UI_.PROG2 SE_FPGA SE_FPGA
UILRDY SE_FPGA SE_FPGA
ULRSTN SE_FPGA SE_FPGA
UL SCK SE_FPGA SE_FPGA
USB_.D_N DIFF_100 DIFF_100
USB_D_P DIFF_100 DIFF_100
USB_VBUS POWER_25MIL POWER_25MIL
V5_CCLK SE_50 SE_50
V5_CONFIG_-DONE SE_FPGA SE_FPGA
V5_FIFO_USB_N DIFF_100 DIFF_100
V5_FIFO_USB_P DIFF_100 DIFF_100
V5_FS0 SE_FPGA SE_FPGA
V5 FS1 SE_FPGA SE_FPGA
V5_FS2 SE_FPGA SE_FPGA
V5_FTDI_LEECS SE_FPGA SE_FPGA
V5_FTDI_LEESCK SE_FPGA SE_FPGA
V5_FTDI_LEESDIO SE_FPGA SE_FPGA
V5_FTDI.POWER POWER_25MIL POWER_25MIL
V5_FTDI.RESETN SE_FPGA SE_FPGA
V5_FTDI.USBDM DIFF_100 DIFF_100
V5_FTDI_.USBDP DIFF_100 DIFF_100
V5 FTDIXTAL_IN SE_50 SE_50
V5 FTDIXTAL_OUT SE_50 SE_50
V5_HSWAPEN SE_FPGA SE_FPGA
V5_INIT_B SE_FPGA SE_FPGA
V5.MO0 SE_FPGA SE_FPGA
V5_M1 SE_FPGA SE_FPGA
V5.M2 SE_FPGA SE_FPGA
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Net Name Net Type (Inner) | Net Type (Outer)
V5_PROG_B SE_FPGA SE_FPGA
V5_.USB_.D_N DIFF_100 DIFF_100
V5_USB_.D_P DIFF_100 DIFF_100
V5_USB_VBUS POWER_25MIL POWER_25MIL
VDDH_ASAP1 POWER_25MIL POWER_25MIL
VDDH_ASAP2 POWER_25MIL POWER_25MIL
VDDIO_ASAP1 POWER_25MIL POWER_25MIL
VDDIO_ASAP2 POWER_25MIL POWER_25MIL
VDDL_ASAP1 POWER_25MIL POWER_25MIL
VDDL_ASAP2 POWER_25MIL POWER_25MIL
VDDON_ASAP1 POWER_25MIL POWER_25MIL
VDDON_ASAP2 POWER_25MIL POWER_25MIL
VDDOSC_ASAP1 POWER_25MIL POWER_25MIL
VDDOSC_ASAP2 POWER_25MIL POWER_25MIL
VECTRON_10MHZ_REF SE_50_0 SE_50_0
VP_VN_SM SE_FPGA SE_FPGA
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Appendix H

Data Path FPGA IODELAY

Results

H.1 TODELAY Script for High-Speed ADC Interface

Listing H.1: IODELAY Tap Calculation Perl Script
#!/usr/bin/perl

S K ko ko kR R Kk KOk Kk R Kk K kR Kk K kR Kk KR K ok Kk ok oKk K ok Kk KR Kk K KOk Kk R KOk Kk K
#

# adc module
Z******************************************************************
#

# VCL Confidential Copyright 2010, UC Davis, ECE Department

#

#******************************************************************

#

# created on: 06/09/2009
# created by: Jwwebb

# last edit on: $DateTime: $
# last edit by: $Author: §
# revision : $Revision: §
# comments: Generated

#

#******************************************************************
# Revision List:

#
# 1.0 06/09/2009 Initial release
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#

ok sk sk ok sk sk sk ok sk ok sk sk ok sk sk kK oK sk sk sk R K sk sk sk K sk sk sk ok sk sk sk ok sk sk sk K ok sk sk sk K oK sk sk kK oK sk sk kK oK sk sk oK ok ok

Xilinx FPGA IODELAY Calculation Script

This wutility is intended to make calculating Xilinz FPGA IODELAY

tap wvalues for high—speed device interfaces.

The user will supply a comma separated wvalue file containing

the signal name, length , and matched—length group. For example,

FPGA_CLK_P,3853./1,SIG_DML2_.CON
FPGA_DATA0,2388.68 ,SIG-DML2_.CON
FPGA_DATA1,17783.26 ,SIG_-DML2.CON
FPGA_DATA2,1921.38 ,SIG_DML2_CON
FPGA_DATAS,2018.79 ,SIG_-DML2.CON
FPGA_DATA4, 1899.73,SIG_-DML2.CON

This script will calculate the number of IODELAY taps, and

provide the results in the following file:

adc_delays.csv: Comma Separated Value File for FExzcel Viewing

The script can be used by typing the following command at the

command line prompt:

[jwwebb@stormtater ~/bin/perldev/adc]
$ ./adc —f adc_lengths.txt
Delay file is ready for wuse.

R N R R T N N N S N R R N N N R TR R S N N S R S

KRR KRR KRR KRR KRR KRR R R KRR KRR R KRR R R KRR R R R KRR R R R R R R R R R R R R R K

Fk sk ok ok ok ok ok Kk K ok kK K K ok kK K oK kR K K ok ok kK ok oK ok Rk Sk ok ok K K ok ok K oK ok kK K oK ok R K K ok ok kK K K Kk K K K
# CPAN Modules

ok sk ok Kok K ok ok Kk K ok kK K ok kK K oK kR K K oK ok K ok ok ok ok ok ok ok Ok K ok ok K oK ok kK K sk ok R K K ok ok R K K oK Kk K K
use strict;

use Getopt:: Std;

use POSIX;

FH ok ok ok K ko ok kK Kk kK ok Kk ok K kK kK ok K K Kk Kk Sk ok K K Sk Sk ok oKk kK ok oKk ok K ok K K oK K KO Kk K K K
# Constants and Variables:

FH ok ok kK ko ok oK Kk Ok ok K ok ok K kK Sk ok ok ok K KOk Kk Sk oK K K Kk Sk K kK kK ok Kk kK oKk ok K K K Kk ok K K
my (%opts)=();

my ($file);

my ($csv);

my ($debug);

my (%xilinxH , $xilinx_rH);
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# Retrieve command line argument
FH ok ok ok K ko ok ok K kK ok ok ok oK K kK kK ok K K KOk Sk ok Sk K K K Sk Sk ok R Kk kK ok ok ok K ok K K K R KO Kk R K K

getopts ( hvf:c’ ,\%opts);

#check for walid combination command—line arguments
if (Sopts{h} || !S$opts{f} || (Sopts{f} && !$opts{c})) ) {
print_usage () ;

exit ;

# parse command—line arguments
$file = Sopts{f};

$csv = Sopts{c};

$debug = $opts{v};

#******************************************************************
# Initialize Xilinx Hash:
#******************************************************************
$xilinxH{ ’file’ } = $file;

$xilinxH{ ’debug’ } = $debug;

#******************************************************************
# Print Module Declaration :

ok sk sk ok ok sk sk ok sk ok kK ok sk sk kK K sk sk kR oK sk sk kK K ok sk sk ok sk ok sk K ok sk sk sk K K sk sk kK oK sk ok kK K sk sk K K oK sk K K oK ok K
$xilinx_rH = getFile(\%xilinxH);

$xilinx_rH = calcDelay ($xilinx_rH);

if (8csv) {$xilinx_-rH = writeDelayCSV ($xilinx_rH);}

exit ;

# Generic Error and Exzit routine

sub dienice {
my($errmsg) = Q_;
print” $errmsg\n” ;

exit ;

sub print_usage {

my ($usage); $usage = "\nUsage: _$0_[—h]_[—v]_[—f_<FILE>]|_[—c]\n";
$usage .= ”\n”;

$usage .= 7\t—h\t\tPrint_Help.\n”;

$usage .= "\t—v\t\tVerbose:_.Print._Debug.Information.\n”;

$usage .= "\t—f_<FILE>\tInput.CSV.Signal_File.\n”;

$usage .= 7"\t—c\t\tCSV:_Generate_ .CSV_File_with_Estimated .-IODELAY_Taps.\n”;
$usage .= 7\n”;

$usage .= "\tExample:\n";
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$usage .= 7"\t\t30_—v_.—f_sample.txt_.\n";
$usage .= "\t\t$30_—v_—f_sample.csv._\n";
$usage .= 7\n”;

print ($usage); return;

sub getFile {

# Get Input File:

#

# The sub—routine getFile () will open the input file , which is either a
# binary or text file and read its contents into an array. It will also
# determine the file length. The following parameters are created

#

# * filedata : @udataA

# * fileLen : scalar (@QudataA)

#

# Usage: Szilinz_rH = getFile(\%uzilinzH);

#

77

my (3$xilinx_rH) = shift; # Read in wuser’s wvariable.

my (%xilinxH) = %{ $xilinx_rH }; # De—reference Xilinxz hash.

my ($file) = $xilinxH{’ file’}; # File Name
my ($debug) = $xilinxH{ debug’}; # Print out Debug Info.

# Open the text file, and read the results into an array of hashes for

# manipulating the data array. Close file when done.

#

# The Hash elements are:

#

# adc_sigs_AoH

# {Signal = 7"z7,

# LenMils => "z”,

# MLGroup => "xz”,

# IsRef => "z”,

# AvgLenMils => 7z7”,
# LenPS => "z7,

# AddedDelay => "z,
# NumTaps => "z7”,

# ¥

#

my (@tmp) ;

my (@adc_sigs_AoH);

open(inF, 7”<”, $file) or dienice (” $file_open_failed”);
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while (<inF>) {

chomp;

Qtmp = split(/,/, 8-);

Stmp[2] = s/[\r[\n]//;

push(@adc_sigs_AoH , {Signal => $tmp[0],
LenMils => $tmp([1],
MLGroup => $tmp[2],

IsRef => 707,

AvgLenMils => "x”

LenPS => 7x”
AddedDelay => 7x”

NumTaps => ”"x”

}

)3
}
close (inF);
#
# Push signals into Hash.
#
push (@{ $xilinxH{ ’adc.sigs-AoH’ } }, @adc_sigs-AoH);
# Determine number of lines, and set beginning for loop index.

$xilinxH{ ’adc_sigs_Num’ } = scalar (@Q{ $xilinxH{ ’adc_sigs_AoH’ } });
# Create an Array with members only from SIG.DMLI1_CON.

print (?\n\n”) if $debug;

print (” Total_number_of_lines:.$xilinxH{_ adc_sigs_-Num’_}\n”) if $debug;

print (?\n\n”) if $debug;

# Return data to wuser

return \%xilinxH ;

calcDelay {

#
# Calculat Delays For Device
#

The sub—routine calcDelay () will

$zilinz_rH =

#
#
# Usage:
#

Signals :

calculated necessary

calcDelay(\%xzilinzH ) ;

delays for each

stgnal.

284
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my ($xilinx_rH) = shift; # Read in wuser’s wvariable.

my (%xilinxH) = %{ $xilinx_rH }; # De—reference Xilinz hash.

my ($file) = $xilinxH{ file }; # File Name

my (@adc_sigs_AoH);

push (@adc_sigs_AoH , @{ $xilinxH{ ’adc_sigs_AoH’ } });

my ($adc_sigs_-Num) = $xilinxH{ ’adc_sigs_-Num’ };

my ($debug) = $xilinxH{ debug’}; # Print out Debug Info.

# Prepare important variables.

my ($ML1_name) = "ADC_DIFF” ;
$xilinxH{ 'MLl_name’ } = $MLIl_name;

my ($Refoname) = ”"FPGA_ADC_DATA_RDY.P” ;
$xilinxH{ ’Ref-name’ } = $Ref_name;

my ($Ref_len) = 0;

# [(167 ps)/(1 inch)] = [(1 inch)/(1000 mils)];
my ($ps_per_in) = 167;

$xilinxH{ ’'ps_per_in’ } = $ps_per_in;

my ($ps_per_mil) = $ps_per_in*(1/1000);
$xilinxH{ ’ps_per_mil’ } = $ps_per_mil;

my ($SIODELAY.TAP_PS) = 78.125;

$xilinxH{ 'IODELAY_TAP_PS’ } = S$IODELAY_TAP_PS;

#
# Push each signal length into an array based on the appropriate
# Matched Length Group (i.e., SIG.DMLI_.CON). Also determine reference signal

# indexes and store refrence signal lengths in mils from the Array of Hashes.

my ($i);
my (8k);
my (@QML1_Lengths) ;
for $i ( 0 .. $#adc_sigs_AoH ) {
print ("ML_Group: .$adc_sigs_AoH [ $i | { MLGroup}.\n”) if $debug;
if ( $adc_sigs_AoH[$i]{MLGroup} eq $MLIl_name ) {
push(@ML1_Lengths, $adc_sigs_AoH [$i]{LenMils});

if ( $adc_sigs_AoH[$i]{Signal} eq $Ref_name ) {
$adc_sigs_AoH [$i]{IsRef} = "17;
$Ref_len = $adc_sigs_AoH [$i]{LenMils};
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# Determine Awverage Length in Mils

# reference in Mils. Subtract the

# from the

signal lengths reference

overall length.

of each Matched Length Set wusing the

signal length

my ($ML1_Len) = scalar (@ML1_Lengths) ;
my ($ML1_Total) = 0;

($ML1_Total+=$_) for @ML1_Lengths;
my ($ML1_Avg) = $ML1_Total/$ML1_Len;

# Determine length in picoseconds

of the reference signals.

my ($Ref_lenPS) = $Ref_len*$ps_per_mil;

# Calculate the following:

x Length in picoseconds (PS).

* Difference between signal

* Number of IODELAY Taps Required to

length in PS and reference

equalize length .

The Hash elements are:
adc_sigs_AoH
{Signal = 727,
LenMils
MLGroup => "xz”,
IsRef = 7z7”,
AvgLenMils => "z7”,
LenPS => "z7,
AddedDelay => "z,

”»

NumTaps => "z,

SR R N N N R R R TR S R N N N N N R i

stgnal in PS.

my ($tmp_lenMils);
($tmp_lenPS);
($tmp_diffPS);
($tmp_numTaps) ;
($tmp_numTapsF) ;
(@ML1_Taps) ;
for $i ( O $#adc_sigs_AoH ) {
if ( $adc_sigs-AoH[$i]{MLGroup} eq $MLIl_name ) {
$adc_sigs_AoH [8$i]{ AvgLenMils} = $ML1_Avg;
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$tmp_lenMils = $adc_sigs_AoH [3i]{LenMils };
$tmp_lenPS = $tmp_lenMils * $ps_per_mil;
$tmp_diffPS = $Ref_-lenPS — $tmp_lenPS;
$tmp_numTaps = $tmp_diffPS/$IODELAY_TAP_PS;
$tmp_numTapsF = floor (abs($tmp_-numTaps) ) ;

if ($tmp_diffPS <0) {$tmp-numTapsF *= —1;}
push (@QML1_Taps, $tmp_numTapsF) ;

print (7 Signal:._$adc_sigs_AoH [$i]{ Signal},.”);
print (”LenMils: _$tmp_lenMils ,.");

print (?LenPS: _$tmp_lenPS,.7);

print (? DiffPS: _$tmp_diffPS ") ;

print (?NumTaps: .$tmp_numTaps, .” ) ;

print (?”NumTaps(Floored) : .$tmp_numTapsF\n”) if $debug;
$adc_sigs_AoH [$i]{LenPS} = $tmp_lenPS;
$adc_sigs_AoH [$i]{ AddedDelay} = $tmp_diffPS;
$adc_sigs_AoH [$i]{NumTaps} = $tmp_numTapsF;

# Calculate Minimum Tap Delay of each Matched Length Group:
my (@QMLI1_Taps_Sorted) = sort {$a <=> $b} @QMLI1_Taps;

print (?ML1. (minimum) : .$ML1_Taps_Sorted [0]\n”) if $debug;

my ($minTapsl) = $ML1_Taps_Sorted [0];
my ($ML1_NewTap) ;

my ($ML1_-MinTap) ;

my ($SML1_NumTaps) ;

for $i ( 0 .. $#adc_sigs_AoH ) {
if ( $adc_sigs-AoH[$i]{MLGroup} eq $MLIl_name ) {

$adc_sigs_AoH [$i]{MinTaps} = $minTapsl;
$ML1_MinTap = $adc_sigs_AoH [ $i]{MinTaps};
$ML1_NumTaps = $adc_sigs_AoH [$i]{NumTaps};
if ($ML1_MinTap < 0) {

$ML1_NewTap = $ML1_NumTaps + ($ML1_MinTap*—1);
} else {

$ML1_NewTap = $ML1_NumTaps;

}
$adc_sigs_AoH [ $i]{NumTapsNorm} = $ML1_NewTap;

# Push signals into Array of Hashes.
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push (@{ $xilinxH{ ’adc_sigs_.new_AoH’ } }, @adc_sigs_AoH);

# Return data to wuser

return \%xilinxH ;

writeDelayCSV {

# Write Out the Calculated Delays to a CSV File:

#

# The sub—routine writeDelayCSV () will write calculated delays
#

# * filedata : @adcDelaysA

# * fileLen : scalar (@adcDelaysA)

#

# Usage: $zilinz_rH = writeDelayCSV(\%zilinzH ) ;

#

to a file.

7~

my ($xilinx_rH) = shift; # Read in wuser’s wvariable.

my (%xilinxH) = %{ $xilinx_rH }; # De—reference Xilinxz hash.

my ($file) = $xilinxH{’ file’}; # File Name

my (@adc_sigs_AoH);

push (@adc_sigs_AoH, @{ $xilinxH{ ’adc_sigs_.new_AoH’ } });
my ($adc_sigs_Num) = $xilinxH{ ’adc_sigs_Num’ };

my ($debug) = $xilinxH{ debug’}; # Print out Debug Info.

#~

# Setup Delay File Name:

#
my ($delayfile) = "adc_-delays.csv”;
$xilinxH{ ’delayfile’ } = $delayfile;

# Write out the contents of the Array of Hashes into a CSV file.

# The Hash elements are:

#

adc_sigs_AoH
{Signal = 7z7,
LenMils => "x7”,
MLGroup => "xz7,
IsRef => 7z7”,
AvgLenMils => "z7,
LenPS => "z”,
AddedDelay => "z,

R R N N N SR
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# NumTaps => "z,

# }

open(outF, '>’, $delayfile) or die ”Couldn’t_open_file_for_writing:_$!n”;

my (8$i);

printf(outF ”Signal ,”);

printf(outF ”LenMils,”);

printf(outF ”MLGroup,”) ;

printf(outF ”IsRef,”);

printf(outF ”AvgLenMils,”);

printf(outF ”LenPS,”);

printf(outF ”AddedDelay,”);

printf(outF ”"NumTaps,” ) ;

printf(outF ”NumTapsNorm\n”) ;

for $i ( 0O $#adc_sigs_AoH ) {
printf(outF ”$adc_sigs_AoH [$i]{ Signal},”);
printf(outF ”$adc_sigs_AoH[$i]{LenMils},”);
printf(outF ”$adc_sigs_AoH [$i]{MLGroup},”);
printf(outF ”$adc_sigs_AoH[$i]{IsRef},”);
printf(outF ”$adc_sigs_AoH [$i]{AvgLenMils},”);
printf(outF ”$adc_sigs_AoH[$i]{LenPS},”);
printf(outF ”$adc_sigs_AoH [$i]{AddedDelay},”);
printf(outF ”$adc_sigs_AoH [$i]{NumTaps},”);
printf(outF ”$adc_sigs_AoH [ $i]{NumTapsNorm}\n”);

}

close outF;

print (?Delay _CSV_file _is_ready_for_use.\n"”);

# Return data to wuser

return \%xilinxH ;

289
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H.2 ITIODELAY Table for High-Speed DAC Interface

Table H.1: DAC Signal Delay Values

. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssi, | Tapsyorm
FPGA_DAC_CLK_P 5016.47 | 837.750490 1 0 0 3
FPGA_DAC_CLK_N 5016.88 | 837.818960 0 -0.0684700 0 3
FPGA_DAC_SYNC_P 6315.62 | 1054.70854 0 -216.95805 -2 1
FPGA_DAC_SYNC.N 6361.72 | 1062.40724 0 -224.65675 -2 1
FPGA_DAC_DATA P15 | 5762.20 | 962.287400 0 -124.53691 -1 2
FPGA_DAC_DATA N15 | 5810.88 | 970.416960 0 -132.66647 -1 2
FPGA_DAC_DATA P14 | 5834.68 | 974.391560 0 -136.64107 -1 2
FPGA_DAC_DATA N14 | 5852.89 | 977.432630 0 -139.68214 -1 2
FPGA_DAC_DATA P13 | 5537.71 | 924.797570 0 -87.047080 -1 2
FPGA_DAC_DATA N13 | 5491.10 | 917.013700 0 -79.263210 -1 2
FPGA_DAC_DATA P12 | 6196.47 | 1034.81049 0 -197.06000 -2 1
FPGA_DAC_DATA N12 | 6163.08 | 1029.23436 0 -191.48387 -2 1
FPGA_DAC_DATA P11 | 5641.90 | 942.197300 0 -104.44681 -1 2
FPGA_DAC_DATA_N11 | 5668.62 | 946.659540 0 -108.90905 -1 2
FPGA_DAC_DATA_P10 | 5670.41 | 946.958470 0 -109.20798 -1 2
FPGA_DAC_DATA_N10 | 5647.87 | 943.194290 0 -105.44380 -1 2
FPGA_DAC_DATA_P9 5608.93 | 936.691310 0 -98.940820 -1 2
FPGA_DAC_DATA_N9 5682.29 | 948.942430 0 -111.19194 -1 2
FPGA_DAC_DATA_P8 5530.95 | 923.668650 0 -85.918160 -1 2
FPGA_DAC_DATA_N8 5542.17 | 925.542390 0 -87.791900 -1 2
FPGA_DAC_DATA_P7 5735.98 | 957.908660 0 -120.15817 -1 2
FPGA_DAC_DATA_N7 5735.61 | 957.846870 0 -120.09638 -1 2
FPGA_DAC_DATA_P6 5582.68 | 932.307560 0 -94.557070 -1 2
FPGA_DAC_DATA N6 5503.96 | 919.161320 0 -81.410830 -1 2
FPGA_DAC_DATA P5 5505.65 | 919.443550 0 -81.693060 -1 2
FPGA_DAC_DATA N5 5485.51 | 916.080170 0 -78.329680 -1 2
FPGA_DAC_DATA P4 5829.65 | 973.551550 0 -135.80106 -1 2
FPGA_DAC_DATA N4 5860.13 | 978.641710 0 -140.89122 -1 2
FPGA_DAC_DATA P3 5696.69 | 951.347230 0 -113.59674 -1 2
FPGA_DAC_DATA N3 5818.83 | 971.744610 0 -133.99412 -1 2
FPGA_DAC_DATA P2 6465.15 | 1079.68005 0 -241.92956 -3 0
FPGA_DAC_DATA N2 6486.70 | 1083.27890 0 -245.52841 -3 0
FPGA_DAC_DATA P1 5715.30 | 954.455100 0 -116.70461 -1 2
FPGA_DAC_DATA N1 5796.85 | 968.073950 0 -130.32346 -1 2
FPGA_DAC_DATA_PO 6597.08 | 1101.71236 0 -263.96187 -3 0
FPGA_DAC_DATA_NO 6580.01 | 1098.86167 0 -261.11118 -3 0
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H.3 IODELAY Table for DDR2 SDRAM Interface

Table H.2: DDR2 SDRAM Signal Delay Values

. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy | Tapsyorm
Matched Length Group: #1
FPGA_DDR2.SDRAM_CK_PO | 4579.13 | 764.71471 1 0 0 0
FPGA_DDR2_SDRAM_CK_NO | 4415.00 | 737.30500 0 27.4097100 0 0
FPGA_DDR2_SDRAM_CK_P1 | 4047.45 | 675.92415 0 88.7905600 1 1
FPGA_DDR2_SDRAM_CK_N1 | 3897.80 | 650.93260 0 113.782110 1 1
FPGA_DDR2_SDRAM_A0 2998.88 | 500.81296 0 263.901750 3 3
FPGA_DDR2_.SDRAM_A1 2650.25 | 442.59175 0 322.122960 4 4
FPGA_DDR2_.SDRAM_A2 2817.97 | 470.60099 0 294.113720 3 3
FPGA_DDR2_SDRAM_A3 2935.95 | 490.30365 0 274.411060 3 3
FPGA_DDR2_SDRAM_A4 2578.31 | 430.57777 0 334.136940 4 4
FPGA_DDR2_SDRAM_A5 3084.73 | 515.14991 0 249.564800 3 3
FPGA_DDR2_SDRAM_A6 2689.36 | 449.12312 0 315.591590 4 4
FPGA_DDR2_SDRAM_A7 2859.02 | 477.45634 0 287.258370 3 3
FPGA_DDR2_.SDRAM_AS 3039.45 | 507.58815 0 257.126560 3 3
FPGA_DDR2_SDRAM_A9 3025.96 | 505.33532 0 259.379390 3 3
FPGA_DDR2_SDRAM_A10 3821.08 | 638.12036 0 126.594350 1 1
FPGA_DDR2_SDRAM_A11 2753.06 | 459.76102 0 304.953690 3 3
FPGA_DDR2_SDRAM_A12 3039.53 | 507.60151 0 257.113200 3 3
FPGA_DDR2_SDRAM_A13 4166.21 | 695.75707 0 68.9576400 0 0
FPGA_DDR2_SDRAM_BAO 4085.54 | 682.28518 0 82.4295300 1 1
FPGA_DDR2_.SDRAM _BA1 3795.98 | 633.92866 0 130.786050 1 1
FPGA_DDR2_SDRAM_BA2 3092.63 | 516.46921 0 248.245500 3 3
FPGA_DDR2_SDRAM_CASN 4206.48 | 702.48216 0 62.2325500 0 0
FPGA_DDR2_SDRAM_CKEO 3972.22 | 663.36074 0 101.353970 1 1
FPGA_DDR2_SDRAM_CKE1 4002.67 | 668.44589 0 96.2688200 1 1
FPGA_DDR2_SDRAM_ODTO0 3864.74 | 645.41158 0 119.303130 1 1
FPGA_DDR2_.SDRAM_ODT1 4270.34 | 713.14678 0 51.5679300 0 0
FPGA_DDR2_.SDRAM_RASN 4007.72 | 669.28924 0 95.4254700 1 1
FPGA_DDR2_SDRAM_SNO 4098.98 | 684.52966 0 80.1850500 1 1
FPGA_DDR2_SDRAM_SN1 4272.83 | 713.56261 0 51.1521000 0 0
FPGA_DDR2_.SDRAM_WEN 4242.59 | 708.51253 0 56.2021800 0 0

