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Background

Sums of independent Weibull random variables (RVs) arise in many contexts, including

in wireless communications;

for spectral estimation in time-series analysis;

as models for sums of waiting times;

for modelling value-at-risk-efficient portfolios;

for modelling rough surfaces;

as models for radar sea clutter, including clutter spikes, and for synthetic aperture radar images.

But Nadarajah’s 2008 review of results on sums of random variables states that no results are known for the Weibull
case. A small number of ad hoc approximate results have emerged subsequently.

Present motivation: Modelling of high-resolution sea clutter as a Weibull distribution, the main application being
threshold estimation for airborne maritime surveillance radar systems that employ scan-to-scan feedback integration,
which entails the tail behaviour of discounted sums of Weibull + noise RVs.
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Outline

The following strategy will be pursued:

Characterize the (heavy-tailed) Weibull distribution as a compound clutter model
Derive a representation of its texture distribution:

Ô Facilitates inclusion of thermal noise and speckle correlation

Extract texture quadrature nodes and weights:
Ô Clutter distribution well approximated by an exponential mixture
Ô Rational moment generating function (MGF)
Ô Positively weighted sum of clutter RVs also has rational MGF
Ô Distribution recovered via generic saddle-point methods

Outcome: The compound representation of the Weibull distribution renders tractable the computation of Weibull
sums with high accuracy extending far into the tail region.
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Weibull Texture
Weibull survival function (SF) as a compound clutter model:

̄𝐹𝑋(𝑥) = 𝑒−(𝑥/𝜆)𝛼
= ