

# Audio Quality Prediction with VMAF

ARIJIT BISWAS

HARALD MUNDT

155<sup>TH</sup> AES CONVENTION, NEW YORK, 26 OCTOBER 2023

#### Motivation & scope

#### **Motivation**

- VMAF\* is a popular tool in the industry for measuring coded video quality and optimize video delivery.
- Desire to model coded audio-video quality (AVQ) with a coherent system design and optimize audio-video delivery.

#### Scope

• Can VMAF be leveraged to assess coded audio quality?

#### We aim to use deployed VMAF for coded audio quality prediction

\*VMAF - Video Multi-Method Assessment Fusion: <u>https://github.com/Netflix/vmaf</u>

## Audio quality metrics inspired from image domain



#### Unaware of "out-of-the-box" image/video quality metric utilized for

#### **Coded Audio Quality Prediction!**

<sup>1</sup>X. Min, et al., "Study of Subjective and Objective Quality Assessment of Audio-Visual Signals," *IEEE Trans. on Image Processing*, 2020. <sup>2</sup>M. Chinen, et al., "ViSQOL v3: An Open Source Production Ready Objective Speech and Audio Metric," *QoMEX*, 2020.

© 2023 DOLBY

# Video and audio quality prediction with VMAF



## **Creation of spectrogram videos**



# Non-monotonic mapping (via HSV colormap\*)

Spectrogram Buffer 80 250 40 L 200 Bands 1 150 Lrequency F R 100 50 40 Μ 0 16 32 Spectrum # 32 spectrogram frames (≈1s audio at 30 fps)

Dimension:  $240 \times 32$ 

Dimension:  $240 \times 32$ 



Effect of non-monotonic mapping

\*HSV (Hue, Saturation, Value) Colormap Array. <u>https://www.mathworks.com/help/matlab/ref/hsv.html/</u>© 2023 DOLBY

#### **Replication of audio spectrograms**



Image dimension:  $480 \times 640$ 

Image dimension:  $480 \times 640$ 



After replication

# USAC Verification Listening Test 3\* (stereo high-rates)

|                       | w/ anchors     |                | w/o anchors    |       | Pearson's correlation coefficient         |
|-----------------------|----------------|----------------|----------------|-------|-------------------------------------------|
|                       | R <sub>p</sub> | R <sub>s</sub> | R <sub>p</sub> | $R_s$ | Spearman's Rank correlation coefficient   |
| ViSQOL-v3             | 0.823          | 0.904          | 0.769          | 0.852 | Dedicated audio quality metric            |
| SSIM <sub>1D</sub>    | 0.263          | 0.417          | 0.702          | 0.803 |                                           |
| MS-SSIM <sub>1D</sub> | 0.460          | 0.559          | 0.752          | 0.814 |                                           |
| VIFP <sub>1D</sub>    | 0.389          | 0.517          | 0.332          | 0.581 | 1D variant of 2D image distortion metrics |
| GMSM <sub>1D</sub>    | 0.115          | 0.239          | 0.678          | 0.807 |                                           |
| GMSD <sub>1D</sub>    | 0.116          | 0.248          | 0.738          | 0.797 |                                           |
| AudioVMAF             | 0.909          | 0.938          | 0.818          | 0.898 |                                           |

\*Results for tests 1 & 2 are reported in our paper. Codecs included in all three MUSHRA tests were AMR-WB+, HE-AAC, and USAC at various bitrates. Note: ViSQOL-v3 and 1D variant of 2D image distortion metrics evaluates the mid-signal:  $M = \frac{1}{2}(L + R)$ 

## With/without replication and non-monotonic mapping



#### AudioVMAF versus ViSQOL and PEAQ\*





- VMAF can be used to predict coded audio quality
- Proposed preprocessing to deployed VMAF
- New angle for audio quality prediction
  - → Joint audio-video quality (AVQ) measure using a coherent system design

- Better understand VMAF (design & training data)
- Extend towards multichannel/immersive
- Joint AVQ modeling

#### THANK YOU

#### APPENDIX

# Effect of non-monotonic mapping (via HSV colormap)