Continued on Next Page...
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. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy | Tapsyorm
Matched Length Group: #2
FPGA_DDR2_SDRAM_DQS0 5013.03 | 837.17601 1 0 0 2
FPGA_DDR2_SDRAM_DQSNO | 5120.19 | 855.07173 0 -17.895720 0 2
FPGA_DDR2_SDRAM_DMO 4957.16 | 827.84572 0 9.33029000 0 2
FPGA_DDR2_SDRAM_DQO 5212.59 | 870.50253 0 -33.326520 0 2
FPGA_DDR2_SDRAM_DQ1 5287.59 | 883.02753 0 -45.851520 0 2
FPGA_DDR2_ SDRAM_DQ2 5971.22 | 997.19374 0 -160.01773 -2 0
FPGA_DDR2_SDRAM_DQ3 5918.91 | 988.45797 0 -151.28196 -1 1
FPGA_DDR2_.SDRAM_DQ4 4849.32 | 809.83644 0 27.3395700 0 2
FPGA_DDR2_SDRAM_DQ5 4963.70 | 828.93790 0 8.23811000 2
FPGA_DDR2_SDRAM_DQ6 5252.29 | 877.13243 0 -39.956420 0 2
FPGA_DDR2_ SDRAM_DQ7 5525.77 | 922.80359 0 -85.627580 -1 1
Matched Length Group: #3
FPGA_DDR2_SDRAM_DQS1 5087.82 | 849.66594 1 0 0 1
FPGA_DDR2_.SDRAM _DQSN1 | 5041.40 | 841.91380 0 7.75214000 0 1
FPGA_DDR2_SDRAM_DM1 4747.95 | 792.90765 0 56.7582900 0 1
FPGA_DDR2_SDRAM_DQS8 5025.85 | 839.31695 0 10.3489900 0 1
FPGA_DDR2_SDRAM_DQ9 5105.20 | 852.56840 0 -2.9024600 0 1
FPGA_DDR2_SDRAM_DQ10 5191.29 | 866.94543 0 -17.279490 0 1
FPGA_DDR2_SDRAM _DQ11 5591.27 | 933.74209 0 -84.076150 -1 0
FPGA_DDR2_SDRAM_DQ12 4985.72 | 832.61524 0 17.0507000 0 1
FPGA_DDR2_SDRAM_DQ13 4870.79 | 813.42193 0 36.2440100 0 1
FPGA_DDR2_SDRAM_DQ14 5183.55 | 865.65285 0 -15.986910 0 1
FPGA_DDR2_SDRAM_DQ15 5180.95 | 865.21865 0 -15.552710 0 1
Matched Length Group: #4
FPGA_DDR2_SDRAM_DQS2 4096.24 | 684.07208 1 0 0 1
FPGA_DDR2_SDRAM_DQSN2 | 4053.50 | 676.93450 0 7.13758000 0 1
FPGA_DDR2_SDRAM_DM2 3097.62 | 517.30254 0 166.769540 2 3
FPGA_DDR2_SDRAM_DQ16 3213.96 | 536.73132 0 147.340760 1 2
FPGA_DDR2_SDRAM_DQ17 4673.29 | 780.43943 0 -96.367350 -1 0
FPGA_DDR2_SDRAM_DQ18 3385.15 | 565.32005 0 118.752030 1 2
FPGA_DDR2_SDRAM_DQ19 3360.45 | 561.19515 0 122.876930 1 2
FPGA_DDR2_SDRAM_DQ20 3098.27 | 517.41109 0 166.660990 2 3
FPGA_DDR2_SDRAM_DQ21 3005.61 | 501.93687 0 182.135210 2 3
FPGA_DDR2_SDRAM_DQ22 2996.25 | 500.37375 0 183.698330 2 3
FPGA_DDR2_SDRAM_DQ23 2933.04 | 489.81768 0 194.254400 2 3

Continued on Next Page...
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. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy | Tapsyorm
Matched Length Group: #5
FPGA_DDR2_.SDRAM_DQS3 2983.24 | 498.20108 1 0 0 1
FPGA_DDR2_SDRAM_DQSN3 | 3023.39 | 504.90613 0 -6.7050500 0 1
FPGA_DDR2_.SDRAM_DM3 3152.38 | 526.44746 0 -28.246380 0 1
FPGA_DDR2_SDRAM_DQ24 3390.75 | 566.25525 0 -68.054170 0 1
FPGA_DDR2_SDRAM_DQ25 3052.47 | 509.76249 0 -11.561410 0 1
FPGA_DDR2_SDRAM_DQ26 3622.58 | 604.97086 0 -106.76978 -1 0
FPGA_DDR2_.SDRAM_DQ27 3219.61 | 537.67487 0 -39.473790 0 1
FPGA_DDR2_SDRAM_DQ28 2853.83 | 476.58961 0 21.6114700 0 1
FPGA_DDR2_SDRAM_DQ29 3098.43 | 517.43781 0 -19.236730 0 1
FPGA_DDR2_SDRAM_DQ30 2847.60 | 475.54920 0 22.6518800 0 1
FPGA_DDR2_SDRAM_DQ31 2916.43 | 487.04381 0 11.1572700 0 1
Matched Length Group: #6
FPGA_DDR2_SDRAM_DQS4 3222.22 | 538.11074 1 0 0 2
FPGA_DDR2_SDRAM_DQSN4 | 3270.92 | 546.24364 0 -8.1329000 0 2
FPGA_DDR2_.SDRAM_DM4 3182.03 | 531.39901 0 6.71173000 0 2
FPGA_DDR2_SDRAM_DQ32 3229.13 | 539.26471 0 -1.1539700 0 2
FPGA_DDR2_SDRAM_DQ33 3155.01 | 526.88667 0 11.2240700 0 2
FPGA_DDR2_SDRAM_DQ34 3607.15 | 602.39405 0 -64.283310 0 2
FPGA_DDR2_SDRAM_DQ35 4247.09 | 709.26403 0 -171.15329 -2 0
FPGA_DDR2_SDRAM_DQ36 2940.51 | 491.06517 0 47.0455700 0 2
FPGA_DDR2_SDRAM_DQ37 2957.14 | 493.84238 0 44.2683600 0 2
FPGA_DDR2_SDRAM_DQ38 3501.94 | 584.82398 0 -46.713240 0 2
FPGA_DDR2_SDRAM_DQ39 3857.18 | 644.14906 0 -106.03832 -1 1
Matched Length Group: #7
FPGA_DDR2_SDRAM_DQS5 3522.42 | 588.24414 1 0 0 1
FPGA_DDR2_SDRAM_DQSN5 | 3405.06 | 568.64502 0 19.599120 0 1
FPGA_DDR2_.SDRAM_DM5 3549.72 | 592.80324 0 -4.559100 0 1
FPGA_DDR2_SDRAM_DQ40 3996.72 | 667.45224 0 -79.20810 -1 0
FPGA_DDR2_SDRAM_DQ41 3555.78 | 593.81526 0 -5.571120 0 1
FPGA_DDR2_SDRAM_DQ42 3842.33 | 641.66911 0 -53.42497 0 1
FPGA_DDR2_SDRAM_DQ43 4029.84 | 672.98328 0 -84.73914 -1 0
FPGA_DDR2_SDRAM_DQ44 3311.40 | 553.00380 0 35.240340 0 1
FPGA_DDR2_SDRAM_DQ45 3135.08 | 523.55836 0 64.685780 0 1
FPGA_DDR2_SDRAM_DQ46 3605.04 | 602.04168 0 -13.79754 0 1
FPGA_DDR2_SDRAM_DQ47 3325.56 | 555.36852 0 32.875620 0 1
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. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy | Tapsyorm
Matched Length Group: #8
FPGA_DDR2_SDRAM_DQS6 3270.90 | 546.24030 1 0 0 0
FPGA_DDR2_SDRAM_DQSNG6 | 3124.10 | 521.72470 0 24.515600 0 0
FPGA_DDR2_SDRAM_DMG6 2854.88 | 476.76496 0 69.475340 0 0
FPGA_DDR2_SDRAM_DQ48 3316.24 | 553.81208 0 -7.571780 0 0
FPGA_DDR2_SDRAM_DQ49 3187.81 | 532.36427 0 13.876030 0 0
FPGA_DDR2_SDRAM_DQ50 3301.99 | 551.43233 0 -5.192030 0 0
FPGA_DDR2_SDRAM_DQ51 3414.35 | 570.19645 0 -23.95615 0 0
FPGA_DDR2_SDRAM_DQ52 2930.49 | 489.39183 0 56.848470 0 0
FPGA_DDR2_SDRAM_DQ53 3105.69 | 518.65023 0 27.590070 0 0
FPGA_DDR2_SDRAM_DQ54 2867.57 | 478.88419 0 67.356110 0 0
FPGA_DDR2_SDRAM_DQ55 2980.24 | 497.70008 0 48.540220 0 0
Matched Length Group: #9
FPGA_DDR2_SDRAM_DQS7 3814.75 | 637.06325 1 0 0 0
FPGA_DDR2_SDRAM_DQSN7 | 3706.51 | 618.98717 0 18.076080 0 0
FPGA_DDR2_.SDRAM_DM?7 4052.38 | 676.74746 0 -39.68421 0 0
FPGA_DDR2_SDRAM_DQ56 3984.63 | 665.43321 0 -28.36996 0 0
FPGA_DDR2_.SDRAM_DQ57 4208.12 | 702.75604 0 -65.69279 0 0
FPGA_DDR2_SDRAM_DQ58 4026.51 | 672.42717 0 -35.36392 0 0
FPGA_DDR2_SDRAM_DQ59 3832.92 | 640.09764 0 -3.034390 0 0
FPGA_DDR2_SDRAM_DQ60 3930.77 | 656.43859 0 -19.37534 0 0
FPGA_DDR2_SDRAM_DQ61 3748.47 | 625.99449 0 11.068760 0 0
FPGA_DDR2_SDRAM_DQ62 3768.33 | 629.31111 0 7.7521400 0 0
FPGA_DDR2_SDRAM_DQ63 3708.73 | 619.35791 0 17.705340 0 0
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H.4 TODELAY Table for QDR-II SRAM Interface
Table H.3: QDR-II SRAM Signal Delay Values
. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy; | Tapsyorm
Matched Length Group: #1

FPGA_SRAM _K_CLK_P 2628.50 | 438.95950 1 0 0 4
FPGA_SRAM_K_CLK_N 2585.79 | 431.82693 0 7.13257000 0 4
FPGA_SRAM_WDATA35 | 3150.58 | 526.14686 0 -87.187360 -1 3
FPGA_SRAM_WDATA34 | 3050.75 | 509.47525 0 -70.515750 0 4
FPGA_SRAM_WDATA33 | 2802.70 | 468.05090 0 -29.091400 0 4
FPGA_SRAM_WDATA32 | 2562.85 | 427.99595 0 10.9635500 0 4
FPGA_SRAM_WDATA31 | 2276.92 | 380.24564 0 58.7138600 0 4
FPGA_SRAM_WDATA30 | 2199.48 | 367.31316 0 71.6463400 0 4
FPGA_SRAM_WDATA29 | 1792.90 | 299.41430 0 139.545200 1 5
FPGA_SRAM_WDATA28 | 1647.73 | 275.17091 0 163.788590 2 6
FPGA_SRAM_WDATA27 | 1730.36 | 288.97012 0 149.989380 1 5
FPGA_SRAM_WDATA26 | 3218.44 | 537.47948 0 -98.519980 -1 3
FPGA_SRAM_WDATA25 | 2953.25 | 493.19275 0 -54.233250 0 4
FPGA_SRAM_WDATA24 | 2792.77 | 466.39259 0 -27.433090 0 4
FPGA_SRAM_WDATA23 | 2563.12 | 428.04104 0 10.9184600 0 4
FPGA_SRAM_WDATA22 | 1994.36 | 333.05812 0 105.901380 1 5
FPGA_SRAM_WDATA21 | 1963.23 | 327.85941 0 111.100090 1 5
FPGA_SRAM_WDATA20 | 1709.22 | 285.43974 0 153.519760 1 5
FPGA_SRAM_WDATA19 | 1825.79 | 304.90693 0 134.052570 1 5
FPGA_SRAM_WDATA18 | 2008.51 | 335.42117 0 103.538330 1 5
FPGA_SRAM_WDATA17 | 2557.84 | 427.15928 0 11.8002200 0 4
FPGA_SRAM_WDATA16 | 2591.71 | 432.81557 0 6.14393000 0 4
FPGA_SRAM_WDATA15 | 2650.50 | 442.63350 0 -3.6740000 0 4
FPGA_SRAM_WDATA14 | 2979.66 | 497.60322 0 -58.643720 0 4
FPGA_SRAM_WDATA13 | 3128.26 | 522.41942 0 -83.459920 -1 3
FPGA_SRAM_WDATA12 | 3299.14 | 550.95638 0 -111.99688 -1 3
FPGA_SRAM_WDATA11 | 3631.04 | 606.38368 0 -167.42418 -2 2
FPGA_SRAM_WDATA10 | 3844.59 | 642.04653 0 -203.08703 -2 2
FPGA_SRAM_WDATA9 3883.33 | 648.51611 0 -209.55661 -2 2
FPGA_SRAM_WDATAS 2600.65 | 434.30855 0 4.65095000 0 4
FPGA_SRAM_WDATA7Y 2737.99 | 457.24433 0 -18.284830 0 4
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. Length | Length Added Delay

Signal Name (Mils) (ps) Is Ref (ps) Tapssiy; | Tapsyorm
FPGA_SRAM_WDATAG 2777.23 | 463.79741 0 -24.837910 0 4
FPGA_SRAM_WDATASH 3063.23 | 511.55941 0 -72.599910 0 4
FPGA_SRAM_WDATA4 3154.47 | 526.79649 0 -87.836990 -1 3
FPGA_SRAM_WDATA3 3295.01 | 550.26667 0 -111.30717 -1 3
FPGA_SRAM_WDATA2 3659.74 | 611.17658 0 -172.21708 -2 2
FPGA_SRAM_WDATA1 3626.80 | 605.67560 0 -166.71610 -2 2
FPGA_SRAM_WDATAO 3958.94 | 661.14298 0 -222.18348 -2 2
FPGA_SRAM_ADDRI17 4604.33 | 768.92311 0 -329.96361 -4 0
FPGA_SRAM_ADDRI16 3819.12 | 637.79304 0 -198.83354 -2 2
FPGA_SRAM_ADDRI15 3373.71 | 563.40957 0 -124.45007 -1 3
FPGA_SRAM_ADDRI14 2694.44 | 449.97148 0 -11.011980 0 4
FPGA_SRAM_ADDRI13 2530.12 | 422.53004 0 16.4294600 0 4
FPGA_SRAM_ADDRI12 2476.10 | 413.50870 0 25.4508000 0 4
FPGA_SRAM_ADDRI1 3864.65 | 645.39655 0 -206.43705 -2 2
FPGA_SRAM_ADDRI0 3629.69 | 606.15823 0 -167.19873 -2 2
FPGA_SRAM_ADDRY 3037.20 | 507.21240 0 -68.252900 0 4
FPGA_SRAM_ADDRS 2574.04 | 429.86468 0 9.09482000 0 4
FPGA_SRAM_ADDR7 3324.62 | 555.21154 0 -116.25204 -1 3
FPGA_SRAM_ADDRG 3145.99 | 525.38033 0 -86.420830 -1 3
FPGA_SRAM_ADDRS 2671.76 | 446.18392 0 -7.2244200 0 4
FPGA_SRAM_ADDR4 3057.69 | 510.63423 0 -71.674730 0 4
FPGA_SRAM_ADDRS3 3591.46 | 599.77382 0 -160.81432 -2 2
FPGA_SRAM_ADDR2 2905.65 | 485.24355 0 -46.284050 0 4
FPGA_SRAM_ADDRI1 2879.98 | 480.95666 0 -41.997160 0 4
FPGA_SRAM_ADDRO 2616.20 | 436.90540 0 2.05410000 0 4
FPGA_SRAM_RDN 2715.00 | 453.40500 0 -14.445500 0 4
FPGA_SRAM_WRN 2279.91 | 380.74497 0 58.2145300 0 4
FPGA_SRAM_BWN3 2604.82 | 435.00494 0 3.95456000 0 4
FPGA_SRAM_BWN2 2445.94 | 408.47198 0 30.4875200 0 4
FPGA_SRAM_BWNI1 2293.23 | 382.96941 0 55.9900900 0 4
FPGA_SRAM_BWNO 3213.01 | 536.57267 0 -97.613170 -1 3
FPGA_SRAM_DLL_OFFN | 3008.41 | 502.40447 0 -63.444970 0 4
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. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy; | Tapsyorm
Matched Length Group: #2
FPGA_SRAM_CQ_CLK_P | 1976.35 | 330.05045 1 0 0 4
FPGA_SRAM_RDATA17 2060.67 | 344.13189 0 -14.081440 0 4
FPGA_SRAM_RDATA16 2361.19 | 394.31873 0 -64.268280 0 4
FPGA_SRAM_RDATA15 2555.24 | 426.72508 0 -96.674630 -1 3
FPGA_SRAM_RDATA14 2643.55 | 441.47285 0 -111.42240 -1 3
FPGA_SRAM_RDATA13 2783.77 | 464.88959 0 -134.83914 -1 3
FPGA_SRAM_RDATA12 3204.88 | 535.21496 0 -205.16451 -2 2
FPGA_SRAM_RDATA11 3450.88 | 576.29696 0 -246.24651 -3 1
FPGA_SRAM_RDATA10 3748.97 | 626.07799 0 -296.02754 -3 1
FPGA_SRAM_RDATA9 4128.87 | 689.52129 0 -359.47084 -4 0
FPGA_SRAM_RDATAS 2206.29 | 368.45043 0 -38.399980 0 4
FPGA_SRAM_RDATAT 2387.63 | 398.73421 0 -68.683760 0 4
FPGA_SRAM_RDATAG6 2458.86 | 410.62962 0 -80.579170 -1 3
FPGA_SRAM_RDATA5 2562.97 | 428.01599 0 -97.965540 -1 3
FPGA_SRAM_RDATA4 2813.14 | 469.79438 0 -139.74393 -1 3
FPGA_SRAM_RDATA3 3162.41 | 528.12247 0 -198.07202 -2 2
FPGA_SRAM_RDATA2 3312.99 | 553.26933 0 -223.21888 -2 2
FPGA_SRAM_RDATA1 3670.76 | 613.01692 0 -282.96647 -3 1
FPGA_SRAM_RDATAO 3793.17 | 633.45939 0 -303.40894 -3 1
Matched Length Group: #3
FPGA_SRAM_CQ_CLK_N | 1647.00 | 275.04900 1 0 0 4
FPGA_SRAM_RDATA35 3261.71 | 544.70557 0 -269.65657 -3 1
FPGA_SRAM_RDATA34 3086.63 | 515.46721 0 -240.41821 -3 1
FPGA_SRAM_RDATA33 2746.72 | 458.70224 0 -183.65324 -2 2
FPGA_SRAM_RDATA32 2473.22 | 413.02774 0 -137.97874 -1 3
FPGA_SRAM_RDATA31 2417.51 | 403.72417 0 -128.67517 -1 3
FPGA_SRAM_RDATA30 1839.46 | 307.18982 0 -32.140820 0 4
FPGA_SRAM_RDATA29 1790.92 | 299.08364 0 -24.034640 4
FPGA_SRAM_RDATA28 1675.18 | 279.75506 0 -4.7060600 0 4
FPGA_SRAM_RDATA27 1635.68 | 273.15856 0 1.89044000 0 4
FPGA_SRAM_RDATA26 3518.30 | 587.55610 0 -312.50710 -4 0
FPGA_SRAM_RDATA25 3180.23 | 531.09841 0 -256.04941 -3 1
FPGA_SRAM_RDATA24 2973.35 | 496.54945 0 -221.50045 -2 2
FPGA_SRAM_RDATA23 2635.30 | 440.09510 0 -165.04610 -2 2
FPGA_SRAM_RDATA22 2221.83 | 371.04561 0 -95.996610 -1 3
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. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy; | Tapsyorm
FPGA_SRAM_RDATA21 2003.05 | 334.50935 0 -59.460350 0 4
FPGA_SRAM_RDATA20 1848.85 | 308.75795 0 -33.708950 0 4
FPGA_SRAM_RDATA19 1675.54 | 279.81518 0 -4.7661800 0 4
FPGA_SRAM_RDATA18 1688.03 | 281.90101 0 -6.8520100 0 4
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H.5 IODELAY Table for AsAP #1 Interface

Table H.4: AsAP #1 Signal Delay Values

. Length | Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapssiy, | Tapsyorm
Matched Length Group: #1
FPGA_ASAP1_CLK_OUT | 3888.03 | 649.30101 1 0 0 1
FPGA_ASAP1_VLD_OUT | 4049.70 | 676.29990 0 -26.998890 0 1
FPGA_ASAP1 REQ_OUT | 4052.61 | 676.78587 0 -27.484860 0 1
FPGA_ASAP1.DOUT15 4144.88 | 692.19496 0 -42.893950 0 1
FPGA_ASAP1.DOUT14 4209.27 | 702.94809 0 -53.647080 0 1
FPGA_ASAP1.DOUT13 4166.49 | 695.80383 0 -46.502820 0 1
FPGA_ASAP1.DOUT12 3939.19 | 657.84473 0 -8.5437200 0 1
FPGA_ASAP1.DOUT11 4805.99 | 802.60033 0 -153.29932 -1 0
FPGA_ASAP1_.DOUT10 4815.56 | 804.19852 0 -154.89751 -1 0
FPGA_ASAP1.DOUT9 3641.68 | 608.16056 0 41.1404500 0 1
FPGA_ASAP1.DOUTS 3701.51 | 618.15217 0 31.1488400 0 1
FPGA_ASAP1 DOUT7 4163.47 | 695.29949 0 -45.998480 0 1
FPGA_ASAP1.DOUT6 4227.27 | 705.95409 0 -56.653080 0 1
FPGA_ASAP1_.DOUTS5 3559.15 | 594.37805 0 54.9229600 0 1
FPGA_ASAP1_.DOUT4 3785.44 | 632.16848 0 17.1325300 0 1
FPGA_ASAP1_.DOUTS3 3856.54 | 644.04218 0 5.25882999 0 1
FPGA_ASAP1_.DOUT?2 4078.00 | 681.02600 0 -31.724990 0 1
FPGA_ASAP1.DOUT1 3278.86 | 547.56962 0 101.731390 1 2
FPGA_ASAP1_.DOUTO 3288.72 | 549.21624 0 100.084770 1 2
Matched Length Group: #2
FPGA_ASAP1_CLK_IN 2656.68 | 443.66556 1 0 0 2
FPGA_ASAP1_VLD_IN 2137.68 | 356.99256 0 86.6730000 1 3
FPGA_ASAP1_REQ_IN 2767.24 | 462.12908 0 -18.463520 0 2
FPGA_ASAP1_DIN15 2695.18 | 450.09506 0 -6.4295000 0 2
FPGA_ASAP1_DIN14 2657.36 | 443.77912 0 -0.1135600 0 2
FPGA_ASAP1_DIN13 2342.88 | 391.26096 0 52.4045999 0 2
FPGA_ASAP1_DIN12 2361.73 | 394.40891 0 49.2566499 0 2
FPGA_ASAP1_DIN11 2188.27 | 365.44109 0 78.2244699 1 3
FPGA_ASAP1_DIN10 2183.37 | 364.62279 0 79.0427700 1 3
FPGA_ASAP1_DIN9 2551.92 | 426.17064 0 17.4949199 0 2
FPGA_ASAP1_DIN8 2961.36 | 494.54712 0 -50.881560 0 2
FPGA_ASAP1_DINT 2636.86 | 440.35562 0 3.30993999 0 2
FPGA_ASAP1_DING 2601.93 | 434.52231 0 9.14324999 0 2
FPGA_ASAP1_DIN5 3023.82 | 504.97794 0 -61.312380 0 2
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. Length | Length Added Delay

