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Abstract

We propose an underwater image enhancement algorithm that leverages both model- and
learning-based approaches by unfolding an iterative algorithm. We first formulate the underwater image
enhancement task as a joint optimization problem, based on the image formation model with physical
model and underwater-related priors. Then, we solve the optimization problem iteratively. Finally, we
unfold the iterative algorithm so that, at each iteration, the optimization variables and regularizers for
image priors are updated by closed-form solutions and learned deep networks, respectively.
Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art underwater
image enhancement algorithms.

Introduction

▶ Underwater images often suffer from quality degradation due to light absorption and scattering,
reducing visibility and perceptual quality.

▶ Modeling inaccuracies may degrade the performance of model-based approaches.
▶ Learning-based algorithms behave as black boxes and rely on diverse training data, limiting their

generalizability.
▶ In this work, we propose an unrolling approach for underwater image enhancement that unfolds an

optimization problem into a learnable network.

Proposed Algorithm

▶ We formulate underwater image enhancement as a joint optimization problem with physical constraints
and underwater-related priors as

As handcrafted regularizers for t and J may not accurately capture real image features, we add three
general regularization functions, φ, ϕ, and ψ, for B, J, and t, respectively, learned from data.

▶ Variable separation

min
J,t,B,P,Q,R

1

2
∥Jt + B(1− t)− I∥22 +

γ

2
∥t− t̃p∥22 + φ(P) + ϕ(Q) + ψ(R),

subject to P = B, Q = J, R = t.
(1)

Proposed Algorithm

▶ Solutions
▷ Estimating the color-corrected image J̃ by minimizing F(J)

J̃m = Jm +
(
Jl − Jm

)
× J1 (8)

J̃s = Js +
(
Jl − Js

)
× Jl (9)

▷ Updating variables via closed-form solutions by an iterative technique

Bk = argmin
B

L (B, tk−1, Jk−1,Pk−1,Qk−1,Rk−1) (15)

tk = argmin
t

L (Bk, ttJk−1,Pk−1,Qk−1,Rk−1) (16)

Jk = argmin
J

L (Bk, tk, J,Pk−1,Qk−1,Rk−1) (17)

where L is the the augmented Lagrangian function derived from (1).
▷ Learning prior information from the data via CNNs

Pk = argmin
P

L (Bk, tk, J,P,Qk−1,Rk−1) = Pk (Bk, Γk−1, αk−1)

Qk = argmin
P

L (Bk, tk, J,Pk,Q,Rk−1) = Qk ( Jk,Λk−1, βk−1)

Rk = argmin
P

L (Bk, tk, J,Pk,Qk,R) = Rk (tk, 1k−1, ηk−1)

We employ a residual dense network (RDN) for Pk and Rk and an informative proximal mapping
module (IPMM) for Qk.

Network Architecture
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▶ l1-norm of the difference between a ground-truth underwater image Jgt and an enhanced image Ĵ

L = ∥Ĵ− Jgt∥1. (2)

Experimental Results

Table: Quantitative comparison of underwater image enhancement performance using five objective quality metrics.
IBLA [1] HLRP [2] MLLE [3] FUnIE-GAN [4] Water-Net [5] Ucolor [6] TACL [7] Proposed

PSNR 15.22 12.55 17.78 16.97 15.76 21.08 23.25 24.32
SSIM 0.6632 0.2940 0.7513 0.7412 0.6755 0.8767 0.8590 0.9313
UCIQE 0.6002 0.6225 0.6216 0.5600 0.5285 0.5710 0.6100 0.6244
UIQM 5.9023 5.7807 4.3716 4.8814 4.5759 4.4183 4.2694 4.3973

NIQE 5.0339 4.7266 5.3187 4.7282 4.9934 4.7318 4.4941 4.4847

Input IBLA HLRP MLLE FUnIE-GAN

Water-Net Ucolor TACL Proposed Ground-truth

Figure: Comparison of the underwater image enhancement results on the UIEB dataset.

▶ Conventional algorithms yield poor results with low contrast and color distortions.
▶ Proposed algorithm provides the closest match to ground-truth and the most faithful enhancements.
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