Signal Name (Mils) (ps) Is Ref (ps) Tapssiy, | Tapsyorm
FPGA_ASAP1_DIN4 3355.69 | 560.40023 0 -116.73467 -1 1
FPGA_ASAP1_DIN3 3219.09 | 537.58803 0 -93.922470 -1 1
FPGA_ASAP1_DIN2 3142.93 | 524.86931 0 -81.203750 -1 1
FPGA_ASAP1_DIN1 3586.95 | 599.02065 0 -155.35509 -1 1
FPGA_ASAP1_DINO 3717.09 | 620.75403 0 -177.08847 -2 0
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H.6 TIODELAY Table for AsAP #2 Interface

Table H.5: AsAP #2 Signal Delay Values

. Length Length Added Delay
Signal Name (Mils) (ps) Is Ref (ps) Tapsgiy | Tapsyorm
Matched Length Group: #1
FPGA_ASAP2_CLK_OUT | 5402.93 | 902.289310 1 0 0 1
FPGA_ASAP2_VLD_OUT | 5298.40 | 884.832800 0 17.4565100 0 1
FPGA_ASAP2 REQ_OUT | 5138.41 | 858.114470 0 44.1748400 0 1
FPGA_ASAP2 DOUT15 5198.95 | 868.224650 0 34.0646600 0 1
FPGA_ASAP2.DOUT14 5282.13 | 882.115710 0 20.1736000 0 1
FPGA_ASAP2.DOUT13 5487.81 | 916.464270 0 -14.174960 0 1
FPGA_ASAP2.DOUT12 5680.78 | 948.690260 0 -46.400950 0 1
FPGA_ASAP2 DOUT11 5874.91 | 981.109970 0 -78.820660 -1 0
FPGA_ASAP2_.DOUT10 5837.32 | 974.832440 0 -72.543130 0 1
FPGA_ASAP2.DOUTY9 4944.92 | 825.801640 0 76.4876700 0 1
FPGA_ASAP2.DOUTS 4669.31 | 779.774770 0 122.514540 1 2
FPGA_ASAP2 DOUTT 5679.63 | 948.498210 0 -46.208900 0 1
FPGA_ASAP2.DOUT6 5282.01 | 882.095670 0 20.1936400 0 1
FPGA_ASAP2_.DOUTS5 4691.11 | 783.415370 0 118.873940 1 2
FPGA_ASAP2_.DOUT4 4599.08 | 768.046360 0 134.242950 1 2
FPGA_ASAP2_.DOUTS3 5928.96 | 990.136320 0 -87.847010 -1 0
FPGA_ASAP2_.DOUT?2 5494.71 | 917.616570 0 -15.327260 0 1
FPGA_ASAP2_.DOUT1 4679.77 | 781.521590 0 120.767720 1 2
FPGA_ASAP2_.DOUTO 4556.70 | 760.968900 0 141.320410 1 2
Matched Length Group: #2
FPGA_ASAP2_CLK_IN 5126.14 | 856.065380 1 0 0 2
FPGA_ASAP2_VLD_IN 4551.79 | 760.148930 0 95.9164500 1 3
FPGA_ASAP2 REQ_IN 4173.06 | 696.901020 0 159.164360 2 4
FPGA_ASAP2_DIN15 4780.52 | 798.346840 0 57.7185400 0 2
FPGA_ASAP2_DIN14 4717.12 | 787.759040 0 68.3063400 0 2
FPGA_ASAP2_DIN13 4786.03 | 799.267010 0 56.7983700 0 2
FPGA_ASAP2_DIN12 4730.52 | 789.996840 0 66.0685400 0 2
FPGA_ASAP2_DIN11 4767.18 | 796.119060 0 59.9463200 0 2
FPGA_ASAP2_DIN10 4904.30 | 819.018100 0 37.0472800 0 2
FPGA_ASAP2_DIN9 5335.07 | 890.956690 0 -34.891310 0 2
FPGA_ASAP2 _DIN8 5698.97 | 951.727990 0 -95.662610 -1 1
FPGA_ASAP2_DINT 5019.04 | 838.179680 0 17.8857000 0 2
FPGA_ASAP2_DING 4888.85 | 816.437950 0 39.6274300 0 2
FPGA_ASAP2_DIN5 5732.70 | 957.360900 0 -101.29552 -1 1
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. Length | Length Added Delay

Signal Name (Mils) (ps) Is Ref (ps) Tapsgiy | Tapsyorm
FPGA_ASAP2_DIN4 5651.11 | 943.735370 0 -87.669990 -1 1
FPGA_ASAP2_DIN3 5832.44 | 974.017480 0 -117.95210 -1 1
FPGA_ASAP2_DIN2 5564.81 | 929.323270 0 -73.257890 0 2
FPGA_ASAP2_DIN1 6143.62 | 1025.98454 0 -169.91916 -2 0
FPGA_ASAP2_DINO 6081.24 | 1015.56708 0 -159.50170 -2 0
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The Data Path FPGA on the measurement board is controlled by the Control FPGA via a

SPI interface. The Data Path FPGA is essentially a large register file made up of seven base address

ranges, shown in Table I.1. The following sections describe the registers in the Data Path FPGA,

including what data they are storing and how the data is used.

Table 1.1: Hardware Register Addresses

Hardware Register Addresses

Section | Sub-System Hardware Registers Dev Address
1.1 Measurement Board | System Registers 0x0000

1.2 Measurement Board | IODELAY Control Registers 0x0100

1.3 Measurement Board | RAM/User Pattern Control Registers | 0x0300

14 Measurement Board | Auxiliary Input Control Registers 0x0400

1.5 Measurement Board | Trigger Control Registers 0x0500

1.6 Measurement Board | ADC Control Registers 0x0700

L7 Measurement Board | AsAP Control Registers 0x0800
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Hardware Function: 0x0
Device Address:  0x0000
Read/Write:  Write Only

I.1 Base Address: 0x0000, System Registers

I.1.1 Safe State, Address: 0x0000

Writing anything to this register causes all Data Path FPGA registers to go into their reset
state. This is the same state that the registers are in when the measurement board assembly first

powers up.

1.1.2 Instrument Reset Register, Address: 0x0002

Hardware Function: 0x0
Device Address: 0x0002
Read/Write: Read and Write

This is the Instrument Reset register. It is used to reset portions of the Data Path FPGA
that may need to be reset during the operation of the instrument. Table 1.2 shows the register bit
assignments and the default value. If a bit defaults to a 1, then that bit is active low. If a bit

defaults to a 0, then that bit is active high.

Table 1.2: Instrument Reset Register

BIT NAME RESET
31:8 RSVD 0
WAVE_RST 1
6 ADC_FIFO_RST 0
5 RSVD 0
4 RAM_DAC_RST 1
3 SYS_-DCM 0
2 SRAM_CTRL 1
1 XIL.SRAM_CTRL 0
0 SRAM_PLL 0
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Table 1.3: Instrument Reset State

Bit | Reset Description
7 | WAVE_RST Active Low
6 | ADC_FIFO_RST Active High
5 | RSVD Active High
4 | RAM_DAC_RST Active Low
3 | SYS.DCM Active High
2 | SRAM_CTRL Active Low
1 | XIL.SRAM_CTRL | Active High
0 | SRAM_PLL Active High

1.1.3 Interrupt Register, Address: 0x0004

Hardware Function: 0x0
Device Address: 0x0004
Read/Write:  Read Only

The Interrupt Register is used to tell the status of the interrupts of the assembly currently
being addressed. It is a read only register.

The bits are assembly specific. A pending interrupt is indicated by the appropriate bit
in the Interrupt Register being set. All interrupt bits are latched except for Bit 0. Bit 0 of the
Interrupt Register is reserved to tell the status of the Interrupt Service Request (SRQn) output of
the assembly. When Bit 0 is enabled, Bit 0 is the OR, of the interrupt bits 1 through 31.

Table I.4: Interrupt Register
BIT NAME RESET
31:7 RSVD 0
6 SRAM_CAL_DONE_ON
SRAM_CAL_DONE_OFF
SYS_-DCM_LOCKED_ON
SYS_.DCM_LOCKED_OFF
SRAM_DCM_LOCKED_ON
SRAM_DCM_LOCKED_OFF
SRQn

S|l H|IN|[W| K |WC
— ol Oo|lOo|Oo| O

SRQn - Service Request Bit
0 = SRQn is NOT being driven low.



APPENDIX I. DATA PATH FPGA REGISTER DEFINITIONS 306

1 = SRQn is being driven low.
SRAM_DCM_LOCKED_OFF
0 = FALSE

1 = TRUE

SRAM _DCM_LOCKED_ON
0 = FALSE

1 = TRUE
SYS_.DCM_LOCKED_OFF
0 = FALSE

1 = TRUE
SYS_DCM_LOCKED_ON

0 = FALSE

1 = TRUE
SRAM_CAL_DONE_OFF

0 = FALSE

1 = TRUE
SRAM_CAL_DONE_ON

0 = FALSE

1 = TRUE

1.1.4 Interrupt Enable Register, Address: 0x0006

Hardware Function: 0x0
Device Address:  0x0006
Read/Write: Read and Write

The Interrupt Enable Register is used to enable/disable the individual interrupts of the
assembly currently being addressed. It is a write only register.

Each bit of the Interrupt Enable Register has a one to one correspondence with the bits
in the Interrupt Register. Bit 0 of the Interrupt Enable Register is reserved to enable/disable the
SRQn output of the assembly.

An interrupt is enabled by setting its bit in the Interrupt Enable Register. The enabled

interrupts will always show their status in the Interrupt Register. Disabled interrupts do not cause
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interrupts but do show the latched status of the associated bit in the Interrupt Register. The latched
interrupt status bits will still show their status even if the SRQ_EN bit is disabled. This allows the

interrupts to be polled without causing the system controller to be interrupted.

Table 1.5: Interrupt Enable Register
BIT NAME RESET
31:7 RSVD 0
6 SRAM_CAL_DONE_ON
SRAM_CAL_DONE_OFF
SYS_-DCM_LOCKED_ON
SYS_.DCM_LOCKED_OFF
SRAM_DCM_LOCKED_ON
SRAM_DCM_LOCKED_OFF
SRQ-EN

S|l H|IN|[W|K~|WC
Ll =N E=N Nl Nl Nl N

SRQn - Service Request Bit

0 = SRQn output is disabled.

1 = SRQn output is enabled.
SRAM_DCM_LOCKED_OFF
0 = disabled

1 = enabled
SRAM_DCM_LOCKED_ON
0 = disabled

1 = enabled
SYS_DCM_LOCKED _OFF
0 = disabled

1 = enabled

SYS_ DCM_LOCKED _ON

0 = disabled

1 = enabled
SRAM_CAL_DONE_OFF

0 = disabled

1 = enabled
SRAM_CAL_DONE_ON



APPENDIX I. DATA PATH FPGA REGISTER DEFINITIONS

0 = disabled
1 = enabled

1.1.5 Interrupt Clear Register, Address: 0x0008

Hardware Function: 0x0
Device Address:  0x0008
Read/Write:  Write Only
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The Interrupt Clear Register is used to clear the individual interrupts of the assembly

currently being addressed. It is a write only register.

Each bit of the Interrupt Clear Register has a one to one correspondence with the bits in

the Interrupt Register. Bit 0 of the Interrupt Clear Register does nothing since the SRQ interrupt

is not latched. When the condition causing the interrupt is fixed, the CPU should clear the latched

interrupt bit by writing a one to the corresponding bit in the Interrupt Clear Register.

Table I1.6: Interrupt Clear Register

BIT NAME RESET

31:7 RSVD

6 SRAM_CAL_DONE_ON

SRAM_CAL_DONE_OFF

SYS_-DCM_LOCKED_ON

SYS_-DCM_LOCKED_OFF

SRAM_DCM_LOCKED_ON

SRAM_DCM_LOCKED_OFF

C|lH|IN|[W|K|WC

No Effect

ool OO O

SRAM_DCM_LOCKED_OFF
0 = no change

1 = clear interrupt
SRAM_DCM_LOCKED_ON
0 = no change

1 = clear interrupt

SYS_DCM_LOCKED_OFF
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0 = no change

1 = clear interrupt
SYS_DCM_LOCKED _ON
0 = no change

1 = clear interrupt
SRAM_CAL_DONE_OFF
0 = no change

1 = clear interrupt
SRAM_CAL_DONE_ON
0 = no change

1 = clear interrupt

1.1.6 Status Register, Address

Hardware Function: 0x0
Device Address: 0x000A
Read/Write: Read Only

Table 1.7: Status Register

: 0x000A

BIT

NAME

RESET

31:7

RSVD

6 SRAM_CAL_DONE_ON

SRAM_CAL_DONE_OFF

SYS_-DCM_LOCKED_ON

SYS_.DCM_LOCKED_OFF

SRAM_DCM_LOCKED_ON

SRAM_DCM_LOCKED_OFF

SIF|IN|[W|K~|WC

No Effect

ol len )l i enll el i evll I an )l R an)

SRAM_DCM_LOCKED_OFF
0 = no change
1 = interrupt

SRAM_DCM_LOCKED_ON
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0 = no change

1 = interrupt
SYS_DCM_LOCKED_OFF
0 = no change

1 = clear interrupt
SYS_.DCM_LOCKED_ON
0 = no change

1 = clear interrupt
SRAM_CAL_DONE_OFF
0 = no change

1 = clear interrupt
SRAM_CAL_DONE_ON
0 = no change

1 = clear interrupt

1.1.7 Debug LED Register, Address: 0x000C

Hardware Function: 0x0
Device Address:  0x000C
Read/Write: Read and Write

310

This register is used to control the debug LEDs. Writing a 0 to this register will turn an

LED on, and writing a 1 will turn an LED off. This register is used only for debugging purposes.

Table 1.8: Debug LED Register

BIT NAME RESET

31:4 RSVD 0

3:0 | DEBUG_LEDSI3:0] 0x99
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1.1.8 FPGA Date Code Register, Address: 0x000E

Hardware Function: 0x0
Device Address: 0x000E
Read/Write:  Read Only

This is the FPGA Date Code register. It is used to determine what date and time the

FPGA was built. The date code is essentially the UNIX time format.

Table 1.9: FPGA Date Code Register
BIT NAME RESET
31:0 | DATECODEI31:0] | 0x00000000

1.1.9 FPGA Version Register, Address: 0x0010

Hardware Function: 0x0
Device Address: 0x0010
Read/Write:  Read Only

This register is used to determine the version of the FPGA being built. This register will
be updated when major or minor changes have been applied to the FPGA. An example version for

a first release in integer is 1.0.1.0. and hexadecimal is 0x01.0x01.0x0000.

Table 1.10: FPGA Version Register
BIT NAME RESET
31:24 | REV_MAJORJ31:24] | 0x0100
23:16 | REV_MINORJ[23:16] | 0x0001
15:0 REV_DEV/[15:0] 0x0001
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I.2 Base Address: 0x0100, IODELAY Control Registers

1.2.1 IDELAY _CTRL Reset Register, Address: 0x0100

Hardware Function: 0x0
Device Address: 0x0100
Read/Write: Read and Write

The IDELAY_CTRL Reset register is used to reset the IDELAY_CTRL blocks used in the
Data Path FPGA. The IODELAY blocks will not function until the IDELAY _CTRL blocks are

reset. A reset is performed by setting all bits in this register high-then-low.

Table I.11: IDELAY _CTRL Reset Register

BIT NAME RESET
31:6 RSVD 0

5 RESERVED 0

4 RESERVED 0

3 RESERVED 0

2 RESERVED 0

1 ADC_IDLY_RST_CTRL 0

0 DAC_IDLY _RST_CTRL 0

1.2.2 IDELAY_CTRL Status Register, Address: 0x0102

Hardware Function: 0x0
Device Address: 0x0102
Read/Write:  Read Only

The IDELAY_CTRL Status register is used to report the readiness of the IDELAY_CTRL

block. The ready signals are active high.

Table 1.12: IDELAY_CTRL Status Register

BIT NAME RESET
31:4 RSVD 0

3 ADC_IDELAY _RDY 0

2 SRAM_Q_IDELAY_RDY 0

1 SRAM_D_IDELAY_RDY 0

0 SRAM_CTRL_IDELAY_RDY 0
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I.3 Base Address: 0x0300, RAM /User Pattern Control Reg-

isters

1.3.1 Playback RAM Write Control Register, Address: 0x0300

Hardware Function: 0x0
Device Address: 0x0300
Read/Write: Read and Write

This is the Playback RAM Write Control register. This register initiates an SRAM 4-word
burst write. The write data resides in registers 0x0306 to 0x030C, and the write address resides in
register 0x0304. When performing an SRAM 4-word burst write, the CPU must toggle this bit high
then low. The time between the SRAM Write Enable bit being set high then low is inconsequential,
because a one-shot circuit inside the FPGA creates a single pulse one clock period wide when it

detects a 0—1 transition on its input.

Table 1.13: Playback RAM Write Control Register

BIT NAME RESET
31:1 RSVD 0
0 PLAY_SRAM_WR_EN 0

1.3.2 Playback RAM Write Status Register, Address: 0x0302

Hardware Function: 0x0
Device Address: 0x0302
Read/Write: Read Only

This is the Playback RAM Write Status register. The SRAM_CAL_DONE bit indicates
when the Xilinx QDR-~II SRAM Controller has completed its calibration routine. The Control
FPGA must wait until the SRAM_CAL_DONE bit goes high before it performs any SRAM related
operations, especially if the PPG is currently in SRAM Pattern mode. The SRAM_WR_DONE bit
indicates when a single 128-bit packet has been successfully written to the QDR-II SRAM. The
Control FPGA must wait until the SRAM_WR_DONE bit goes high before initiating a new QDR-II
SRAM Write Sequence.
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Table 1.14: Playback RAM Write Control Register

BIT NAME RESET
31:2 RSVD 0

1 PLAY_SRAM_WR_DONE 0

0 SRAM_CAL_DONE 0

1.3.3 Playback RAM Write Address Register, Address: 0x0304

Hardware Function: 0x0
Device Address: 0x0304
Read/Write: Read and Write

These are the Playback RAM Write Address registers. These registers comprise a register

that is 18-bits wide, and addresses the 4-word burst write transaction.

Table 1.15: Playback RAM Write Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | PLAY_ WR_ADDRJ[17:0] | 0x00000

1.3.4 Playback RAM Write Data 0 Register, Address: 0x0306

Hardware Function: 0x0
Device Address: 0x0306
Read/Write: Read and Write

These are the Playback RAM Write Data 0 registers. These registers comprise a register
that is 32-bits wide, and make up one word of the 4-word burst write transaction. This 32-bit packet

is the LSB Word in the 128-bit packet.

Table 1.16: Playback RAM Write Data 0 Register
BIT NAME RESET
31:0 | PLAY_WRO0_DATA[31:0] | 0x00000000
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1.3.5 Playback RAM Write Data 1 Register, Address: 0x0308

Hardware Function: 0x0
Device Address: 0x0308

Read/Write: Read and Write
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These are the Playback RAM Write Data 1 registers. These registers comprise a register

that is 32-bits wide, and make up one word of the 4-word burst write transaction.

Table 1.17: Playback RAM Write Data 1 Register

BIT

NAME

RESET

31:0

PLAY_WR1_DATA[31:0]

0x00000000

1.3.6 Playback RAM Write Data 2 Register, Address: 0x030A

Hardware Function: 0x0
Device Address: 0x030A

Read/Write: Read and Write

These are the Playback RAM Write Data 2 registers. These registers comprise a register

that is 32-bits wide, and make up one word of the 4-word burst write transaction.

Table 1.18: Playback RAM Write Data 2 Register

BIT

NAME

RESET

31:0

PLAY_WR2_DATA[31:0]

0x00000000
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1.3.7 Playback RAM Write Data 3 Register, Address: 0x030C

Hardware Function: 0x0
Device Address: 0x030C
Read/Write: Read and Write

These are the Playback RAM Write Data 3 registers. These registers comprise a register
that is 32-bits wide, and make up one word of the 4-word burst write transaction. This 32-bit packet

is the MSB Word in the 128-bit packet.

Table 1.19: Playback RAM Write Data 3 Register
BIT NAME RESET
31:0 | PLAY_ WR3_DATA[31:0] | 0x00000000

1.3.8 Playback RAM Read Control Register, Address: 0x030E

Hardware Function: 0x0
Device Address: 0x030E
Read/Write: Read and Write

This is the Playback RAM Read Control register. This register initiates an SRAM read.
The read address resides in registers 0x0312 to 0x0318. When performing an SRAM Read initiation,
the CPU must toggle this bit high then low. The time between the SRAM Read Enable bit being
set high then low is inconsequential, because a one-shot circuit inside the FPGA creates a single

pulse one clock period wide when it detects a 0—1 transition on its input.

Table 1.20: Playback RAM Read Control Register
BIT NAME RESET
31:1 RSVD 0

0 PLAY_SRAM_RD_EN 0
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1.3.9 Playback RAM Read Status Register, Address: 0x0310

Hardware Function: 0x0
Device Address: 0x0310
Read/Write:  Read Only

This is the Playback RAM Read Status register. This register is a place holder for any

important information related to SRAM read operations.

Table 1.21: Playback RAM Read Control Register

BIT NAME RESET
31:2 RSVD 0

0 PLAY_SRAM_RD_DONE 0

0 SRAM_CAL_DONE 0

1.3.10 Playback RAM Read Start Address Register, Address: 0x0312

Hardware Function: 0x0
Device Address: 0x0312
Read/Write: Read and Write

This is the Playback RAM Read Start Address register. This register indicates the start

address for the pattern. It is 18-bits wide, and addresses the 4-word burst read transaction.

Table 1.22: Playback RAM Read Start Address Register
BIT NAME RESET
31:18 RSVD 0
17:0 | PLAY RD_START_ADDRJ[17:0] 0
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1.3.11 Playback RAM Read Stop Address Register, Address: 0x0314

Hardware Function: 0x0
Device Address: 0x0314
Read/Write: Read and Write

This is the Playback RAM Read Stop Address register. This register indicates the stop

address for the pattern. It is 18-bits wide, and addresses the 4-word burst read transaction.

Table 1.23: RAM Read Stop Address (Pattern A) Register

BIT NAME RESET
31:18 RSVD 0
17:0 | PLAY _RD_STOP_ADDR/17:0] 0

1.3.12 Playback RAM Read Increment Address Register, Address: 0x0316

Hardware Function: 0x0
Device Address: 0x0316
Read/Write: Read and Write

This is the Playback RAM Read Increment Address register. This register indicates the

value that the SRAM address is incremented when streaming data from SRAM. It is 18-bits wide.

Table 1.24: Playback RAM Read Increment Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | PLAY_RD_INC_ADDRJ17:0] | 0x00001
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1.3.13 Playback RAM Read Maximum Address Register, Address: 0x0318

Hardware Function: 0x0
Device Address: 0x0318
Read/Write: Read and Write

This is the Playback RAM Read Maximum Address register. This register indicates the
maximum initial address, which is used to pre-load the SRAM stream address counter. It is 18-bits
wide.

Table 1.25: Playback RAM Read Maximum Address Register
BIT NAME RESET

31:18 RSVD 0
17:0 | PLAY_ RD_-MAX_ADDRJ[17:0] | 0x3FFFF

1.3.14 Xilinx SRAM Controller Done Status Register, Address: 0x031A

Hardware Function: 0x0
Device Address: 0x031A
Read/Write: Read Only

This is the Xilinx SRAM Controller Done Status register. This register is used to trou-
bleshoot the calibration routine in the Xilinx SRAM Controller. The calibration routine is made up

of several stages. Each stage of the routine is complete when its status bit goes high.

Table 1.26: Xilinx SRAM Controller Done Status Register
BIT NAME RESET
31:8 RSVD
INIT_.COUNT_DONE
Q_CQp_INIT_DELAY_DONE
Q_-CQn_INIT_DELAY_DONE
CQp-CAL_DONE
CQn_CAL_DONE
WE_CAL_DONE_CQp
WE_CAL_DONE_CQn
CAL_DONE

o

ORI IN|W| K| OO
[l el Hen il el =N Rel el e
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1.3.15 Xilinx SRAM Controller Count Status Register, Address: 0x031C

Hardware Function: 0x0
Device Address: 0x031C
Read/Write:  Read Only

This is the Xilinx SRAM Controller Count Status register. This register is used to trou-
bleshoot the calibration routine in the Xilinx SRAM Controller. The calibration routine is made up
of several stages. Each stage of the routine calculates a tap count that is used to center the CQ_p

clock in the lower 18-bits of read data and the CQn clock in the upper 18-bits of read data.

Table 1.27: Xilinx SRAM Controller Count Status Register

CQp_Q_DATA_VALID
0 CQn_Q_DATA_VALID

BIT NAME RESET
31:26 RSVD 0
25:20 | Q_CQp_INIT_DELAY_DONE_TAP_CNT[5:0] 0
19:14 | Q_CQuINIT_DELAY_DONE_TAP_CNT[5:0] 0
13:8 CQp_CAL_TAP_CNT[5:0] 0
7:2 CQn_CAL_TAP_CNT[5:0] 0
0
0
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I[.3.16 Xilinx SRAM Controller Debug Control Register, Address: 0x031E

Hardware Function: 0x0
Device Address: 0x031E
Read/Write:  Read Only

This is the Xilinxk SRAM Controller Debug Control register. This register is used to trou-
bleshoot the calibration routine in the Xilinx SRAM Controller. The signals below allow for manual

control of the calibration routines. For a detailed description of the signals below, see the appendix

of the Xilinx MIG User’s Guide (ug086.pdf) [27].

Table 1.28: Xilinx SRAM Controller Debug Control Register

BIT NAME RESET
31:18 RSVD 0
17 DBG_IDEL_UP_ALL 0
16 DBG_IDEL_DOWN_ALL 0
15 DBG_SEL_ALLIDEL_CQ 0
14 DBG_SEL_IDEL_CQ 0
13 DBG_IDEL_UP_CQ 0
12 DBG_IDEL_DOWN_CQ 0
11 DBG_SEL_ALL_IDEL_CQ.-n 0
10 DBG_SEL_IDEL_CQ.n 0
9 DBG_IDEL_UP_CQ.n 0
8 DBG_IDEL_DOWN_CQ.n 0
7 DBG_SEL_ALL_IDEL_Q_CQ 0
6 DBG_SEL.IDEL.Q_CQ 0
5 | DBG.SEL_ALL.IDEL.Q.CQ.n 0
4 DBG_IDEL_UP_Q.CQ 0
3 DBG_IDEL_DOWN_Q_CQ 0
2 DBG_SEL_IDEL.Q_CQ.n 0
1 DBG_IDEL_UP.Q.CQ.n 0
0 DBG_IDEL_DOWN_Q.CQ.n 0
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1.3.17 Custom SRAM Controller FIFO Status Register, Address: 0x0320
Hardware Function: 0x0

Device Address:  0x0320
Read/Write:  Read Only

This is the custom SRAM Controller FIFO Status register. This register is used to trou-

bleshoot the read data path of the SRAM Controllers. These bits should always be 0.

Table 1.29: Custom SRAM Controller FIFO Status Register

BIT NAME RESET
31:2 RSVD 0

1 SRAM_FIFO_FULL 0

0 SRAM_FIFO_EMPTY 0

1.3.18 Playback RAM Write Trigger Data Register, Address: 0x0322

Hardware Function: 0x0
Device Address:  0x0322
Read/Write: Read and Write

This is the Playback RAM Write Trigger Data registers. This register contains trigger
location bits that are stored in the MSB 4-bits of each of the 4x 36-bit SRAM words. This trigger
data is all ones at the first location in the SRAM, and all zeros at all remaining SRAM locations.

This allows the trigger pulse to be synchronous to the SRAM data.

Table 1.30: Playback RAM Write Trigger Data Register
BIT NAME RESET
31:16 RSVD 0

15:0 | PLAY_TRIG_DATA[15:0] | 0x0000
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1.3.19 Capture RAM Read Control Register, Address: 0x0324

Hardware Function: 0x0
Device Address: 0x0324
Read/Write: Read and Read

This is the Capture RAM Read Control register. This register initiates an SRAM 4-word
burst read. The read data resides in registers 0x0328 to 0x032E, and the read address resides
in register 0x0326. When performing an SRAM 4-word burst read, the CPU must toggle the
CAP_SRAM_RD_EN bit high then low. The time between the Capture SRAM Read Enable bit
being set high then low is inconsequential, because a one-shot circuit inside the FPGA creates a
single pulse one clock period wide when it detects a 0—1 transition on its input. To enable Capture

mode set CAP_NPLAY to a logic high. To enable Playback mode set CAP_NPLAY to a logic low.

Table 1.31: Capture RAM Read Control Register

BIT NAME RESET
31:3 RSVD 0

2 CAP_NPLAY 0

1 CAP_SRAM_RD_EN 0

0 RSVD 0

1.3.20 Capture RAM Read Address Register, Address: 0x0326

Hardware Function: 0x0
Device Address: 0x0326
Read/Write: Read and Write

These are the Capture RAM Read Address registers. This register is 18-bits wide, and

addresses the 4-word burst read transaction.

Table 1.32: Capture RAM Read Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | CAP_RD_ADDRJ17:0] | 0x00000
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1.3.21 Capture RAM Write Start Address Register, Address: 0x0328

Hardware Function: 0x0
Device Address: 0x0328
Read/Write: Read and Write

This is the Capture RAM Write Start Address register. This register indicates the start

address that the data is streamed into the SRAM. It is 18-bits wide.

Table 1.33: Capture RAM Write Start Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | CAP.WR_START_ADDR]J17:0] | 0x00000

1.3.22 Capture RAM Write Stop Address Register, Address: 0x032A

Hardware Function: 0x0
Device Address: 0x032A
Read/Write: Read and Write

This is the Capture RAM Write Stop Address register. This register indicates the stop

address that the data is streamed into the SRAM. It is 18-bits wide.

Table 1.34: Capture RAM Write Stop Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | CAP.WR_STOP_ADDRJ[17:0] | 0x3FFFF
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1.3.23 Capture RAM Write Increment Address Register, Address: 0x032C

Hardware Function: 0x0
Device Address: 0x032C
Read/Write: Read and Write

This is the Capture RAM Write Increment Address register. This register indicates the

value that the SRAM address is incremented when streaming data into the SRAM. It is 18-bits wide.

Table 1.35: Capture RAM Write Increment Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | CAP_WR_NC_ADDRJ17:0] | 0x00001

1.3.24 Capture RAM Write Maximum Address Register, Address: 0x032E

Hardware Function: 0x0
Device Address:  0x032E
Read/Write: Read and Write

This is the Capture RAM Write Maximum Address register. This register indicates the
maximum initial address, which is used to pre-load the SRAM stream address counter. It is 18-bits

wide.

Table 1.36: Capture RAM Read Maximum Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | CAP-WR_MAX_ADDRJ17:0] | 0x3FFFE
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1.3.25 Capture RAM Read Data 0 Register, Address: 0x0330

Hardware Function: 0x0
Device Address: 0x0330
Read/Write:  Read Only

These are the Capture RAM Read Data 0 registers. These registers comprise a register
that is 16-bits wide, and make up one word of the 4-word burst read transaction. This 16-bit packet
is the LSB Word in the 128-bit packet.

Table 1.37: Capture RAM Read Data 0 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_.RD0_-DATA[15:0] | 0x0000

1.3.26 Capture RAM Read Data 1 Register, Address: 0x0332

Hardware Function: 0x0
Device Address: 0x0332
Read/Write: Read Only

These are the Capture RAM Read Data 1 registers. These registers comprise a register

that is 16-bits wide, and make up one word of the 4-word burst read transaction.

Table 1.38: Capture RAM Read Data 1 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_RD1_DATA[15:0] | 0x0000
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1.3.27 Capture RAM Read Data 2 Register, Address: 0x0334

Hardware Function: 0x0
Device Address: 0x0334
Read/Write:  Read Only
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These are the Capture RAM Read Data 2 registers. These registers comprise a register

that is 16-bits wide, and make up one word of the 4-word burst read transaction.

Table 1.39: Capture RAM Read Data 2 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD2.DATA[15:0] | 0x0000

1.3.28 Capture RAM Read Data 3 Register, Address: 0x0336

Hardware Function: 0x0
Device Address: 0x0336
Read/Write: Read Only

These are the Capture RAM Read Data 3 registers. These registers comprise a register

that is 16-bits wide, and make up one word of the 4-word burst read transaction.

Table 1.40: Capture RAM Read Data 3 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD3_DATA[15:0] | 0x0000
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1.3.29 Capture RAM Read Data 4 Register, Address: 0x0338

Hardware Function: 0x0
Device Address: 0x0338
Read/Write:  Read Only
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These are the Capture RAM Read Data 4 registers. These registers comprise a register

that is 16-bits wide, and make up one word of the 4-word burst read transaction.

Table 1.41: Capture RAM Read Data 4 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD4_DATA[15:0] | 0x0000

1.3.30 Capture RAM Read Data 5 Register, Address: 0x033A

Hardware Function: 0x0
Device Address: 0x033A
Read/Write: Read Only

These are the Capture RAM Read Data 5 registers. These registers comprise a register

that is 16-bits wide, and make up one word of the 4-word burst read transaction.

Table 1.42: Capture RAM Read Data 5 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD5_DATA[15:0] | 0x0000
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1.3.31 Capture RAM Read Data 6 Register, Address: 0x033C

Hardware Function: 0x0
Device Address: 0x033C
Read/Write:  Read Only

These are the Capture RAM Read Data 6 registers. These registers comprise a register

that is 16-bits wide, and make up one word of the 4-word burst read transaction.

Table 1.43: Capture RAM Read Data 6 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_.RD6_DATA[15:0] | 0x0000

1.3.32 Capture RAM Read Data 7 Register, Address: 0x033E

Hardware Function: 0x0
Device Address:  0x033E
Read/Write: Read Only

These are the Capture RAM Read Data 7 registers. These registers comprise a register
that is 16-bits wide, and make up one word of the 4-word burst read transaction. This 16-bit packet

is the MSB word in the 128-bit data word.

Table 1.44: Capture RAM Read Data 6 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_RD7_DATA[15:0] | 0x0000
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1.3.33 Capture RAM Read Data 8 Register, Address: 0x0340

Hardware Function: 0x0
Device Address: 0x0340
Read/Write:  Read Only

These are the Capture RAM Read Data 8 registers. These registers comprise a register
that is 16-bits wide, and make up one word of the 4-word burst read transaction. This 16-bit packet

contains the corresponding overflow flags for the 128-bit packet.

Table 1.45: Capture RAM Read Data 7 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_.RD8_DATA[15:0] | 0x0000

1.3.34 Capture RAM Read Status Register, Address: 0x0342

Hardware Function: 0x0
Device Address: 0x0342
Read/Write: Read Only

This is the Capture RAM Read Status register. The CAP_SRAM_RD_DONE bit indicates
when a single 128-bit packet has been successfully read from the QDR-II SRAM. The Control FPGA
must wait until the CAP_.SRAM_RD_DONE bit goes high before initiating a new QDR-II SRAM

Read Sequence.

Table 1.46: Capture RAM Read Status Register

BIT NAME RESET
31:2 RSVD 0

1 CAP_SRAM_RD_DONE 0

0 RSVD 1
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1.3.35 Playback RAM FIFO Read Count Register, Address: 0x0344

Hardware Function: 0x0
Device Address: 0x0344
Read/Write:  Read Only

This is the Playback RAM FIFO Read Count register. The PLAY _SRAM_FIFO_RD_CNT

register indicates how many words are in the SRAM Playback FIFO.

Table 1.47: Playback RAM FIFO Read Count Register

BIT NAME RESET
31:12 RSVD 0
11:0 | PLAY_SRAM_FIFO_RD_CNTJ[11:0] 0

1.3.36 Playback Block RAM Write Control Register, Address: 0x0380

Hardware Function: 0x0
Device Address:  0x0380
Read/Write: Read and Write

This is the Playback Block RAM Write Control register. This register initiates a Block
RAM 128-bit write. When performing a Block RAM 128-bit write, the CPU must set these bits
high.

Table 1.48: Playback Block RAM Write Control Register
BIT NAME RESET
31:1 RSVD 0

0 PLAY BRAM_WR_EN 0
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1.3.37 Playback Block RAM Write Address Register, Address: 0x0382

Hardware Function: 0x0
Device Address: 0x0382
Read/Write: Read and Write

This is the Playback Block RAM Write Address register. This register is 14-bits wide, and

addresses the 128-bit write transaction.

Table 1.49: Playback Block RAM Write Address Register
BIT NAME RESET
31:14 RSVD 0

13:0 | PLAY BRAM_WR_ADDR[13:0] | 0x0000

1.3.38 Playback Block RAM Write Data 0 Register, Address: 0x0384

Hardware Function: 0x0
Device Address: 0x0384
Read/Write: Read and Write

This is the Playback Block RAM Write Data 0 register. This register is 32-bits wide, and
makes up one word of the 128-bit write transaction. This 32-bit packet is the LSB Word in the

128-bit packet.

Table 1.50: Playback Block RAM Write Data 0 Register
BIT NAME RESET
31:0 | PLAY BRAM_WRO0_DATA[31:0] | 0x00000000
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1.3.39 Playback Block RAM Write Data 1 Register, Address: 0x0386

Hardware Function: 0x0
Device Address: 0x0386
Read/Write: Read and Write

This is the Playback Block RAM Write Data 1 register. This register is 32-bits wide, and

makes up one word of the 128-bit write transaction.

Table 1.51: Playback Block RAM Write Data 1 Register
BIT NAME RESET
31:0 | PLAY BRAM_WRI1_DATAI31:0] | 0x00000000

1.3.40 Playback Block RAM Write Data 2 Register, Address: 0x0388

Hardware Function: 0x0
Device Address: 0x0388
Read/Write: Read and Write

This is the Playback Block RAM Write Data 2 register. This register is 32-bits wide, and

makes up one word of the 128-bit write transaction.

Table 1.52: Playback Block RAM Write Data 2 Register
BIT NAME RESET
31:0 | BRAM_WR2_DATA[31:0] | 0x00000000
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1.3.41 Playback Block RAM Write Data 3 Register, Address: 0x038A

Hardware Function: 0x0
Device Address: 0x038A
Read/Write: Read and Write

This is the Playback Block RAM Write Data 3 register. This register is 32-bits wide, and
makes up one word of the 128-bit write transaction. This 32-bit packet is the MSB Word in the

128-bit packet.

Table 1.53: Playback Block RAM Write Data 3 Register
BIT NAME RESET
31:0 | PLAY BRAM_WR3_DATAI31:0] | 0x00000000

1.3.42 Playback Block RAM Read Control Register, Address: 0x038C

Hardware Function: 0x0
Device Address: 0x038C
Read/Write: Read and Write

This is the Playback Block RAM Read Control register. This register initiates an Block
RAM read. When performing a Block RAM Read initiation, the CPU must set bit 0 high.

Table 1.54: Playback Block RAM Read Control Register
BIT NAME RESET
31:1 RSVD 0

0 PLAY BRAM_RD_EN 0
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1.3.43 Playback Block RAM Read Start Address Register, Address: 0x038E

Hardware Function: 0x0
Device Address: 0x038E
Read/Write: Read and Write

This is the Playback Block RAM Read Start Address (Pattern A) register. This register

is 14-bits wide, and addresses the 4-word burst read transaction.

Table 1.55: Block RAM Read Start Address Register

BIT NAME RESET
31:14 RSVD 0
13:0 | PLAY_.BRAM_RD_START_ADDR][13:0] 0

1.3.44 Playback Block RAM Read Stop Address Register, Address: 0x0390

Hardware Function: 0x0
Device Address:  0x0390
Read/Write: Read and Write

These are the Playback Block RAM Read Stop Address register. This register is 14-bits

wide, and addresses the 128-bit read transaction.

Table 1.56: Playback Block RAM Read Stop Address Register
BIT NAME RESET
31:14 RSVD 0
13:0 | PLAY_BRAM_RD_STOP_ADDR]13:0] 0
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1.3.45 Capture Block RAM Read Data 0 Register, Address: 0x039A

Hardware Function: 0x0
Device Address: 0x039A
Read/Write:  Read Only

These are the Capture Block RAM Read Data 0 registers. These registers comprise a
register that is 16-bits wide, and make up one word of the 128-bit read transaction. This 16-bit
packet is the LSB Word in the 128-bit packet.

Table 1.57: Capture Block RAM Read Data 0 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_.RD0_-DATA[15:0] | 0x0000

1.3.46 Capture Block RAM Read Data 1 Register, Address: 0x039C

Hardware Function: 0x0
Device Address: 0x039C
Read/Write: Read Only

These are the Capture Block RAM Read Data 1 registers. These registers comprise a

register that is 16-bits wide, and make up one word of the 128-bit read transaction.

Table 1.58: Capture Block RAM Read Data 1 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_RD1_DATA[15:0] | 0x0000
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1.3.47 Capture Block RAM Read Data 2 Register, Address: 0x039E

Hardware Function: 0x0
Device Address: 0x039E
Read/Write:  Read Only

These are the Capture Block RAM Read Data 2 registers.

These registers comprise a

register that is 16-bits wide, and make up one word of the 128-bit read transaction.

Table 1.59: Capture Block RAM Read Data 2 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD2.DATA[15:0] | 0x0000

1.3.48 Capture Block RAM Read Data 3 Register, Address: 0x03A0

Hardware Function: 0x0
Device Address: 0x03A0
Read/Write: Read Only

These are the Capture Block RAM Read Data 3 registers.

These registers comprise a

register that is 16-bits wide, and make up one word of the 128-bit read transaction.

Table 1.60: Capture Block RAM Read Data 3 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD3_DATA[15:0] | 0x0000
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1.3.49 Capture Block RAM Read Data 4 Register, Address: 0x03A2

Hardware Function: 0x0
Device Address: 0x03A2
Read/Write:  Read Only

These are the Capture Block RAM Read Data 4 registers.

These registers comprise a

register that is 16-bits wide, and make up one word of the 128-bit read transaction.

Table 1.61: Capture Block RAM Read Data 4 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD4_DATA[15:0] | 0x0000

1.3.50 Capture Block RAM Read Data 5 Register, Address: 0x03A4

Hardware Function: 0x0
Device Address: 0x03A4
Read/Write: Read Only

These are the Capture Block RAM Read Data 5 registers.

These registers comprise a

register that is 16-bits wide, and make up one word of the 128-bit read transaction.

Table 1.62: Capture Block RAM Read Data 5 Register

BIT NAME RESET
31:16 RSVD 0
15:0 | CAP_RD5_DATA[15:0] | 0x0000
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1.3.51 Capture Block RAM Read Data 6 Register, Address: 0x03A6

Hardware Function: 0x0
Device Address: 0x03A6
Read/Write:  Read Only

These are the Capture Block RAM Read Data 6 registers. These registers comprise a

register that is 16-bits wide, and make up one word of the 128-bit read transaction.

Table 1.63: Capture Block RAM Read Data 6 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_.RD6_DATA[15:0] | 0x0000

1.3.52 Capture Block RAM Read Data 7 Register, Address: 0x03A8

Hardware Function: 0x0
Device Address: 0x03AS
Read/Write: Read Only

These are the Capture Block RAM Read Data 7 registers. These registers comprise a
register that is 16-bits wide, and make up one word of the 128-bit read transaction. This 16-bit

packet is the MSB word in the 128-bit data word.

Table 1.64: Capture Block RAM Read Data 6 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_RD7_DATA[15:0] | 0x0000




APPENDIX I. DATA PATH FPGA REGISTER DEFINITIONS 340

1.3.53 Capture Block RAM Read Data 8 Register, Address: 0x03AA

Hardware Function: 0x0
Device Address: 0x03AA
Read/Write:  Read Only

These are the Capture Block RAM Read Data 8 registers. These registers comprise a
register that is 16-bits wide, and make up one word of the 128-bit read transaction. This 16-bit

packet contains the corresponding overflow flags for the 128-bit packet.

Table 1.65: Capture Block RAM Read Data 7 Register
BIT NAME RESET
31:16 RSVD 0

15:0 | CAP_.RD8_DATA[15:0] | 0x0000

1.3.54 Capture Block RAM Write Status Register, Address: 0x03AC

Hardware Function: 0x0
Device Address: 0x03AC
Read/Write: Read Only

This is the Capture Block RAM Write Status register. The CAP_.BRAM_WR_DONE bit
indicates when a single 128-bit packet has been successfully read from the Block RAM. The Control
FPGA must wait until the CAP_.BRAM_WR_DONE bit goes high before initiating a new Block
RAM Write Sequence.

Table 1.66: Capture Block RAM Write Status Register
BIT NAME RESET
31:1 RSVD 0

0 CAP_BRAM_WR_DONE 0
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1.3.55 Playback Block RAM Write Trigger Register, Address: 0x03AE

Hardware Function: 0x0
Device Address: 0x03AE
Read/Write: Read and Write

These are the Playback Block RAM Write Trigger registers. This 16-bit packet is the

trigger word for the 128-bit data word.

Table 1.67: Playback Block RAM Write Trigger Register
BIT NAME RESET
31:16 RSVD 0

15:0 | PLAY_ BRAM_WR_TRIG[15:0] | 0x0000

I.4 Base Address: 0x0400, Miscellaneous Control Registers

1.4.1 AUX Input Control Register, Address: 0x0400

Hardware Function: 0x0
Device Address:  0x0400
Read/Write: Read and Write

The AUX Input Control register is used to set the current mode of the external AUX Input.

The states of the AUX Input Control register are shown in Table 1.69.

Table 1.68: AUX Input Control Register
BIT NAME RESET
31:3 RSVD 0
2:0 | AUX_CTRL 0
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Table 1.69: AUX Input Control Modes

AUX_CTRL
Mode
1 0
0 X Disabled
1 Gating
111 0 Sweep

1.4.2 RAM Select Register, Address: 0x0402
Hardware Function: 0x0

Device Address:  0x0402
Read/Write: Read and Write

The RAM Select register is used to select between Block RAM patterns and QDR-IT SRAM

patterns. The states of the RAM Select register are shown in Table 1.71.

Table 1.70: Pattern Select Register

BIT NAME RESET
31:1 RSVD 0
0 BRAM_nSRAM 0

Table 1.71: RAM Select Modes
BRAM_nSRAM Mode
0 QDR-IT SRAM Pattern
1 Block RAM Pattern
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1.4.3 Sweep Control Register, Address: 0x0404
Hardware Function: 0x0

Device Address:  0x0404
Read/Write: Read and Write

This is the Sweep Control register. This register is used to enable sweep.

Table 1.72: Sweep Control Register

BIT | NAME | RESET
31:1 | RSVD 0
0 SWEEP 0

1.4.4 Gating Control Register, Address: 0x0406
Hardware Function: 0x0

Device Address:  0x0406
Read/Write: Read and Write

This is the Gating Control register. This register is used to enable waveform gating.

Table 1.73: Gating Control Register

BIT | NAME | RESET
31:1 | RSVD 0
0 GATE 0
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1.4.5 Waveform Enable Register, Address: 0x0408

Hardware Function: 0x0
Device Address: 0x0408
Read/Write: Read and Write

This is the Waveform Enable register. This register is used to enable waveform.

Table 1.74: Waveform Enable Register
BIT | NAME | RESET
31:1 RSVD 0

0 WAVE_EN 0

I.4.6 DC/RAM Select Register, Address: 0x040A

Hardware Function: 0x0
Device Address: 0x040A
Read/Write: Read and Write

The DC/RAM Select register is used to select between RAM patterns and a DC value of

16’h0000. The states of the DC/RAM Select register are shown in Table 1.76.

Table 1.75: Pattern Select Register
BIT NAME RESET
31:1 RSVD 0

0 DCnRAM 0

Table 1.76: RAM Select Modes
BRAM _ nSRAM Mode
0 RAM Pattern
1 DC Value
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1.4.7 Pattern Shift Register, Address: 0x040C

Hardware Function: 0x0
Device Address: 0x040C

Read/Write: Read and Write

The Pattern Shift register is used to perform a shift by 16-K bits, where the value of this

register is 2%. The states of the Pattern Shift register are shown in Table I1.78.

Table 1.77: Pattern Shift Register

BIT NAME RESET
31:16 RSVD 0
15:0 | WAVE_SHIFT([15:0] | 0x0001

Table 1.78: Pattern Shift Modes

Bits to Shift | Value
0 0x10000
1 0x08000
2 0x04000
3 0x02000
4 0x01000
5 0x00800
6 0x00400
7 0x00200
8 0x00100
9 0x00080
10 0x00040
11 0x00020
12 0x00010
13 0x00008
14 0x00004
15 0x00002
16 0x00001




APPENDIX I. DATA PATH FPGA REGISTER DEFINITIONS

1.4.8 Pattern Invert Register, Address: 0x040E

Hardware Function: 0x0
Device Address: 0x040E
Read/Write: Read and Write
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The Pattern Invert register is used to perform a two’s complement invert of the current

pattern. The states of the Pattern Invert register are shown in Table 1.80.

Table 1.79: Pattern Invert Register

BIT NAME RESET
31:16 RSVD 0
15:0 | WAVE_INVERT/[15:0] | 0x0001

Table 1.80: Pattern Invert Modes

PAT_INV

Mode

0x0001

Normal Pattern

OxFFFF

Inverted Pattern
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I.5 Base Address: 0x0500, Trigger Control Registers

1.5.1 Trigger Output Mode Register, Address: 0x0500

Hardware Function: 0x0

Device Address:  0x0500
Read/Write: Read and Write

This is the Trigger Output Mode register. This register controls the type of trigger present

on the front panel.

Table 1.81: Trigger Output Mode Register

BIT NAME RESET
31:1 RSVD 0
0 TRIG.-OUT_-MODE 1

Table 1.82: Trigger Output Modes
TRIG_.OUT_MODE Mode
0 Divided Clock Trigger
1 Pattern Trigger
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1.5.2 Trigger RAM Mode Register, Address: 0x0502

Hardware Function: 0x0
Device Address: 0x0502
Read/Write: Read and Write

This is the Trigger RAM Mode register. This register controls the type of trigger for the
RAM Patterns.

Table 1.83: Trigger RAM Mode Register

BIT NAME RESET
31:1 RSVD 0
0 TRIG_.RAM_MODE 0

Table 1.84: Trigger RAM Modes

TRIG_RAM_MODE Mode
0 A Only Pattern Trigger
1 A /B Pattern Trigger

1.5.3 RAM Pattern A Trigger Address Register, Address: 0x0504

Hardware Function: 0x0
Device Address: 0x0504
Read/Write: Read and Write

This is the RAM Pattern A Trigger Address register. This register is 18-bits wide, and

makes up the RAM pattern A trigger address register used by the RAM Pattern Trigger Module.

Table 1.85: RAM Pattern A Trigger Address Register
BIT NAME RESET
31:18 RSVD 0

17:0 | RAM_APATRN_TRIG[17:0] | 0x2AAAA
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1.5.4 Divided Clock Trigger Control Register, Address: 0x0506

Hardware Function: 0x0
Device Address: 0x0506
Read/Write: Read and Write

This is the Divided Clock Trigger Control register. This register is used to select the divided

clock frequency.

Table 1.86: Divided Clock Trigger Control Register
BIT NAME RESET
31:2 RSVD 0
1:0 | DIV_CLK_TRIG]1:0] 0b01

Table 1.87: Divided Clock Trigger Modes
DIV_CLK_TRIG Mode Frequency

00 clk 500 MHz
01 <k (default) | 250 MHz
10 dk 125 MHz

4

11 dk 62.5 MHz




APPENDIX I. DATA PATH FPGA REGISTER DEFINITIONS

I.6 Base Address: 0x0700, ADC Control Registers

1.6.1 ADC Data FIFO Empty Register, Address: 0x071A

Hardware Function: 0x0
Device Address: 0x071A

Read/Write: Read and Write
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The ADC Data FIFO Empty register is used to read the Empty status of the FIFOs. These

will most likely be used for debug only as the FIFOs are continuously filled and emptied.

Table 1.88: ADC Data FIFO Empty Register

BIT NAME RESET
31:18 RSVD 0
17:0 | MUX_FIFO_LEMPTY 0

1.6.2 ADC Data FIFO Full Register, Address: 0x071C

Hardware Function: 0x0
Device Address: 0x071C

Read/Write: Read and Write

The ADC Data FIFO Full register is used to read the Full status of the FIFOs. These will

most likely be used for debug only as the FIFOs are continuously filled and emptied.

Table 1.89: ADC Data FIFO Full Register

BIT NAME RESET
31:18 RSVD 0
17:0 | MUX_FIFO_FULL 0
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1.7 Base Address: 0x0800, AsAP Control Registers

1.7.1 AsAP #0 Read Data Register, Address: 0x0800

Hardware Function: 0x0

Device Address:  0x0800
Read/Write:  Read Only

The AsAP #0 Read Data register is used to store the data read from AsAP #0.

Table 1.90: AsAP #0 Read Data Register

BIT NAME RESET
31:16 RSVD 0
15:0 | ASAPO_RD_DATA[15:0] 0

1.7.2 AsAP #1 Read Data Register, Address: 0x0802

Hardware Function: 0x0
Device Address:  0x0802
Read/Write: Read Only

The AsAP #1 Read Data register is used to store the data read from AsAP #1.

Table 1.91: AsAP #1 Read Data Register
BIT NAME RESET
31:16 RSVD 0
15:0 | ASAP1.RD_DATA[15:0] 0




APPENDIX I. DATA PATH FPGA REGISTER DEFINITIONS 352

1.7.3 AsAP #0 Control Register, Address: 0x0804

Hardware Function: 0x0
Device Address: 0x0804
Read/Write:  Read Only

The AsAP #0 Control register is used to control AsAP #0.

Table 1.92: AsAP #0 Control Register
BIT NAME RESET
31:1 RSVD 0

0 ASAPO_CTRL 0

1.7.4 AsAP #1 Control Register, Address: 0x0806

Hardware Function: 0x0
Device Address: 0x0806
Read/Write: Read Only

The AsAP #1 Control register is used to control AsAP #1.

Table 1.93: AsAP #1 Control Register
BIT NAME RESET
31:1 RSVD 0

0 ASAP1_CTRL 0
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Appendix J

Control FPGA EDK /MicroBlaze

Peripherals

The Control FPGA on the measurement board serves many purposes, from configuring
the Data Path FPGA to loading waveform files for the baseband signal source. The Control FPGA
uses a Xilinx MicroBlaze 32-bit soft-core processor, which is implemented in the FPGA fabric. The
MicroBlaze processor has many peripherals attached to its processor local bus (PLB) for controlling
external SPI and I2C devices. These devices are controlled by software written in C and C++, and
running on the MicroBlaze processor. The software is developed using the Xilinx embedded devel-
opment kit (EDK), which contains a library of common peripherals from SPI interface controllers to
general purpose I/O controllers. In addition, the EDK software application allows custom processor
peripherals to be written in either Verilog HDL or VHDL. This chapter will describe each of the

EDK peripherals used by the MicroBlaze processor in the Control FPGA.

J.1 Field Upgrade

The measurement board contains both a 64 MB serial peripheral interface (SPI) configu-
ration flash programmable read only memory (PROM) and a 2 GB microSD card for configuration
file and calibration data storage. The boot-loader application will always be contained in the block
ram of each FPGA image, and will rarely need to change. The factory image will always reside at
location 0x0 in the SPI Configuration Flash PROM to provide a reliable way of recovering from a

configuration error.
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The upgrade image is stored in a file named “UPGRADE.MCS” in the CONFIG directory
of the microSD. The MicroBlaze 32-bit micro-controller will then perform a CRC checksum test to
verify that the image is valid and move the upgrade image into the upgrade location in the SPI
Configuration Flash PROM.

At system power-up or restart, the Xilinx Spartan-3A control FPGA will be configured from
whichever image the internal configuration access port (ICAP) peripheral is currently programmed to
boot from in the SPI configuration flash PROM. The factory default is to boot from the factory image
in the SPI configuration flash PROM. Once the control FPGA is configured the boot-loader will
transfer the control application data, as part of the power-up procedure, from the SPI configuration

flash PROM to the DDR SDRAM memory.

J.1.1 hw_icap_registers_0: ICAP Software Register Peripheral

The hw_icap_registers_vi_00_a EDK Peripheral is used to control the Xilinx Spartan-3A
ICAP primitive (ICAP_SPARTAN3A). The ICAP_SPARTAN3A primitive works similar to the slave
parallel (SelectMAP) configuration interface except it is available to the FPGA application using
internal routing connections. Furthermore, the ICAP primitive has separate read and write data
ports, as opposed to the bidirectional bus on the SelectMAP interface. ICAP allows the FPGA appli-
cation to access configuration registers, readback configuration data, or to trigger a MultiBoot event
after configuration successfully completes. The register map of the ICAP_SPARTANSA primitive is
shown in Table J.2. The variables shown in the Default Value column of Table J.2 are described in

Table J.1. The hw_icap_registers_vi_00-a EDK Peripheral’s register map is shown in Table J.3.

Table J.1: ICAP Variable Descriptions
Variable Name | # of Bits | Description

internal_addr 32 MultiBoot Address: SPI PROM Boot Location
internal_mode 3 BOOTMODE: M[2:0] Configuration Mode Pins
internal_vsel 3 VS[2:0] SPI Configuration Mode Pins
internal_use 1 NEW_MODE

0 = Sample M[2:0] and VS[2:0] pins
1 = Use BOOTMODE bits
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Table J.2: ICAP_SPARTANB3A Register Map

Address | Name Default Value
1 sync_H 0xAA
2 sync_L 0x99
3 tlw_genl H | 0x32
4 tlw_genl L | 0x61
5 addr[15:8] internal_addr[15:8]
6 addr[7:0] internal_addr[7:0]
7 tlw_gen2_H | 0x32
8 tlw_gen2 L. | 0x81
9 addr[31:24] | internal_addr[31:24]
10 addr[23:16] | internal_addr[23:16]
11 tlw_mode H | 0x32
12 tlw_mode L. | OxA1l
13 reserved {1'b0, internal_use, internal_mode[2:0], internal_vsel[2:0]}
14 user_mode 0x00
15 tlw_cmd H | 0x30
16 tlw_cmd_L 0xA1
17 reboot_H 0x00
18 reboot_L 0x0E
19 noop_H 0x20
20 noop_L 0x00
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Table J.3: hw_icap_-registers_vi_00-a EDK Peripheral Register Map

Address

Name

R/W

Default Value

Description

{24’b0,icap_wr_reg[24:31]}

R/W

0x00000000

ICAP Write Byte Register.

{24’b0,icap_rd_reg[24:31]}

RO

0x00000000

ICAP Read Byte Register.

{307b0,icap_ctrl[30:31]}

R/W

0x00000003

ICAP Control Register.
[0:29]: reserved,;
[30]: icap_rnw; ICAP Read/nWrite Signal
1 = Read Operation.
0 = Write Operation.
[31]: icap-ce; ICAP Clock Enable (Active Low)

{31'b0,icap_clk_r[31]}

R/W

0x00000001

ICAP Clock Register.
[0:30]: reserved;
[31]: icap_clk; ICAP Clock
Toggle high then low to clock a
data byte into or out of the ICAP module.

{31’b0,icap_busy}

RO

0x00000000

ICAP Busy/Ready output Register.

[0:30]: reserved;

[31]: icap-busy; ICAP Busy/Ready output (Active High).

busy status. Only used in read
operations. Busy remains Low
during writes. Ops can be started

when this bit goes high.

STVYHAHAIYHAd AZVTIOUDIN/MAHT VOdAd TOYINOD [ XIANAV
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J.1.1.1 ICAP: Get Boot Address

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

To read the boot address from the ICAP module follow the steps outlined below:
. First get lower 16-bits

. Set the icap_ctrl[30:31] register bits (icap_rnw bit and icap_ce) to a 1; or 0x3.

Set the icap_ctrl[30] register bit (icap_rnw bit) to a 0.

. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

Write 0x20 (noop_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (noop_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0xAA (sync_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x99 (sync_L) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x2A (tlr_gen2_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x81 (t1r_gen2_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.
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23. Write 0x20 (noop_H) to the icap_wr_reg register.
24. Set the icap_clk register bit to a 0.

25. Set the icap_clk register bit to a 1.

26. Write 0x00 (noop_L) to the icap_wr_reg register.
27. Set the icap_clk register bit to a 0.

28. Set the icap_clk register bit to a 1.

29. Set the icap_ctrl[31] register bit (icap_ce bit) to a 1.
30. Set the icap_ctrl[30] register bit (icap_rnw bit) to a 1.
31. Set the icap_ctrl[31] register bit (icap-ce bit) to a 0.
32. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.
33. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

34. Read the value in the icap_rd_reg, store the value in the lower 8-bits of the Address variable
(i.e., addr[7:0]).

35. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

36. Read the value in the icap_rd_reg, store the value in the next 8-bits of the Address variable
(i.e., addr[15:8]).

37. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

38. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

39. Set the icap_ctrl[31] register bit (icap_ce bit) to a 1.

40. Now get upper 16-bits

41. Set the icap_ctrl[30:31] register bits (icap_rnw bit and icap_ce) to a 1; or 0x3.
42. Set the icap_ctrl[30] register bit (icap_rnw bit) to a 0.

43. Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

44. Write 0x20 (noop_H) to the icap_wr_reg register.
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45.

46.

47.

48.

49.

50.

ol.

92.

53.

o4.

55.

56.

o7.

58.

99.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (noop-L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0xAA (sync_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x99 (sync_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x2A (t1r_genl H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x61 (t1r_genl L) to the icap_wr._reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x20 (noop_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (noop_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Set the icap_ctrl[31] register bit (icap_ce bit) to a 1.
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69.

70.

71.

72.

73.

4.

75.

76.

e

78.

79.

Set the icap_ctrl[30] register bit (icap_rnw bit) to a 1.
Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.
Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.
Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.

Read the value in the icap_rd_reg, store the value in the next 8-bits of the Address variable

(i.e., addr[23:16]).
Set the icap-_ctrl[31] register bit (icap-ce bit) to a 0.

Read the value in the icap_rd_reg, store the value in the next 8-bits of the Address variable

(i.e., addr[31:24]).

Set the icap-_ctrl[31] register bit (icap-ce bit) to a 0.
Set the icap_ctrl[31] register bit (icap_ce bit) to a 0.
Set the icap_ctrl[31] register bit (icap_ce bit) to a 1.

Now we have the boot address stored in the Address variable.
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J.1.1.2 ICAP: Reboot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

To perform an FPGA reboot using the ICAP module follow the steps outlined below:
. Set the icap_ctrl[30:31] register bits (icap_rnw bit and icap_ce) to a 1; or 0x3.

. Set the icap_ctrl[30] register bit (icap_rnw bit) to a 0.

Set the icap_ctrl[31] register bit (icap-ce bit) to a 0.

. Write 0x20 (noop_H) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (noop_L) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0xAA (sync_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x99 (sync_L) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x32 (t1w_genl_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x61 (t1w_genl_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write addr[15:8] to the icap_wr_reg register.
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write addr[7:0] to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x32 (t1w_gen2_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x81 (t1w_gen2_ L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x03 (C7:0) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write addr[23:16] to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x32 (t1w_mode_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0xA1l (t1w_mode_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 to the icap_wr_reg register.
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47.
48.
49.
50.
ol.
52.
93.
54.
55.
96.
57.
8.
99.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

70.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x4D (sample M[2:0] and VS[2:0] pins) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x30 (t1w_cmd_H) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0xA1l (t1w_cmd_L) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (reboot_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x0E (reboot_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x20 (noop_H) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (noop_L) to the icap_wr_reg register.
Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x20 (noop_H) to the icap_wr_reg register.
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71.

72.

73.

4.

75.

76.

e

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Write 0x00 (noop_L) to the icap_wr_reg register.

Set the icap_clk register bit to a 0.

Set the icap_clk register bit to a 1.

Set the icap_ctrl[31] register bit (icap_rnw bit) to a 1.

Set the icap_ctrl[30] register bit (icap_ce bit) to a 1.
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J.2 Data Path FPGA Configuration

The Control FPGA is responsible for configuring the Data Path FPGA at power-up. The
Control FPGA will configure the Data Path FPGA using the slave serial method. The slave serial

interface consists of the following 5 signals:
1. CCLK: Serial Configuration Clock
2. DIN: Serial Data In
3. INIT_B: Initialization Flag (Active Low)
4. PROG_B: Configuration Reset (Active Low)
5. DONE: Configuration Done Flag (Active High)

The Data Path FPGA configuration process consists of sending 2,730,704 bytes to the Data Path
slave serial interface 32-bits at a time using the ctz_dp_fpga_config-v1_00-a EDK peripheral. First
the PROG_B signal is toggled low then high to initiate the Data Path FPGA configuration process.
The MicroBlaze Data Path FPGA configuration application will wait until the INIT_B signal tran-
sitions from low to high. Once INIT_B goes high, the MicroBlaze Data Path FPGA configuration
application will begin to send 32-bit words one at a time, while waiting for the txfer_done signal of
the ctz_dp_fpga_config-vi_00-a EDK peripheral to go high between each 32-bit word. Once the last
32-bit configuration data packet has been sent via the slave serial interface, the MicroBlaze Data
Path FPGA configuration application will wait for the configuration done flag to go high. This will
signal the completion of the Data Path FPGA configuration process. If the configuration done flag

does not go high, the process should be executed again.
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J.2.1

366

ctx_dp_fpga_config 0: Data Path FPGA Configuration Peripheral

The ctz_dp_fpga_config-vi_00-a EDK peripheral is used to configure the Data Path FPGA,

and appears as a set of 4 software accessible registers to the applications running on the MicroBlaze.

The ctz_dp_fpga_config_vl_00_a EDK peripheral’s register map is shown in Table J.5.

To initiate a write transaction using the ctz_dp_fpga_config_vi_00_a EDK peripheral first

set the read/write select to write (rnw_i = 0), 16-bit address (saddr_i) and 32-bit data (sdata_i),

then toggle the start_spi_i bit low-high-low to initiate the transfer.

To initiate a read transaction using the ctz_dp_fpga_config-vi_00-a EDK peripheral first set

the read/write select to read (rnw_i = 1) and 16-bit address (saddr-i), then toggle the start_spi-i bit

low-high-low to initiate the transfer.

The ctz_dp_fpga_config-vi_00_a connects to the Xilinx Spartan-3A FPGA pins shown in

Table J.4.

Table J.4: ctx_dp_fpga_config v1_00_a EDK peripheral I/O descriptions

zps_spi Pin Name | Pin Name Dir | Pin | Description

i.dp_fpga_done CUST_CFG_DONE 1 B22 | Configuration Done (Active High).
i_dp_fpga_initb CUST_INIT B 1 B21 | Initialization Flag (Active Low).
o-dp_fpga_cclk CUST_CCLK (0] C21 | Serial Configuration Clock.
o_dp_fpga_din S3A_SPI.DATA_TO_V5 | O | AA15 | Serial Data.

o_dp_fpga_progb CUST_PROG_B (0] C22 | Configuration Reset (Active Low).




Table J.5: ctx_dp_fpga_config vi_00_a EDK peripheral register map

Address

Name

R/W

Default Value

Description

cfg_datal0:31]

R/W

0x00000000

32-bit Configuration Write Data Register.

{29’b0,prog-reg[29:31]}

R/W

0x00000001

Configuration Control Register.
[0:28]: reserved;
[29]: send_clks: Send 16 Clocks (Active High).

Toggle high-then-low to initiate transaction.

[30]: send_data: Send 32-bits of Data (Active High).

Toggle high-then-low to initiate transaction.
[31]: PROGB: Initiate FPGA Program Sequence.

Toggle low-then-high to initiate transaction.

slv_reg2[0:31]

R/W

0x00000000

Reserved Register.

{29’b0,txfer_done, DONE,INITB}

RO

0x00000000

Configuration Transfer Done Register.
[0:28]: reserved;

29]: txfer_done: Serial Transfer Done (Active High).

[
[30]: DONE: Configuration Done (Active High).
[31]: INITB: Initialization Flag (Active Low).
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J.3 Data Path FPGA Control

The data path FPGA is responsible for generating and capturing waveforms as well as
interfacing with the AsAP processors and a variety of memory devices. It is implemented in Sys-
temVerilog, and targeted on a Xilinx Virtex-5 SX50T (XC5VSX50T-1FFG1136C). The data path
FPGA contains hardware registers that need to be initialized at power-up and changed based on
user input. The hardware registers are accessed via an instrument local bus (ILB), which is based

on the serial peripheral interface standard. The SPI bus consists of the following 6 signals:
1. SCK: Serial Clock
2. MOSI: Master-Out/Slave-In
3. MISO: Master-In/Slave-Out
4. ADDR_CSn: Address Chip Select (Active Low)
5. DATA_CSn: Data Chip Select (Active Low)
6. RNW: Read/Write Select; 0 = Write, 1 = Read

The data path FPGA is a slave, so it needs a means of requesting service from the master. An

additional signal is provided for this purpose:
1. SRQn: Service Request (Active Low)

A single ILB transaction consists of two segments: address and data. The address value consists of
16-bits, and the data value consists of 32-bits. First, the desired address shifted out over MOSI as
the ADDR_CSn chip select is driven low. Once the address has been shifted out to the slave, the
ADDR_CSn chip select is driven high. Then two SCK pulses are generated before the DATA_CSn
chip select is driven low while shifting the write data out over MOSI. Once the data has been shifted
out to the slave, the DATA _CSn chip select is driven high with two SCK pulses following. The two
SCK pulses that precede the DATA_CSn chip select allow for the addressed register contents to be
shifted to the master over MISO. The two SCK pulses that follow the DATA_CSn chip select allow
for the slave to perform any last minute tasks before the transaction is completed.

As the data path FPGA control interface is a non-standard SPI interface, a custom EDK

peripheral called ctz_dp_fpga_ctri_vi_00_a was designed to implement the SPI transactions.
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J.3.1 ctx_ dp_fpga ctrl 0: data path FPGA Control Peripheral

The ctz_dp_fpga_ctrl_vi_00-a EDK peripheral is used to control the data path FPGA, and
appears as a set of 8 software accessible registers to the applications running on the MicroBlaze.
The ctz_dp_fpga_ctrl_vi_00_a EDK peripheral’s register map is shown in Table J.7.

To initiate a write transaction using the ctz_dp_fpga_ctri_vi_00_a EDK peripheral first set
the read/write select to write (rnw_i = 0), 16-bit address (saddr_i) and 32-bit data (sdata_i), then
toggle the start_spi_i bit low-high-low to initiate the transfer.

To initiate a read transaction using the ctz_dp_fpga_ctrl_vi_00-a EDK peripheral first set
the Read/Write Select to read (rmw_i = 1) and 16-bit address (saddr_i), then toggle the start_spi_i
bit low-high-low to initiate the transfer.

The ctz_dp_fpga_ctrl_vi_00_a connects to the Xilinx Spartan-3A FPGA pins shown in Ta-

ble J.6.
Table J.6: cte_dp_fpga_ctrl v1_00_a EDK peripheral I/O descriptions

zps_spi Pin Name | Pin Name Dir | Pin | Description
iilb_srqn FPGA_DP_CTRL_INTN I | G18 | Service Request (Active Low).
i-ilb_miso FPGA_DP_CTRL_MISO I F18 | Master-In/Slave-Out Serial Data.
o-ilb_sck FPGA_DP_CTRL_SCK O | F20 | Serial Clock.
o-ilb_mosi FPGA_DP_CTRL_MOSI O | F22 | Master-Out/Slave-In Serial Data.
o-ilb_addr_csn FPGA_DP_CTRL_CSN O | F21 | Address Chip Select (Active Low).
o-ilb_data_csn FPGA_DP_CTRL_-GPIO4 | O | E22 | Data Chip Select (Active Low).
o_ilb_rnw FPGA_DP_CTRL_.GPIO3 | O | D22 | Read/nWrite Select.
o_lb_rstn FPGA_DP_CTRL_RSTN O F19 | data path FPGA Reset.




Table J.7: ctx_dp_fpga_ctrl_vi_00_a EDK peripheral register map

Address | Name R/W | Default Value | Description
0 {16’b0,saddr-i[16:31]} | R/W 0x00000000 16-bit SPI Address Register.
1 sdata_i[0:31] R/W 0x00000000 32-bit SPI Write Data Register.
2 {30'b0,ilb_ctrl[30:31]} | R/W 0x00000002 ILB Control Register.
[0:29]: reserved;
[30]: rnw_i: Read/Write Select; 0 = Write, 1 = Read.
[31]: start_spii: Start current SPI transaction.
Toggle high-then-low to initiate transaction.
slv_reg3[0:31] R/W 0x00000000 Reserved Register.
4 miso_read-o[0:31] RO 0x00000000 SPI Read Data Register.
5 {31’b0,txfer_done} RO 0x00000000 SPI Transfer Done Register.
[0:30]: reserved;
[31]: txfer_done: SPI Transfer Done (Active High).
slv_reg6[0:31] RO | 0xAAAAAAAA | Reserved Register.
slv_reg7[0:31] RO 0x55555555 Reserved Register.
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J.4 SPI Configuration Flash PROM Organization

The SPI configuration flash PROM will be organized as shown in Figure J.1. Figure J.1
shows the images stored at adjacent address locations, but in the final implementation the images

will be re-aligned to the beginning of a memory sector.

0x00000000 —
Boot Loader

BOOT_FPGA_PROG.MCS

{immutable}
OXx003FFFFF —

User Image #1

CTRL_FPGA_PROG.MCS

CTRL_FPGA_CODE.ELF

OX009FFFFF —

User Image #2

CTRL_FPGA_PROG.MCS

CTRL_FPGA_CODE.ELF

OXOOFFFFFF —

Figure J.1: SPI configuration flash PROM organization
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J.4.1 SPI_FLASH: ST Microelectronics M25P64 Flash Prom SPI Con-

troller

The SPI_.FLASH EDK peripheral is an instance of the zps_spi IP and is the main interface
to the ST Microelectronics M25P64 Flash Prom. The SPI_FLASH connects to the Xilinx Spartan-
3A FPGA pins shown in Table J.8.

Table J.8: SPI_.FLASH EDK peripheral I/O descriptions

zps_spt Pin Name | Pin Name Dir | Pin | Description

SCK S3A_CCLK O | AA20 | Spartan-3A Configuration Clock.

SS S3A_SPI_CSO O Y4 | Spartan-3A SPI Chip Select (Active Low).
MISO S3A_SPI_MISO I | AB20 | Spartan-3A SPI Master-In-Slave-Out (MISO).
MOSI S3A_SPI.MOSI | O | AB14 | Spartan-3A SPI Master-Out-Slave-In (MOSI).

J.4.2 GPIO_FLASH: ST Microelectronics M25P64 Flash Prom GPIO

Controller

The GPIO_FLASH EDK peripheral is used to control the write protect and hold pins of
the ST Microelectronics M25P64 Flash PROM. The GPIO_FLASH EDK peripheral connects to the

Spartan-3A FPGA pins shown in Table J.9.

Table J.9: GPIO_FLASH EDK peripheral I/O descriptions

xps_gpto Pin # | Pin Name Dir | Pin | Default Value | Description

0 S3A_SPILHOLDN | O | ABI13 1 Hold Signal (Active Low).

1 S3A_SPI_WPN O | AAl4 1 Write Protect Signal (Active Low).
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J.5 AsAP Configuration

The measurement board contains two AsAP processors, which need to be configured at
power-up or at receipt of the AsAP configuration command from the command line interface.

The configuration data files for each AsAP will be stored in the microSD card. FEach
configuration data file will be retrieved upon power-up, and shifted serially to the appropriate AsAP
device. See Section J.6 for information on the microSD card directory structure.

The control FPGA will configure each of the AsAP processors using a custom SPI Interface.

The custom SPI interface consists of the following 8 signals:
1. SCK: Serial Configuration Clock
2. CSn: Chip Select (Active Low)
3. MOSI: Master-Out/Slave-In Serial Data
4. MISO: Master-In/Slave-Out Serial Data
5. LOAD_EN: Parallel Data Load Enable
6. CFG_CLK: Configuration Clock Pulse
7. CFG_VLD: Configuration Valid Pulse
8. RESET_COLD: Perform a Cold Reset (Active Low)

The outgoing serial data is sent in 20-bit packets/symbols, and the parallel data is formatted as

follows:

Table J.10: AsAP Configuration Packet descriptions

par[19] | par[18] | par[17:0] | Description
0b0 0b0 upper_addr | Upper Address Word (config-addr[35:18]).
Obl 0b0 lower_addr | Lower Address Word (config_addr[17:0]).
0b0 Obl upper_data | Upper Data Word (config_data[35:18]).
Obl Obl lower_data | Lower Data Word (config_data[17:0]).

The par[18] bit is used for determining if address or data is being sent by the SPIE to the AsAP

processor. If par[18] is a 0, then address is being sent. If par[18] is a 1, then data is being sent.
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The par[19] bit is used for determining which part of the word is being sent: upper or
lower. If par[19] is a 0, then the upper part of the word is being sent. If par[19] is a 1, then the
lower part of the word is being sent.

The configuration blocks inside the AsAP processor know how to interpret the data based
on the status of the 2 MSB bits of each 20-bit packet. Each of the 4 serial transactions outlined
above are sent with a configuration clock and a configuration valid signal to clock the parallel data

into the AsAP processor configuration blocks.

J.5.1 asap_config vl 00_a: AsAP Configuration Peripheral

The asap_config-v1_00-a EDK peripheral is used to configure a single AsAP processor, and
appears as a set of 8 software accessible registers to the applications running on the MicroBlaze.
The asap_config_vl_00_a EDK peripheral’s register map is shown in Table J.11.

To initiate a write transaction using the asap_config_v1_00_-a EDK peripheral first, set the
40-bit address registers (config_addr[39:0]) and 40-bit data registers (config_data[39:0]), then toggle
the start_spi bit high then low to initiate the transfer. For subsequent write transactions wait for
the send bit to go high. Also, before the config_addr[39:0] and config_data[39:0] registers can be
updated, the application must wait for the hold bit to go high. When hold is low, the SPIE state
machine is writing the current config_addr[39:0] and config_data[39:0] registers in to the upper_addr,
lower_addr, upper_data, and lower_data registers.

To initiate a read transaction using the asap_config-vi_00-a EDK peripheral wait for the
miso_rdy bit to go high, then read the data from the miso_read[19:0] register.

The asap_config_0 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.12. The

asap_config_1 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.13.



Table J.11: asap_config-v1i_00_-a EDK peripheral register map

Address

Name

R/W

Default Value

Description

config_data[31:0]

R/W

0x00000000

Lower 32-bits of Configuration Data Register.

{24’b0,config_data[39:32]}

R/W

0x00000000

Upper 8-bits of Configuration Data Register.

config_addr[31:0]

R/W

0x00000000

Lower 32-bits of Configuration Address Register.

{24’b0,config_addr[39:32]}

R/W

0x00000000

Upper 8-bits of Configuration Address Register.

=W N =

{29’b0,spie_cfg[2:0]}

R/W

0x00000006

SPIE Configuration Control Register.

[0:28]: reserved,;

[29]: start_spi: Start SPIE Transaction (Active High).
Toggle high-then-low to initiate transaction.

[30]: reset_cold: AsAP Cold Reset (Active Low).
Toggle low-then-high to initiate transaction.

[31]: reset_sel: Reset Selection.
0: 20ns wide re-timed pulse.

1: MicroBlaze pulse high-low-high.

slv_reg5[31:0]

R/W

0x00000000

Reserved Register.

{29'b0,spie_stat[2:0] }

RO

0x00000000

SPIE Status Register.
[0:28]: reserved;
29]: miso_rdy: MISO Read Data Ready (Active High).

[
[30]: send: Ready to Start New Transaction (Active High).
[

31]: hold:
0: receiving data/addr.

1: transaction in process.

{12’b0,miso_read[19:0] }

RO

0x00000000

SPIE MISO Read Data Register.
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Table J.12: asap_config-0 EDK peripheral I/O descriptions

asap_config_0 Pin Name | Pin Name Dir | Pin | Description

i_spi_asap_miso FPGA_ASAP1_MISO I AA22 | Master-In/Slave-Out Serial Data.
o_spi_asap_cfg_clk FPGA_ASAP1_CFG_CLK O W20 | Configuration Clock Pulse.
o_spi_asap_cfg_vld FPGA_ASAP1_CFG_VALID O W19 | Configuration Valid Pulse.

o_spi_asap_sck FPGA_ASAP1_SPI.CLK (@] Y21 | Serial Configuration Clock.
o-spi_asap_csn FPGA_ASAP1_SPI_.CSN O | W22 | Chip Select (Active Low).
o_spi_asap_mosi FPGA_ASAP1_SPI_MOSI (0] Y22 | Master-Out/Slave-In Serial Data.
o_spi_asap_load_en FPGA_ASAP1_SPI.LOAD O | W21 | Parallel Data Load Enable (Active High).
o_asap_reset_cold FPGA_ASAP1 RESET_COLD | O V19 | Perform a Cold Reset (Active Low).
o_asap-rst_cntelk FPGA_ASAP1_RST.CNTCLK | O V20 | Reset Counter Clock (Active Low).
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Table J.13: asap_config-1 EDK peripheral I/O descriptions

asap_config-1 Pin Name | Pin Name Dir | Pin | Description

i_spi_asap_miso FPGA_ASAP2_MISO I W18 | Master-In/Slave-Out Serial Data.
o_spi_asap_cfg_clk FPGA_ASAP2_CFG_CLK O | AA21 | Configuration Clock Pulse.
o_spi_asap_cfg_vld FPGA_ASAP2_CFG_VALID O | AB21 | Configuration Valid Pulse.

o_spi_asap_sck FPGA_ASAP2_SPI_.CLK O | ABI18 | Serial Configuration Clock.
o-spi_asap_csn FPGA_ASAP2_SPI_CSN O | AA19 | Chip Select (Active Low).
o_spi_asap_mosi FPGA_ASAP2_SPI_MOSI (0] Y18 | Master-Out/Slave-In Serial Data.
o_spi_asap_load_en FPGA_ASAP2 SPI_.LOAD O | AB19 | Parallel Data Load Enable (Active High).
o_asap_reset_cold FPGA_ASAP2 RESET_COLD | O | AB17 | Perform a Cold Reset (Active Low).
o_asap-rst_cntelk FPGA_ASAP2_RST_.CNTCLK | O | AA17 | Reset Counter Clock (Active Low).
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J.6 microSD Card Organization

The microSD card will be used to store both configuration and waveform data. The mi-
croSD card is accessed and controlled using both an SPI interface and a FAT File System, and as
such, must abide by the file name, size, and path restrictions. The current microSD card contains
2GB of storage capacity, which means a FAT16 File Sytem will be implemented in the MicroBlaze
32-bit micro-controller residing in the Xilinx Spartan 3A FPGA. The maximum filename length is
8.3, therefore the descriptor can be at most 8 characters and the extension can be at most 3 char-
acters; there is no limit defined on the maximum pathname length. A proposed directory structure

and file naming convention is shown below:

Listing J.1: IODELAY Tap Calculation Perl Script

ASAP/
PROG1/
ASAP1.BIN
ASAP2.BIN
RUN. BIN
PROG2/
ASAP1.BIN
ASAP2.BIN
RUN. BIN
PROG3/
ASAP1.BIN
ASAP2. BIN
RUN. BIN
CONFIG/
FACTORY . MCS
UPGRADE. MCS
DPIMAGE . BIN
PATTERN/

BRAM/
SRAM/
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J.6.1 SPI_SD: microSD Card SPI Controller

The SPI_.SD EDK peripheral is an instance of the zps_spi IP and is the main interface to

the microSD card. The SPI.SD connects to the Xilinx Spartan-3A FPGA pins shown in Table J.14.

Table J.14: SPI_SD EDK peripheral I/O descriptions

zps_spi Pin Name | Pin Name Dir | Pin | Description

MOSI FPGA SD_TX O | AB2 | Receive Data Input.

SS FPGA_SD_CARD.DETECT | I/O | AA4 | Chip Select (Active Low).
SCK FPGA_SD_CLK O | AA3 | Serial Clock.

MISO FPGA_SD_RX I AB3 | Transmit Data Output.

J.6.2 GPIO_SD: microSD Card GPIO Controller

The GPIO_SD EDK peripheral is used to control the busy LED placed next to the microSD
card. The Control Application will blink the LED as a warning while the microSD card is being
accessed in order to avoid accidental removal and data loss. The GPIO_SD EDK peripheral connects

to the Xilinx Spartan-3A FPGA pins shown in Table J.15.

Table J.15: GPIO_SD EDK peripheral I/0O descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_SD_BUSY.LED | O | AB4 1 Busy LED (Active Low).
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J.7 Digital-to-Analog Converter

A Texas Instruments DAC56827Z dual-channel, 16-bit, 1 GS/s digital-to-analog converter
is used to generate the analog waveforms for the baseband signal source [6]. This DAC must be
properly configured before it can be used to generate waveforms. The baseband signal source uses
the dual-channel, interpolating DAC in a single-channel, non-interpolating mode. The data path
FPGA drives the DAC56827 with data encoded in two’s complement format. Table J.18 describes

the configuration data that must be set via the SPI control interface on the DAC5682Z.

J.7.1 SPI DAC56827Z: TI DAC56827Z DAC SPI Controller

The SPI_DAC56827Z EDK peripheral is an instance of the zps_spi IP and is the main
interface to the DAC56827Z high-speed DAC. The SPI_DAC5682Z connects to the Xilinx Spartan-
3A FPGA pins shown in Table J.16.

Table J.16: SPI_ DAC5682Z EDK peripheral I/0O descriptions

zps_spi Pin Name | Pin Name Dir | Pin | Description

SCK FPGA_DAC5682_SCLK O | V22 | DAC5682Z Serial Clock.

MOSI FPGA_DAC5682_SDIO O | U22 | DAC5682Z Serial Data Input.
MISO FPGA_DAC5682_SDO 1 U19 | DAC5682Z Serial Data Output.
SS FPGA_DAC5682_SDENB | O | U21 | DAC5682Z Chip Select.

J. 7.2 GPIO_DAC5682Z OUTS: TI DAC5682Z DAC GPIO Controller

The GPIO_DAC5682Z_OUTS EDK peripheral is used to control the non-spi pins of the TT
DAC5682%7 high-speed DAC. The GPIO_-DAC5682Z_0OUTS EDK peripheral connects to the Xilinx
Spartan-3A FPGA pins shown in Table J.17.

Table J.17: GPIO_-DAC5682Z_OUTS EDK peripheral I/0 descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_DAC5682_RSTB | O | U20 1 DAC5682Z Reset.




Table J.18: TT DAC5682Z DAC Register Settings

Register Name | Register Address | Value | Description

STATUSO 0x00 0x03 PLL/DLL Locked Status.

CONFIG1 0x01 0x00 DAC Delay, FIR Enable, Self Test, and FIFO Offset Control.

CONFIG2 0x02 0x80 Two’s Comp Enable, Dual/Single DAC Mode, and FIR Mode Control.
CONFIG3 0x03 0x00 DAC Offset Enable, A/B Swap, A equal B, SW Sync, and SW Sync Enable.
STATUS4 0x04 0x00 Self Test Error, FIFO Error, and Pattern Error Status.

CONFIG5H 0x05 0x92 SPI Setup, Clock Divider, FIFO Offset Sync, and PLL/DLL Bypass Control.
CONFIG6 0x06 Oxae Hold Sync, Sleep, Bias and PLL/DLL Sleep Control.

CONFIGT 0x07 Oxff Channel A and B Gain Control.

CONFIGS 0x08 0x00 DLL Restart Control. Toggle bit 2 high then low.

CONFIGY9 0x09 0x00 PLL M/N Control.

CONFIG10 0x0a 0x00 DLL Delay and Clock Control.

CONFIG11 0x0b 0x00 PLL Loop Filter, VCO Divider, PLL Gain and Range Control.

CONFIG12 0x0c 0x00 Offset Sync and Channel A Offset (MSB) Control.

CONFIG13 0x0d 0x00 Channel A Offset (LSB) Control.

CONFIG14 0x0e 0x00 SPI Serial Data Out and Channel B Offset (MSB) Control.

CONFIG15 0x0f 0x00 Channel B Offset (LSB) Control.
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J.8 Reference Clock Control

The measurement board contains a Vectron VTC2 10 MHz voltage controlled temperature
compensated crystal oscillator (TCXO) for use as a precision reference. The VTC2 is a £0.5 ppm

quartz stabilized, CMOS square wave, temperature compensated oscillator, operating off a 3.3 V

supply.
e http://vectron.com/products/tcxo/VTC2.pdf

The internal 10 MHz reference can be used as the reference to the AD9516-3 clock generator IC. If
a more precise 10 MHz reference clock is required, an external 10 MHz reference can be provided
via the rear-panel connector of the measurement board.

The internal 10 MHz reference is also used to generate a common 312.5 kHz sync clock
for the Texas Instruments PTHO8T2xxWAZ DC-DC Converters. A Xilinx CPLD (XC9572XL) is

employed to perform the divide-by-32 and multi-phase clock generation.

Table J.19: Reference clock control descriptions

Bit | Description
0 | Internal/External 10 MHz Reference Select

1 = external

0 = internal
1 External 10 MHz Enable

1 = external

0 = internal
2 External 10 MHz Input Disable

1 = external

0 = internal
3 Internal 10 MHz Enable

1 = external

0 = internal



http://vectron.com/products/tcxo/VTC2.pdf

APPENDIX J. CONTROL FPGA EDK/MICROBLAZE PERIPHERALS 383

Table J.20: Reference clock control register map
Bits
3121
0 | 0 | Internal 10 MHz Clock Selected (Default)
0|0/ 1]1| External 10 MHz Clock Selected
Internal 10 MHz used as reference,
External 10 MHz pass to Control FPGA.

Clock Mode Description

The CLK10MHZ_CTRL_OUTS EDK peripheral connects to the Xilinx Spartan-3A FPGA pins

shown in Table J.21.

Table J.21: CLK10MHZ_CTRL_OUTS EDK peripheral I/O descriptions

zps_gpio | Pin Name Dir | Pin | Default | Description
Pin # Value

0 FPGA_CLK10MHZ REF_CTRL[0] | O B2 1 10 MHz Ref. Select
1 =int
0 = ext

1 FPGA_CLK10MHZ REF_CTRL[1] | O B3 1 10 MHz Ref. Select
1 = int
0 = ext

2 FPGA_CLK10MHZ REF_CTRL[2] | O A3 1 10 MHz Ref. Select
1 = int
0 = ext

3 FPGA_CLK10MHZ REF_CTRL[3] | O A4 1 10 MHz Ref. Select
1 =int
0 = ext
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The CLK10MHZ_CTRL_INS EDK peripheral connects to the Xilinx Spartan-3A FPGA

pins shown in Table J.22.

Table J.22: CLK10MHZ_CTRL_INS EDK peripheral I/0 descriptions

zps_gpio | Pin Name Dir | Pin | Default | Description
Pin # Value
0 FPGA_EXT_CLK10MHZ_LOS I A2 NA 10 MHz Loss of signal

1 = Loss of Signal

0 = Signal Present

J.8.1 INT_CLK_10MHZ_INPUT: Internal 10 MHz Clock Input Buffer

The INT_-CLK_10MHZ_INPUT EDK peripheral is an instance of the wtil_ds_buf 1P and
connects to the Xilinx Spartan-3A FPGA pins shown in Table J.24. The wtil_ds_buf 1P is essentially

an IBUFGDS Xilinx Spartan-3A input clock buffer primitive.

Table J.23: INT_CLK_10MHZ _INPUT EDK peripheral I/O descriptions

util_ds_buf Pin # | FPGA Pin Name Dir | Pin | Description

IBUF_DS_P FPGA_INT_CLK10MHZ_REF_P I A12 | Int 10 MHz Clock (Positive).
IBUF_DS_P FPGA_INT_CLK10MHZ_REF_N I A1l | Int 10 MHz Clock (Negative).
IBUF_.OUT int_clk10mhz_ref (0] NA | Int 10 MHz Clock.

Listing J.2: Xilinx EDK MHS Internal Clock Input Buffer Instantiation

BEGIN util_-ds_buf

PARAMETER INSTANCE = INT_CLK_10MHZ_INPUT
PARAMETER HW.VER = 1.00.a

PARAMETER C_BUF_TYPE = IBUFGDS

PORT IBUF_DS_P FPGA_INT_CLK10MHZ_REF_P
PORT IBUF_DS_N = FPGA_INT_CLK10MHZ_REF_N

PORT IBUF_.OUT = int-clklOmhz_ref
END
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J.8.2 EXT_CLK_10MHZ_INPUT: External 10 MHz Clock Input Buffer

The EXT_CLK_10MHZ_INPUT EDK peripheral is an instance of the wutil_ds_buf IP and

connects to the Xilinx Spartan-3A FPGA pins shown in Table J.24. The wtil_ds_buf IP is essentially

an IBUFGDS Xilinx Spartan-3A input clock buffer primitive.

Table J.24: EXT_CLK_10MHZ_INPUT EDK peripheral I/0 descriptions

util_ds_buf Pin # | FPGA Pin Name Dir | Pin | Description

IBUF_DS_P FPGA_EXT_CLK10MHZ_REF _P I B11 | Ext 10 MHz Clock (Positive).
IBUF_DS_P FPGA_EXT_CLK10MHZ_REF N I C11 | Ext 10 MHz Clock (Negative).
IBUF_.OUT ext_clk10mhz_ref (@) NA | Ext 10 MHz Clock.

Listing J.3: Xilinx EDK MHS External Clock Input Buffer Instantiation

BEGIN util_ds_buf
PARAMETER INSTANCE = EXT_CLK_10MHZ_INPUT

PARAMETER HW.VER = 1.00.a

PARAMETER C_BUF_TYPE = IBUFGDS

PORT IBUF_DS_P = FPGA_EXT_CLK10MHZ_REF_P
PORT IBUF_DS_N = FPGA_EXT_CLK10MHZ_REF_N

PORT IBUF_OUT = ext-clklOmhz_ref

END
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J.9 High-Speed Clock Generation

The Analog Devices AD9516 clock generator IC does not require programming during nor-
mal use, but does need to be initialized during the normal power-up routines. Once the initialization
is complete, the AD9516 can generate the appropriate clock frequencies. Table J.25 shows the gen-
erated output frequencies of the active AD9516 Clock Generator IC outputs. Table J.26 shows the
default value for each of the AD9516 clock generator IC registers. Writing to the register at 0x232
applies all updates to the AD9516 clock generator IC. The data sheet for the AD9516 can be found

here:
e Analog Devices AD9516-3 14-Output Clock Generator with Integrated 2.0 GHz VCO
— http://www.analog.com/UploadedFiles/Data_Sheets/AD9516_3.pdf

The Universal Microwave Corp UMX Series 1GHz VCO (UMX-244-B14) is used to drive the AD9516-

3 External Clock Input.

e http://www.vcol.com/SCDs/scd244-a.pdf

J.9.1 AD9516 Clock Generator Output Assignments

Table J.25: AD9516 clock generator outputs
Output Number | Description
ADC Sampling Clock (500 MHz).
DAC Sampling Clock (500 MHz).
FPGA AsAP Clock (250 MHz).
FPGA DSP Clock (250 MHz).
Unused Output.
Unused Output.
FPGA SRAM Clock (250 MHz).
FPGA SDRAM Clock (250 MHz).
FPGA IODELAY Reference Clock (200 MHz).
Test Clock Output.

OO0 | N ||| W(N|~ O



http://www.analog.com/UploadedFiles/Data_Sheets/AD9516_3.pdf
http://www.vco1.com/SCDs/scd244-a.pdf
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J.9.2 AD9516 Clock Generator PLL Calculations

Equations J.1 and J.2 were used to determine the appropriate values of the PLL parameters.

fuo= (5 ) (o) 4 ) = 1y () (.0

N

((P-B)+ A) (J.2)
The known variables of Equation J.1 are:

e f,... =1 GHz

e ..y =10 MHz

Solving for N given R = 1, shows that N should be equal to 100. The next step is to solve for P, B,
and A in Equation J.2. First assume that A = 0 and P = 4. Solving for B in Equation J.2 yields

25. A summary of the calculated values is shown below:

eR=1
e P=4
e B=25
e A=0

J.9.3 AD9516 Clock Generator Registers

Table J.26: AD9516 Clock Generator Register Settings

AD9516 Clock Generator Register Settings

Register Address | Value Description

Serial Port Configuration

0x000 Oxbd Serial Port Configuration (Reset SPI Registers).
0x000 0x99 Serial Port Configuration (Normal Operation).
0x001 blank Unused Register

0x002 reserved Unused Register

0x003 reserved Unused Register

0x004 0x01 Read Back Control

Continued on Next Page...
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AD9516 Clock Generator Register Settings
Register Address | Value ‘ Description
PLL
0x010 Ox4c PFD and Charge Pump
0x011 0x01 R Counter
0x012 0x00 R Counter
0x013 0x00 A Counter
0x014 0x19 B Counter
0x015 0x00 B Counter
0x016 0x03 PLL Control 1
0x017 0x00 PLL Control 2
0x018 0x66 PLL Control 3
0x019 0x00 PLL Control 4
0x01a 0x00 PLL Control 5
0x01b 0x00 PLL Control 6
0x01c 0x07 PLL Control 7
0x01d 0x00 PLL Control 8
0x0le 0x00 PLL Control 9
0x01f 0x00 PLL Readback
0x020 - 0x04f blank Unused Registers
Fine Delay Adjust: OUT6 to OUT9
0x0a0 0x01 OUT6 Delay Bypass
0x0al 0x00 OUT6 Delay Full-Scale
0x0a2 0x00 OUT6 Delay Fraction
0x0a3 0x01 OUTT Delay Bypass
0x0a4 0x00 OUTT Delay Full-Scale
0x0a5 0x00 OUTT Delay Fraction
0x0a6 0x01 OUTS8 Delay Bypass
0x0a7 0x00 OUTS8 Delay Full-Scale
0x0a8 0x00 OUTS Delay Fraction
0x0a9 0x01 OUT9 Delay Bypass
Ox0aa 0x00 OUT9 Delay Full-Scale
0x0ab 0x00 OUT9 Delay Fraction
0x0ac - 0x0ef blank Unused Registers
LVPECL Outputs
0x0£0 0x0c ouTo
0x0f1 0x0c ouT1
0x0f2 0x08 ouT2
0x0f3 0x08 ouTs
0x0f4 0x03 ouT4
0x0f5 0x03 ouT5s

Continued on Next Page...
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AD9516 Clock Generator Register Settings

Register Address

Value

Description

0x016 - 0x13f

blank

Unused Registers

LVDS/CMOS Outputs

0x140 0x02 ouTé6

0x141 0x02 ouT7

0x142 0x01 ouTs8

0x143 0x02 ouT9

0x144 - 0x18f blank Unused Registers
LVPECL Channel Dividers

0x190 0x00 Divider 0 (PECL)
0x191 0x40 Divider 0 (PECL)
0x192 0x01 Divider 0 (PECL)
0x193 0x44 Divider 1 (PECL)
0x194 0x40 Divider 1 (PECL)
0x195 0x01 Divider 1 (PECL)
0x196 0x00 Divider 2 (PECL)
0x197 0x00 Divider 2 (PECL)
0x198 0x00 Divider 2 (PECL)

LVDS/CMOS Channel Dividers

0x199 0x00 Divider 3 (LVDS/CMOS)
0x19a 0x00 Divider 3 (LVDS/CMOS)
0x19b 0x00 Divider 3 (LVDS/CMOS)
0x19c¢ 0x08 Divider 3 (LVDS/CMOS)
0x19d 0x01 Divider 3 (LVDS/CMOS)
0x19e 0x32 Divider 4 (LVDS/CMOS)
0x19f 0x00 Divider 4 (LVDS/CMOS)
0x1a0 0x11 Divider 4 (LVDS/CMOS)
Oxlal 0x28 Divider 4 (LVDS/CMOS)
Ox1a2 0x01 Divider 4 (LVDS/CMOS)
Ox1a3 reserved Unused Register

Oxlad - Ox1df blank Unused Registers

VCO Divider and CLK Input

0x1e0 0x02 VCO Divider

Oxlel 0x01 Input CLKs

Oxle2 - 0x22a blank Unused Registers
System

0x230 0x04 Power Down and Sync
0x231 blank/reserved | Unused Register

Update All Registers

0x232

| 0x01

Update All Registers

389
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J.9.4 AD9516_SPI: AD9516 Clock Generator SPI Controller

The AD9516_SPI EDK peripheral is an instance of the zps_spi IP and is the main interface

to the configuration pins of the AD9516 clock generator IC. The AD9516_SPI connects to the Xilinx

Spartan-3A FPGA pins shown in Table J.27.

Table J.27: AD9516_SPI EDK peripheral I/O descriptions

zps_spi Pin Name | Pin Name Dir | Pin | Description

SCK FPGA_AD9516_SCLK | O | N18 | Serial Clock.

SS FPGA_AD9516_CSN O | N19 | Chip Select (Active Low).

MISO FPGA_AD9516_SDO I P22 | Master-In/Slave-Out Serial Data.
MOSI FPGA_ADY9516_SDIO O | N20 | Master-Out/Slave-In Serial Data.

J.9.5 AD9516 GPIO: AD9516 Clock Generator Output GPIO Controller

The AD9516_GPIO EDK peripheral is used to control the RESET_N and PD_N pins of the

ADI516 clock generator IC. The AD9516_GPIO EDK peripheral connects to the Xilinx Spartan-3A

FPGA pins shown in Table J.28.

Table J.28: AD9516_GPIO EDK peripheral I/0 descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_AD9516_ RESET_N | O | N21 1 Reset (Active Low).
1 FPGA_AD9516_ PD_N (@) P20 1 Power Down Enable.
2 FPGA_AD9516_REF_SEL O | N22 1 Reference Select.
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J.9.6 GPIO_AD9516_INS: ADI AD9516 GPIO Controller

The GPIO_AD9516_INS EDK peripheral is used to control the non-spi pins of the Analog
Devices AD9516 clock generator IC. The GPIO_AD9516_-OUTS EDK peripheral connects to the
Xilinx Spartan-3A FPGA pins shown in Table J.29.

Table J.29: GPIO_AD9516_INS EDK peripheral I/O descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_AD9516_LD I P19 NA Lock Detect.

1 FPGA_AD9516_ REFMON 1 M17 NA Reference Monitor.
1 FPGA_AD9516_STATUS I N17 NA Status.

J.10 Instrument Fan Control

The measurement board contains two instrument fan controllers for maintaining proper
cooling and airflow, while avoiding the generation of beat frequencies between the two fans. The
Texas Instruments AMCG6821 [28] is an intelligent temperature monitor and pulse-width modulation
(PWM) fan controller. Using either a low-frequency or a high-frequency PWM signal, this device
can simultaneously drive a fan, monitor remote sensor diode temperatures, and measure and control
the fan speed so that it operates with minimal acoustic noise at the lowest possible speed.

The AMC6821 has three fan control modes:
1. Auto Temperature-Fan mode
2. Software-RPM mode
3. Software-DCY mode

The measurement board uses the AMC6821 in software-RPM mode. The software-RPM mode is a
closed-loop control. In this mode, the AMC6821 adjusts the PWM output to maintain a consistent
fan speed at a user-specified target value; that is, the device functions as a fan speed regulator.
Software-RPM mode can also be used to allow the AMC6821 to operate as a stand-alone device.

The 12C address of the two fan controllers is:
1. 0b1001100

2. 0b1001101
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J.10.1 AMC6821 Fan Controller #1 Registers

Table J.30: AMC6821 Fan Controller #1 Register Settings

AMCG6821 Fan Controller #1 Register Settings

Register Address ‘ Value ‘ R/W ‘ Description

IDENTIFICATION REGISTERS

0x3D 0x21 R Device ID Register

0x3E 0x49 R Company ID Register

CONFIGURATION REGISTERS

0x00 0xbb R/W | Configuration Register 1

0x01 0x3d R/W | Configuration Register 2

0x3F 0x82 R/W | Configuration Register 3

0x04 0x88 R/W | Configuration Register 4

0x02 0x00 R Status Register 1

0x03 0x00 R Status Register 2

TEMPERATURE MONITORING

0x06 0x00 R Temp-DATA-LByte

0x0A 0x80 R Local-Temp-DATA-HByte

0x0B 0x80 R Remote-Temp-DATA-HByte

0x14 0x3c R/W | Local-High-Temp-Limit

0x15 0x00 R/W | Local-Low-Temp-Limit

0x16 0x46 R/W | Local-THERM-Limit

0x18 0x50 R/W | Remote-High-Temp-Limit

0x19 0x00 R/W | Remote-Low-Temp-Limit

Oxla 0x64 R/W | Remote-THERM-Limit

0x1b 0x50 R/W | Local-Critical-Temp

Oxlc 0x00 R/W | PSV-Temp

0x1d 0x69 R/W | Remote-Critical-Temp

PWM CONTROLLER

0x20 0x1d R/W | FAN-Characteristics

0x21 0x55 R/W | DCY-Low-Temp

0x22 0x55 R/W | DCY (Duty Cycle)

0x23 0x52 R/W | DCY-RAMP

0x24 0x41 R/W | Local Temp-Fan Control

0x25 0x61 R/W | Remote Temp-Fan Control

TACH (RPM) MEASUREMENT

0x08 0x00 R TACH-DATA-LByte

0x09 0x00 R TACH-DATA-HByte

0x10 Oxff R/W | TACH-Low-Limit-LByte

0x11 Oxff R/W | TACH-Low-Limit-HByte
Continued on Next Page...
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AMCG6821 Fan Controller #1 Register Settings

Register Address | Value | R/W | Description

0x12 0x00 R/W | TACH-High-Limit-LByte
0x13 0x00 R/W | TACH-High-Limit-HByte
0x1E Oxft R/W | TACH-SETTING-LByte
0x1F Oxff R/W | TACH-SETTING-HByte
0x3A 0x00 R Reserved

0x3B 0x00 R Reserved

J.10.2 ctx_iic_ctrlr_0: I2C Control Peripheral

The ctz_iic_ctrlrvi_00_a EDK peripheral is used to control the I2C fan controller, and

appears as a set of 16 software accessible registers to the applications running on the MicroBlaze.

The ctx_iic_ctrir-vi_00-a EDK peripheral’s register map is shown in Table J.33.

The ctz_iic_ctrlr_0 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.31.

Table J.31: ctx_iic_ctrlr_0 EDK peripheral I/O descriptions

ctx_1ic_ctrlr_vi_00_a Pin Name | Pin Name

Dir

Pin | Description

io_fpga_iic_sda

FPGA_AMC6821_FAN1_SDA | 10

Y7 | I2C Serial Data.

io_fpga_iic_scl

FPGA_AMC6821_FAN1.SCK | O

W7 | I2C Serial Clock.

The GPIO_FAN_CTRLI connects to the Spartan-3A FPGA pins shown in Table J.32.

Table J.32: GPIO_FAN_CTRL1 EDK peripheral I/O descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Description

0 FPGA_AMC6821_ FAN1_OVRN I T8 | Over Temp Flag.
1 FPGA_AMC6821 FAN1_THERMN I U7 | Thermal Flag.

2 FPGA_AMC6821_FAN1_FAULTN I T7 | Fault Flag.

3 FPGA_AMC6821_FAN1_SMBALERTN I V7 | SMB Alert Flag.
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Table J.33: ctx_iic_ctrlr_vi_00_-a EDK peripheral register map

Address

Name

R/W

Default

Description

0

{16’b0,prer[15:0]}

R/W

0x63

I2C Clock Prescaler Register.
[16:31]: prer[15:0]: Clock Prescale.

{30’b0,ctrl[1:0]}

R/W

0x0

I2C Control Register.
[30]: core_en: Module Enable.
[31]: int_en: Interrupt Enable.

{24’b0,txr[7:1],rnw}

R/W

0x0

I?C Transmit Data Register.
[24:30]: txr: Transmit Data.
[31]: rnw: Read/Write Bit.

1 = Read.
0 = Write.

{26’b0,cmd[5:0]}

R/W

0x0

I2C Command Register.
[26]: iack: Interrupt Acknowledge.
Clears a pending interrupt.

27]: ack: ACK =0’ or NACK = "1".

[\
oo

]:

]: wr: Write to Slave.
9]: rd: Read from Slave.
30]:
31]:

=)

sto: Generate Stop Condition.

ooyl

sta: Generate Start Condition.

{31’b0,rst}

R/W

0x0

I2C Reset Register.
[31]: rst: I2C Module Reset..

Toggle to reset module.

{24’b0,rxr[7:0]}

RO

0x0

I?C Receive Data Register.

{26’b0,stat[4:0]}

RO

0x0

I2C Status Register.
[27]: rxack: Received ACK from Slave.
1 = No ACK Received.
0 = ACK Received.
[28]: busy: Busy.
1 after START detected.
0 after STOP detected.
[29]: al: Arbitration Lost.
Arbitration is lost when:
STOP detected, but not requested.
master drives SDA high, but it is low.
[30]: tip: Transfer in Progress.
1 = Transferring Data.
0 = Transfer Complete.
[31]: irq-flag: Interrupt Flag.

Set when interrupt is pending.
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J.10.3 AMCG6821 Fan Controller #2 Registers

Table J.34: AMC6821 Fan Controller #2 Register Settings

AMCG6821 Fan Controller #2 Register Settings

Register Address ‘ Value ‘ R/W ‘ Description

IDENTIFICATION REGISTERS

0x3D 0x21 R Device ID Register

0x3E 0x49 R Company ID Register

CONFIGURATION REGISTERS

0x00 0xbb R/W | Configuration Register 1

0x01 0x3d R/W | Configuration Register 2

0x3F 0x82 R/W | Configuration Register 3

0x04 0x88 R/W | Configuration Register 4

0x02 0x00 R Status Register 1

0x03 0x00 R Status Register 2

TEMPERATURE MONITORING

0x06 0x00 R Temp-DATA-LByte

0x0A 0x80 R Local-Temp-DATA-HByte

0x0B 0x80 R Remote-Temp-DATA-HByte

0x14 0x3c R/W | Local-High-Temp-Limit

0x15 0x00 R/W | Local-Low-Temp-Limit

0x16 0x46 R/W | Local-THERM-Limit

0x18 0x50 R/W | Remote-High-Temp-Limit

0x19 0x00 R/W | Remote-Low-Temp-Limit

Oxla 0x64 R/W | Remote-THERM-Limit

0x1b 0x50 R/W | Local-Critical-Temp

Oxlc 0x00 R/W | PSV-Temp

0x1d 0x69 R/W | Remote-Critical-Temp

PWM CONTROLLER

0x20 0x25 R/W | FAN-Characteristics

0x21 0x55 R/W | DCY-Low-Temp

0x22 0x55 R/W | DCY (Duty Cycle)

0x23 0x52 R/W | DCY-RAMP

0x24 0x41 R/W | Local Temp-Fan Control

0x25 0x61 R/W | Remote Temp-Fan Control

TACH (RPM) MEASUREMENT

0x08 0x00 R TACH-DATA-LByte

0x09 0x00 R TACH-DATA-HByte

0x10 Oxff R/W | TACH-Low-Limit-LByte

0x11 Oxff R/W | TACH-Low-Limit-HByte
Continued on Next Page...
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AMCG6821 Fan Controller #2 Register Settings

Register Address | Value | R/W | Description

0x12 0x00 R/W | TACH-High-Limit-LByte
0x13 0x00 R/W | TACH-High-Limit-HByte
0x1E Oxft R/W | TACH-SETTING-LByte
0x1F Oxff R/W | TACH-SETTING-HByte
0x3A 0x00 R Reserved

0x3B 0x00 R Reserved

J.10.4 ctx_iic_ctrlr_1: I2C Control Peripheral

The ctz_iic_ctrlrvi_00_a EDK peripheral is used to control the I2C fan controller, and

appears as a set of 16 software accessible registers to the applications running on the MicroBlaze.

The ctx_iic_ctrir-vi_00-a EDK peripheral’s register map is shown in Table J.37.

The ctz_iic_ctrlr_1 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.35.

Table J.35: ctx_iic_ctrlr_1 EDK peripheral I/O descriptions

ctx_1ic_ctrlr_vi_00_a Pin Name | Pin Name

Dir

Pin | Description

io_fpga_iic_sda

FPGA_AMC6821_FAN2_SDA | 10

Y9 | I2C Serial Data.

io_fpga_iic_scl

FPGA_AMC6821_FAN2_SCK | O

AB9 | I2C Serial Clock.

The GPIO_FAN_CTRLZ2 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.36.

Table J.36: GPIO_FAN_CTRL2 EDK peripheral I/0O descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Description

0 FPGA_AMC6821_FAN2 OVRN I V9 | Over Temp Flag.
1 FPGA_AMC6821 FAN2 THERMN I V8 | Thermal Flag.

2 FPGA_AMC6821_FAN2_FAULTN I U8 | Fault Flag.

3 FPGA_AMC6821 _FAN2_SMBALERTN I T9 | SMB Alert Flag.
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Table J.37: ctx_iic_ctrlr_vi_00-a EDK peripheral register map

Address

Name

R/W

Default

Description

0

{16’b0,prer[15:0]}

R/W

0x63

I2C Clock Prescaler Register.
[16:31]: prer[15:0]: Clock Prescale.

{30’b0,ctrl[1:0]}

R/W

0x0

I2C Control Register.
[30]: core_en: Module Enable.
[31]: int_en: Interrupt Enable.

{24’b0,txr[7:1],rnw}

R/W

0x0

I?C Transmit Data Register.
[24:30]: txr: Transmit Data.
[31]: rnw: Read/Write Bit.

1 = Read.
0 = Write.

{26’b0,cmd[5:0]}

R/W

0x0

I2C Command Register.
[26]: iack: Interrupt Acknowledge.
Clears a pending interrupt.

27]: ack: ACK =0’ or NACK = "1".

[\
oo

]:

]: wr: Write to Slave.
9]: rd: Read from Slave.
30]:
31]:

=)

sto: Generate Stop Condition.

ooyl

sta: Generate Start Condition.

{31’b0,rst}

R/W

0x0

I2C Reset Register.
[31]: rst: I2C Module Reset..

Toggle to reset module.

{24’b0,rxr[7:0]}

RO

0x0

I?C Receive Data Register.

{26’b0,stat[4:0]}

RO

0x0

I2C Status Register.
[27]: rxack: Received ACK from Slave.
1 = No ACK Received.
0 = ACK Received.
[28]: busy: Busy.
1 after START detected.
0 after STOP detected.
[29]: al: Arbitration Lost.
Arbitration is lost when:
STOP detected, but not requested.
master drives SDA high, but it is low.
[30]: tip: Transfer in Progress.
1 = Transferring Data.
0 = Transfer Complete.
[31]: irq-flag: Interrupt Flag.

Set when interrupt is pending.
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J.11 Temperature Sensing

The measurement board contains 6 digital temperature sensors in a 2x3 array. The Texas
Instruments TMP125 [29] digital temperature sensor is accurate to 2°C over a temperature range of
—25°C to +85°C, and is controlled using a serial peripheral interface. The temperature measurement
is made with a 10-bit resolution delta-Y analog to digital converter, which translates to a temperature

resolution of 0.25°C. A block diagram of the TMP125 temperature sensor is shown in Figure J.2.

N N
el Control
Temperature p
Sensor Logic
\
~
Ax Serial
AID Peripheral
Converter Interface
\ o\ /
Config.
0oscC and Temp. scK
Register
\ o\ /

Figure J.2: 2°C accurate digital temperature sensor with SPI interface

An application running on the MicroBlaze 32-bit Soft-Core Processor will periodically sample the
temperature of all nine sensors to determine if a temperature calibration is required for the various
high-speed devices. Upon characterization of the measurement board during normal operation within
a chassis, a set of temperature limits will be defined that denote when a recalibration is necessary.

It is possible that there may be only three temperature zones:
1. Too Cold!!
2. Normal Operation
3. Too Hot!!

However, more zones may be necessary depending on the environment and performance limitations

of the high-speed devices.
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The temperature register of the TMP125 is a 16-bit, read-only register that stores the
output of the most recent conversion. However, temperature is represented by only 10-bits, which
are in signed two’s complement format. The first bit of the temperature register, D15, is a leading
zero. Bits D14 to D5 are used to indicate temperature. Bits D4 to DO are the same as D5 (see
Table J.38). Data format for temperature is summarized in Table J.39. When calculating the signed
two’s complement temperature value, only the 10 data bits should be used.

Following power-up or reset, the temperature register will read 0°C until the first conversion

is complete.

Table J.38: TMP125 Temperature Register

D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1

0 T9 T8 T7 T6 Ts | T4 | T3 | T2 | T1 | TO | TO | TO | TO | TO

Table J.39: TMP125 temperature data format

TMP125 Temperature Data Format
Temperature (°C) | DIGITAL OUTPUT (T9...T0)
+127 0b01-1111-1100
+125 0b01-1111-0100
+100 0b01-1001-0000
+75 0b01-0010-1100
+50 0b00-1100-1000
+25 0b00-0110_0100
+10 0b00-0010-1000
+0.25 0b00-0000_0001
0 0b00_-0000_0000
-0.25 Ob11_1111.1111
-25 0b11-1001-1100
-50 0b11-0011-1000
-55 0b11-0010-0100
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J.11.1 TMP_SENSE_1A: TI TMP125 Temperature Sensor SPI Controller

The TMP_SENSE_1A EDK peripheral is an instance of the zps_spi IP and is the main
interface to the temperature sensor #1(A). The TMP_SENSE_1A connects to the Xilinx Spartan-

3A FPGA pins shown in Table J.40.

Table J.40: TMP_SENSE_1A EDK peripheral I/O descriptions

zps_spt Pin Name | Pin Name Direction | Pin | Description

SCK FPGA_TMPSENS_1A_SCK (@) ABT | Sensor 1A Serial Clock.
MOSI FPGA_TMPSENS_1A_MOSI (@) ABS8 | Sensor 1A MOSI.
MISO FPGA_TMPSENS_1A_MISO I AB6 | Sensor 1A MISO.

SS FPGA_TMPSENS_1A_CSN (@) AAS8 | Sensor 1A Chip Select.

J.11.2 TMP _SENSE _1B: TI TMP125 Temperature Sensor SPI Controller

The TMP_SENSE_1B EDK peripheral is an instance of the zps_spi IP and is the main
interface to the temperature sensor #1(B). The TMP_SENSE_1B connects to the Xilinx Spartan-

3A FPGA pins shown in Table J.41.

Table J.41: TMP_SENSE_1B EDK peripheral I/O descriptions

zps_spt Pin Name | Pin Name Direction | Pin | Description

SCK FPGA_TMPSENS_1B_SCK O F7 | Sensor 1B Serial Clock.
MOSI FPGA_TMPSENS_1B_MOSI O F8 | Sensor 1B MOSI.
MISO FPGA_TMPSENS_1B_MISO I E6 | Sensor 1B MISO.

SS FPGA_TMPSENS_1B_CSN O E7 | Sensor 1B Chip Select.
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J.11.3 TMP_SENSE_1C: TI TMP125 Temperature Sensor SPI Controller

The TMP_SENSE_1C EDK peripheral is an instance of the zps_spi IP and is the main
interface to the temperature sensor #1(C). The TMP_SENSE_1C connects to the Xilinx Spartan-

3A FPGA pins shown in Table J.42.

Table J.42: TMP_SENSE_1C EDK peripheral I/O descriptions

zps_spt Pin Name | Pin Name Direction | Pin | Description

SCK FPGA_TMPSENS_1C_SCK (@) V17 | Sensor 1C Serial Clock.
MOSI FPGA_TMPSENS_1C_MOSI (0] W17 | Sensor 1C MOSI.
MISO FPGA_TMPSENS_1C_MISO I U16 | Sensor 1C MISO.

SS FPGA_TMPSENS_1C_CSN (@) Y17 | Sensor 1C Chip Select.

J.11.4 TMP _SENSE 2A: TTI TMP125 Temperature Sensor SPI Controller

The TMP_SENSE_2A EDK peripheral is an instance of the zps_spi IP and is the main
interface to the temperature sensor #2(A). The TMP_SENSE_2A connects to the Xilinx Spartan-

3A FPGA pins shown in Table J.43.

Table J.43: TMP_SENSE_2A EDK peripheral I/O descriptions

zps_spt Pin Name | Pin Name Direction | Pin | Description

SCK FPGA_TMPSENS_2A SCK (@) R19 | Sensor 2A Serial Clock.
MOSI FPGA_TMPSENS_ 2A _MOSI (@) R20 | Sensor 2A MOSI.
MISO FPGA_TMPSENS_2A _MISO I R18 | Sensor 2A MISO.

SS FPGA_TMPSENS_2A_CSN (0] R21 | Sensor 2A Chip Select.
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J.11.5 TMP_SENSE_2B: TI TMP125 Temperature Sensor SPI Controller

The TMP_SENSE_2B EDK peripheral is an instance of the zps_spi IP and is the main

interface to the temperature sensor #2(B). The TMP_SENSE_2B connects to the Xilinx Spartan-

3A FPGA pins shown in Table J.44.

Table J.44: TMP_SENSE_2B EDK peripheral I/O descriptions

zps_spt Pin Name | Pin Name Direction | Pin | Description

SCK FPGA_TMPSENS_2B_SCK O J21 | Sensor 2B Serial Clock.
MOSI FPGA_TMPSENS_2B_MOSI O J22 | Sensor 2B MOSI.
MISO FPGA_TMPSENS_2B_MISO I J20 | Sensor 2B MISO.

SS FPGA_TMPSENS_2B_CSN O K22 | Sensor 2B Chip Select.

J.11.6 TMP _SENSE 2C: TI TMP125 Temperature Sensor SPI Controller

The TMP_SENSE_2C EDK peripheral is an instance of the zps_spi IP and is the main

interface to the temperature sensor #2(C). The TMP_SENSE_2C connects to the Xilinx Spartan-

3A FPGA pins shown in Table J.45.

Table J.45: TMP_SENSE_2C EDK peripheral I/0O descriptions

zps_spt Pin Name | Pin Name Direction | Pin | Description

SCK FPGA_TMPSENS 2C_SCK (0] C17 | Sensor 2C Serial Clock.
MOSI FPGA_TMPSENS_2C_MOSI (0] B17 | Sensor 2C MOSI.
MISO FPGA_TMPSENS_2C_MISO I D17 | Sensor 2C MISO.

SS FPGA_TMPSENS_2C_CSN (@) A17 | Sensor 2C Chip Select.
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J.12 DDR2 SDRAM SODIMM I?C Memory Interface

The measurement board contains a DDR2 SDRAM SODIMM connector for use with mem-
ory of a capacity up to 2 GB. The SODIMM contains an I2C memory for storing information related
to the control and refresh of the DDR2 SDRAM. The SODIMM data interface is connected to the

data path FPGA, and the I2C control interface is connected to the control FPGA.

J.12.1 ctx_iic_ctrlr_2: I2C Control Peripheral

The ctx_iic_ctrir_vi_00-a EDK peripheral is used to control the DDR2 SDRAM SODIMM
I2C interface, and appears as a set of 16 software accessible registers to the applications running on
the MicroBlaze. The ctx_iic_ctrir_vl_00-a EDK peripheral’s register map is shown in Table J.47.

The ctz_iic_ctrlr_2 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.46.

Table J.46: ctx_iic_ctrlr_-2 EDK peripheral I/O descriptions

ctx_tic_ctrlr_vi_00_-a Pin Name | Pin Name Dir | Pin | Description
io_fpga_iic_sda FPGA_DDR2_.SDRAM_SDA | 10 | B15 | I?C Serial Data.
io_fpga_iic_scl FPGA_DDR2_SDRAM_SCL O | A15 | I2C Serial Clock.

Table J.47: ctx_iic_ctrlr_v1_00_.a EDK peripheral register

map
Address | Name R/W | Default | Description
0 {16’b0,prer[15:0]} R/W 0x63 I2C Clock Prescaler Register.
[16:31]: prer[15:0]: Clock Prescale.
1 {30’b0,ctrl[1:0]} R/W 0x0 I?C Control Register.

[30]: core_en: Module Enable.
[31]: int_en: Interrupt Enable.

2 {24’b0,txr[7:1],rnw} | R/W 0x0 I?C Transmit Data Register.
[24:30]: txr: Transmit Data.
[31]: rnw: Read/Write Bit.
1 = Read.
0 = Write.

Continued on Next Page...
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Address

Name

R/W

Default

Description

3

{26’b0,cmd[5:0]}

R/W

0x0

I?C Command Register.
[26]: iack: Interrupt Acknowledge.
Clears a pending interrupt.

27]: ack: ACK =0’ or NACK = "1".

[\
[0

]:

]: wr: Write to Slave.
9]: rd: Read from Slave.
30]:
31]:

=)

sto: Generate Stop Condition.

sta: Generate Start Condition.

T T ™

{31’b0,rst}

R/W

0x0

I2C Reset Register.
[31]: rst: I2C Module Reset..

Toggle to reset module.

{24'b0,rxr[7:0]}

RO

0x0

I2C Receive Data Register.

{26’b0,stat[4:0]}

RO

0x0

I2C Status Register.
[27]: rxack: Received ACK from Slave.
1 = No ACK Received.
0 = ACK Received.
[28]: busy: Busy.
1 after START detected.
0 after STOP detected.
[29]: al: Arbitration Lost.
Arbitration is lost when:
STOP detected, but not requested.
master drives SDA high, but it is low.
[30]: tip: Transfer in Progress.
1 = Transferring Data.
0 = Transfer Complete.
[31]: irq_flag: Interrupt Flag.

Set when interrupt is pending.
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J.13 Debug Peripherals

The measurement board contains several peripherals intended to be used during debug of

both Hardware and Software.

3 Push-Buttons (Active Low)

4 LEDs (Active Low)

Logic Analyzer Header

CP2102 USB-to-UART Bridge

FT245BL USB Interface

FPGA Re-Program Push-Button

J.13.1 Buttons_3Bit: Push-Button GPIO Controller

The measurement board control FPGA has three momentary push-button for debugging
various applications and hardware. The push-buttons can be polled independently. A logic low
indicates a push-button has been pressed, and the push-buttons idle high when not pressed. The

push-buttons are controlled by the MicroBlaze via a GPIO peripheral.

Figure J.3: Momentary Push-Button

The push-buttons connect to the Xilinx Spartan-3A FPGA pins shown in Table J.48.

Table J.48: Buttons_3Bit EDK peripheral I/O descriptions

xps_gpto Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_PUSHBUTTONS|0] I H9 NA Push-Button 0
1 FPGA_PUSHBUTTONS][1] I G8 NA Push-Button 1
2 FPGA_PUSHBUTTONS|2] I G7 NA Push-Button 2
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J.13.2 LEDs_4Bit: LED GPIO Controller

The measurement board control FPGA has four LEDs for debugging various applications
and hardware. The LEDs can be controlled independently, and are turned on by setting the appro-

priate control bit to a logic low. The LEDs are controlled by the MicroBlaze via a GPIO peripheral.

@

Figure J.4: Light-Emitting Diode

The LEDs connect to the Xilinx Spartan-3A FPGA pins shown in Table J.49.

Table J.49: LEDs_4Bit EDK peripheral I/O descriptions

zps_gpto Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_LEDS[0] | O D8 1 LED Bit 0 (Active Low).
1 FPGA_LEDS[1] | O Cr 0 LED Bit 1

2 FPGA_LEDS[2] | O C8 1 LED Bit 2

3 FPGA_LEDS[3] | O B8 0 LED Bit 3
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J.13.3 Logic Analyzer

407

The measurement board contains a header for probing internal FPGA signals with a Logic

Analyzer. The pinout for the 18-pin Logic Analyzer header is shown in Table J.50.

Table J.50: Logic analyzer header pinout

Odd Pins Even Pins
FPGA_LA_CLK 1] 2| GND
FPGA_LADATA[7] | 3 | 4 | GND
FPGA_LADATA[6] | 5 | 6 | GND
FPGA_LADATA[5) | 7 | 8 | GND
FPGA LA DATA[4] | 9 | 10 | GND
FPGA LA DATAJ[3] | 11 | 12 | GND
FPGA_LADATA[2] | 13 | 14 | GND
FPGA_LA_DATA[1] | 15 | 16 | GND
FPGA_LA_DATA[0] | 17 | 18 | GND

The LEDs connect to the Xilinx Spartan-3A FPGA pins shown in Table J.51.

Table J.51: Logic analyzer I/O descriptions

Pin Name Dir | Pin | Default Value | Description
FPGA_LA_CLK O | Al4 NA Logic Analyzer Clock.
FPGA_ LA DATA[7] | O | Al3 NA Logic Analyzer Data Bit 7.
FPGA_LA_DATA[6] | O | B13 NA Logic Analyzer Data Bit 6.
FPGA_LADATA[5] | O | C13 NA Logic Analyzer Data Bit 5.
FPGA_LA_DATA[4] | O | D15 NA Logic Analyzer Data Bit 4.
FPGA_.LA_DATA[3] | O | D13 NA Logic Analyzer Data Bit 3.
FPGA_LADATA[2] | O | E13 NA Logic Analyzer Data Bit 2.
FPGA_ LA DATA[1] | O | E14 NA Logic Analyzer Data Bit 1.
FPGA_ LA DATA[0] | O | F13 NA Logic Analyzer Data Bit 0.
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J.13.4 CP2102 USB-to-UART Bridge

The measurement board contains a Silicon Laboratories CP2102 USB-to-UART Bridge for

controlling the board in a development environment in lieu of the full-speed USB interface. The

CP2102 provides a COM Port Interface over USB, and allows for an RS-232 interface between the

data path FPGA and the CP2102. The MicroBlaze design will use an Xilinx EDK XPS UART Lite

peripheral, which will be configured as shown in Table J.13.4.

C_BAUDRATE 115200
C_DATA BITS 8
C_USE_PARITY 0
C_ODD_PARITY 0

The desired terminal settings are shown in Table J.13.4.

Bits per second: 115200

Data bits: 8
Parity: None
Stop bits: 1
Flow Control: None

The CP2102 connects to the Xilinx Spartan-3A FPGA pins shown in Table J.53.

Table J.52: CP2102 I/O descriptions

CP2102 Pin Name | FPGA Pin Name | Pin | Description

TXD FPGA_RS232_ RX AB5 | RS-232 Receive Data to FPGA.
RXD FPGA_RS232_.TX Y5 | RS-232 Transmit Data from FPGA.
RTS FPGA_RS232_RTS | AA6 | RS-232 Request to Send to FPGA.
CTS FPGA_RS232_CTS Y6 | RS-232 Clear to Send from FPGA.

In order to use the CP2102, a driver must be installed on the computer. The driver can be down-

loaded from the following Silicon Laboratories website:

e https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx


https://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

APPENDIX J. CONTROL FPGA EDK/MICROBLAZE PERIPHERALS

J.13.4.1 RS232_CP2102: RS-232 UartLite Controller

409

The RS232_CP2102 EDK peripheral is an instance of the zps_uartlite and connects to the

Xilinx Spartan-3A FPGA pins shown in Table J.53.

Table J.53: RS232_CP2102 EDK peripheral I/0 descriptions

zps_uartlite Pin # | FPGA Pin Name | Dir | Pin | Description
RX FPGA_RS232_RX I ABG6 | Receive Data to FPGA.
TX FPGA_RS232_.TX O Y5 | Transmit Data from FPGA.

J.13.4.2 CP2102_RTS: RS-232 UartLite Controller

The CP2102_RTS EDK peripheral connects to the Xilinx Spartan-3A FPGA pins shown

in Table J.54.

Table J.54: CP2102_-RTS EDK peripheral I/O descriptions

xps_gpio Pin #

FPGA Pin Name

Dir

Pin

Default Value

Description

0

FPGA_RS232_RTS

I

AAG6

NA

Request to Send to FPGA.

J.13.4.3 CP2102_CTS: RS-232 UartLite Controller

The CP2102-CTS EDK peripheral connects to the Xilinx Spartan-3A FPGA pins shown

in Table J.55.

Table J.55: CP2102_CTS EDK peripheral I/O descriptions

zps_gpio Pin #

FPGA Pin Name

Dir

Pin

Default Value

Description

0

FPGA_RS232_CTS

0]

Y6

0

Clear to Send from FPGA.
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The measurement board control FPGA has access to a Future Technology Devices Inter-

national Ltd. FT245BL USB first-in/first-out (FIFO) IC. This USB FIFO can provide higher data

throughput than the Silicon Laboratories CP2102 USB-to-UART bridge IC, and may be used as the

main communications interface for the General Purpose Instrument.

In order to use the FT245BL USB FIFO IC, a driver must be installed on the computer.

FTDI Chip provides two kinds of drivers:

e Virtual COM Port Drivers

http://www.ftdichip.com/Drivers/VCP.htm

e D2XX Drivers

http://www.ftdichip.com/Drivers/D2XX.htm

For higher throughput the D2XX Drivers should be used. If the Virtual COM Port driver is used,

then similar data throughput to the CP2102 will be achieved.

The FT245BL USB FIFO IC connects to the Xilinx Spartan-3A FPGA pins shown in

Table J.56.

Table J.56: FT245BL_GPIO EDK peripheral I/O descriptions

zps_gpio Pin # | Pin Name Dir | Pin | Default Value | Description

0 FPGA_FTDI_DATA[0] I/O0 | V15 1 Data Bit 0.

1 FPGA_FTDI_DATA[1] I/O0 | V16 0 Data Bit 1.

2 FPGA_FTDI_DATA[2 I/0 | W15 1 Data Bit 2.

3 FPGA_FTDI_DATAJ3] I/0 | W16 0 Data Bit 3.

4 FPGA_FTDI_DATA[4] I/0 | Y15 1 Data Bit 4.

5 FPGA_FTDI_DATAJ5] I/0 | Y16 0 Data Bit 5.

6 FPGA_FTDI_DATA]I6] I/O0 | AB15 1 Data Bit 6.

7 FPGA_FTDI_DATAJ7 I/0 | AB16 0 Data Bit 7.

8 FPGA_FTDI_TXEN I P12 0 TX Data Enable.
9 FPGA_FTDI_RXFN I R12 0 RX Data Valid.
10 FPGA_FTDI_.PWRENN I R13 0 Power Enable.

11 FPGA_FTDI_RSTOUTN I R14 0 Reset Output.

12 FPGA_FTDI_RDN (0] U13 0 Read Enable.

13 FPGA_FTDI_-WRN (@) V14 0 Write Enable.

14 FPGA_FTDISI. WU (@) W13 0 Send Immediate and

Wake Up Signal.



http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/D2XX.htm
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J.13.6 FPGA Re-Program Push-Button

The measurement board has the ability to precisely control the re-configuration process
for the control FPGA. Figure J.5 shows the circuit used on the measurement board. Section J.14
describes how the TPS3823-33DBV device works at power-up along with the manual reset input.
Unlike the board reset circuit whose Logical AND gate A input is driven by Config Done, the
PROG_B circuit’s A input is driven an external connector interface for future controller boards.
This input provides a controller board with the capability to initiate an FPGA re-configuration

during either the General Purpose Instrument power-up routine or a firmware upgrade.

Pavip Favie  Holds off configuration while low.

Configuration starts on rising edge. PIVID
o 1u
< p (1
o o J7 caz] | o01u
s l—cuar
a5 5
PUSH TO
RE-PROGRAM
FRGA UL PROGO . s
= - * -

us4 VoD
s2

R320
R3ZL
511K

Figure J.5: Measurement board PROG_B circuit
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J.13.7 Reach Technologies Display

The measurement board contains an RS-232 interface to a Reach Technologies Display for
displaying waveforms and configuring the instrument. The MicroBlaze design will use an EDK XPS
UART Lite peripheral, which will be configured as shown in Table J.13.7.

C_BAUDRATE 115200
C_DATA _BITS 8

C_USE_PARITY 0
C_.ODD_PARITY 0

The desired terminal settings are shown in Table J.13.7.

Bits per second: 115200

Data bits: 8
Parity: None
Stop bits: 1
Flow Control: None

The Reach Technologies Display connects to the Xilinx Spartan-3A FPGA pins shown in Table J.57.

Table J.57: CP2102 I/O descriptions
CP2102 Pin Name | FPGA Pin Name | Pin | Description
TXD FPGA_RS232_ RX V12 | RS-232 Receive Data to FPGA.
RXD FPGA_RS232_TX U12 | RS-232 Transmit Data from FPGA.
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J.14 Board Reset Push-Button

There are several methods to reset the measurement board. A Texas Instruments processor
supervisory circuit (TSP3823-33DBV) is used to provide both a power-up and manual reset. During
power-on, RESET is asserted when supply voltage +3.3 V becomes higher than 1.1 V. Thereafter,
the supply voltage supervisor monitors +3.3 V and keeps RESET active as long as +3.3 V remains
below the threshold Vyr. An internal timer delays the return of the output to the inactive state
(high) to ensure proper system reset. The delay time, tq, starts after +3.3 V has risen above the
threshold voltage V. When the supply voltage drops below the threshold voltage Vi, the output
becomes active (low) again. The threshold voltage of the TPS3823-33DBV is 2.93 V.

The TPS3823-33DBV device incorporates a manual reset input, M R. A low level at M R
causes RESET to become active. The measurement board does not take advantage of the watch
dog circuit available in the TPS3823-33DBV. A truth table for the TPS3823-33DBV is shown in
Table J.58.

Table J.58: TPS3823-33DBV truth table

TPS3823-33DBV Truth Table
INPUTS OUTPUTS
MR | Vpp > Vir RESET
0 0 0
0 1 0
1 0 0
1 1 1

As +3.3 V powers-on the TPS3823 will initiate a power-on reset to the control FPGA, but the
FPGA will most likely be busy in the configuration process. Therefore, the reset will be missed
by the FPGA. However, an external logic AND gate is provided to logically AND an active-low
push-button and the FPGA Configuration Done (Active High) signal (see Table J.59), so that the
MR pin is toggled low then high. This results in RESET being toggled low for 1 us, which will
provide plenty of time for the FPGA to properly reset after the configuration process completes.
After the measurement board has powered up and the FPGA is configured, the user can press the

push-button to initiate an FPGA reset whenever desired.
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Table J.59: Local reset truth table

Local Reset Truth Table

Config Done | Push-Button | Local Reset
0 0 0
0 1 0
1 0 0
1 1 1

During normal operation, the future controller board can also initiate a board reset by toggling the

controller reset pin low then high. The truth table for the board reset is shown in Table J.60.

Table J.60: Board reset truth table

Board Reset Truth Table

Local Reset | Controller Reset | Board Reset
0 0 0
0 1 0
1 0 0
1 1 1

The board reset signal is fanned out to 3 devices on the measurement board:

e Control FPGA

e Power Control CPLD

e Data Path FPGA
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The circuit shown in Figure J.6 allows for all three programmable devices to be simultane-

ously reset.
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Figure J.6: Measurement board reset circuit

The reset signals connect to the Xilinx Spartan-3A FPGA pins shown in Table J.61.

Table J.61: Reset Signal descriptions

Pin Name Dir | Pin | Description
FPGA_S3A_BOARD_RSTN I D7 | Measurement Board Main Reset.
FPGA_LOCAL_RSTN I D6 | Measurement Board Local Reset.
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J.14.1 proc_sys reset_0: Processor System Reset Controller

The proc_sys_reset EDK peripheral is in charge of receiving all reset and DCM locked

signals in order to determine when the processor reset should be driven.

Listing J.4: Xilinx EDK MHS System Reset Instantiation

BEGIN proc_sys_reset

PARAMETER INSTANCE = proc-sys-reset_0
PARAMETER HW_VER = 2.00.a

PARAMETER C_EXT_RESET_HIGH = 0

PORT Slowest_sync_clk = sys_clk_s
PORT Dcm_locked = dcmO_locked

PORT Ext_Reset_In = sys_rst_s

PORT MB_Reset = mb_reset

PORT Bus_Struct_Reset = sys_bus_reset
PORT MB_Debug_Sys_-Rst = Debug_-SYS_Rst
END

The proc_sys_reset EDK peripheral connects to the Xilinx Spartan-3A FPGA pins shown in Ta-
ble J.62.

Table J.62: proc_sys_reset_.0 EDK peripheral I/0 descriptions

Peripheral Name | Pin Name Dir | Pin | Default Value | Description

Ext_Reset_In FPGA_S3A_BOARD_RSTN I D7 1 Board Main Reset.
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J.15 CLK_100MHZ_INPUT: Differential Clock Input Buffer

The CLK_100MHZ_INPUT EDK peripheral is an instance of the util_ds_buf TP and con-
nects to the Xilinx Spartan-3A FPGA pins shown in Table J.63. The util_ds_buf TP is essentially an

IBUFGDS Xilinx Spartan-3A input clock buffer primitive.

Table J.63: CLK_100MHZ_INPUT EDK peripheral I/O descriptions

util_ds_buf Pin # | FPGA Pin Name Dir | Pin | Description

IBUF_DS_P FPGA_CLK100MHZ_P I AA12 | 100MHz Clock (Positive).
IBUF_DS_P FPGA_CLK100MHZ_N I AB12 | 100MHz Clock (Negative).
IBUF_.OUT dem_clk_s (@) NA | 100MHz Clock.

Listing J.5: Xilinx EDK MHS System Clock Input Buffer Instantiation

BEGIN util_ds_buf
PARAMETER INSTANCE = CLK_100MHZ_INPUT
PARAMETER HW.VER = 1.00.a
PARAMETER C_BUF_TYPE = IBUFGDS
PORT IBUF_DS_P = fpga_0_CLK_100_P
PORT IBUF_DS.N = fpga_0_CLK_100_N
PORT IBUF.OUT = dcm_clk_s

END




APPENDIX J. CONTROL FPGA EDK/MICROBLAZE PERIPHERALS 418

J.16 dcm _module 0: Digital Clock Module

The dem-module-0 EDK Peripheral is an instance of the dem_module TP and is used to
generate the clocks shown in Table J.64. The util_ds_buf IP is essentially a Xilinx Spartan-3A digital
clock manager (DCM).

Table J.64: dem_module_.0 EDK Peripheral I/O Descriptions

util_ds_buf Pin # | FPGA Pin Name Dir Description

CLKIN dem _clk s I 100 MHz Clock.

CLKO DDR_SDRAM mpmec_clk_s O DDR SDRAM 100 MHz Clock, 0°.
CLK90 DDR_SDRAM mpmec_clk 90s | O | DDR SDRAM 100 MHz Clock, 90°.
CLKDV sys_clk_s O MicroBlaze 50 MHz System Clock.
CLKFB DDR_-SDRAM _mpmec_clk_s O DCM Feedback CLock Clock.
LOCKED demO_locked 0] DCM Locked (Active High).

Listing J.6: Xilinx EDK MHS DCM Instantiation

BEGIN dcm_module

PARAMETER INSTANCE = dcm_module_0
PARAMETER HW.VER = 1.00.c
PARAMETER C_CLKDV_DIVIDE = 2.0
PARAMETER C_CLKIN_PERIOD = 10.0
PARAMETER C_EXT_RESET_HIGH = 0
PARAMETER C_CLKIN_.BUF = FALSE
PARAMETER C_CLKFB_BUF = FALSE
PARAMETER C_CLKO-BUF = TRUE
PARAMETER C_CLK90_BUF = TRUE
PARAMETER C_.CLKDV_BUF = TRUE
PORT RST = net_vcc

PORT CLKIN = dcm_clk_s

PORT CLKO = DDR_SDRAM_mpmec_clk_s
PORT CLK90 = DDR_SDRAM_mpmec_clk_90_s
PORT CLKFB = DDR-SDRAM_mpmc-clk_s
PORT CLKDV = sys_clk_s

PORT LOCKED = dcmO_locked

END
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Glossary

ADC :
An acronym used to refer to a analog-to-digital converter, which converts a analog voltages to

binary values.

AsSAP
Acronym for Asynchronous Array of Simple Processors. A 2D-mesh parallel array architecture

designed for power efficiency while executing computationally intensive applications.

AsAP Version 1 :
This is the first implementation of the AsAP architecture which has 36 processing elements
arranged in a 6x6 array with one input in the upper-left corner and one output which can be
any one of the right edge processors. This version of the architecture uses nearest neighbor

communication exclusively.

AsAP Version 2 :
This is the second implementation of the AsAP architecture which has an array of size 13x13
with a few of the lower processors replaced by hardware-based accelerators. For this work the
array is assumed to be homogeneous with a size of 16x16. This version of the architecture
introduces a routing overlay network and also allows the input processor to be any one of the

left edge processors.
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CW .

Acronym for continuous waveform, which is an RF signal of constant amplitude and frequency.

Core Laminate :
An insulating material with copper affixed to both sides [30]. The majority of the copper is
etched away during the printed circuit board manufacturing process. The remaining copper

makes up the signal traces and power planes.

Core PCB Construction :
Core construction combines all core laminate materials using a prepreg during the multilayer

lamination process [31].

DAC :
An acronym used to refer to a digital-to-analog converter, which converts binary values to

analog voltages.

dBFS :
A measure of a DAC output signals power level in decibels relative to full scale. A power level
of 0 dBF'S represents the maximum possible level of a device. The output of DAC devices are

commonly scaled to 0 dBFS, —6 dBF'S, and —12 dBFS when measuring SFDR.

DDR :
An acronym used to refer to a data transfer mechanism known as double data rate, which

transfers data on both the rising and falling edges of a clock signal.

DDS :
An acronym used to refer to a direct digital synthesizer, which is made up of a phase accu-
mulator and phase to amplitude converter to generate periodic waveforms. For example, sine,

cosine, square and triangle waveforms.

DSP :
An acronym used to refer to a digital signal processor, or the act of digitally processing a

signal.

DUT :

An acronym used to refer to a Device Under Test in a measurement system.
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ENOB :
Effective number of bits is a measure in units of bits of a converter’s performance as compared

to the theoretical limit based on quantization noise.

Foil PCB Construction :
Construction using a core laminate material for all internal layers [31]. The outer layer is made

up of a copper foil.

HD2 .
Second harmonic distortion, or HDs, is the ratio of the amplitude of the second harmonic to
the amplitude of the fundamental tone. On a dB scale, HD5 increases linearly with a slope of

one in terms of the output power.

HD3 :
Third harmonic distortion, or HD3, is the ratio of the amplitude of the third harmonic to the
amplitude of the fundamental tone. On a dB scale, HD3 increases linearly with a slope of two

in terms of the output power.

Input/output block (I0OB) :
A collection or grouping of basic elements that make up the input and output functions of
FPGA devices. For example, the I0B of a Xilinx Virtex-5 FPGA is made up of an input

buffer, a tri-state output buffer, an inverter, and a pad [17].

Instrument Height :
Test and measurement equipment height is generally identified as a multiple of Us. Each U is

equivalent to 1.75 inches. The actual height of an instrument which is 1U tall is 1.719 inches.

Instrument Width :
Test and measurement equipment is typically designed to fit in a 19 inch rack mounted system.
A piece of equipment is generally less than 19 inches and is mounted in the rack using ear

brackets on both sides.

IMDg :
Third-order two-tone intermodulation distortion is a metric used to describe the distortion
performance of a transmitter or receiver when multiple signal tones are present in the data
stream. It is measured by driving two spectrally pure sine waves through the DUT at fre-

quencies f; and fsy, usually relatively close together. The amplitude of each tone when summed
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together will be approximately 6 dB below full-scale of the converter in order to avoid clipping.

It is typically specified in dBe relative to the value of either of the two input tones [11].

Nyquist Frequency :

FS

The sample rate divided by two (%) is known as the Nyquist Frequency.

Nyquist Sampling Theorem :
The Nyquist sampling theorem states that in order to perfectly reconstruct a signal the system
must sample at a rate greater than 2B, where B represents the highest frequency in the original

signal.

Nyquist Zones :
The frequency range from DC (0 Hz) to % is called the first Nyquist zone. The second Nyquist

zone is known as the frequency range from % to Fy.

One-hot encoding :
One-hot encoding refers to a group of bits where only a single bit is set to a logic high. All
remaining bits are set to a logic low. This type of encoding is commonly used to represent the
state transitions of a finite state machine. An example of a one-hot encoded group of 3 bits is

shown in Table J.65.

001
010
100

Table J.65: One-hot encoding example

Prepreg Laminate :
An insulating material which is inserted between the etched printed circuit board layers [30].

This material acts as the glue that bonds the multiple layers of the PCB.

QDR-II SRAM :
A type of synchronous random-access memory (RAM), which provides a DDR data interface
capable of simultaneous data reads and writes, hence the use of the term quad-data-rate
(QDR). The simultaneous read and write interface is made possible by two separate 36-bit

data interfaces. The address bus is shared between the read and write interfaces.
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RBW :
The analog or digital intermediate frequency (IF) section consists of resolution bandwidth

filters, which follow the IF gain amplifier of a spectrum analyzer [12].

SFDR :
Spurious-Free Dynamic Range is a measure of a signal tone relative to the largest spurious
signal present in the signal bandwidth being measured. It is commonly used to specify the

performance of DAC and ADC devices.

SPAN :

Spectrum analyzer use the term SPAN to define the frequency range displayed on screen.

TOI :
Third-order intercept point is a metric used to describe how well a transmitter or receiver
performs with closely spaced signals. It is calculated using the IMDg3 and fundamental tone

power parameters and is specified in terms of dB.

VBW
Spectrum analyzers use video filters to help discern signals which are close to the noise level.
The video filter will effectively smooth or average the displayed signal on screen. It is a low-
pass filter that comes after the envelope detector of a spectrum analyzer, and determines the
bandwidth of the video signal that will eventually be digitized to yield amplitude data. The
corner frequency of the video filter can be varied to increase or decrease the video bandwidth

12].

X2Y capacitor :
An X2Y capacitor is a type of capacitor developed by a company named X2Y Attenuators,
LLC.
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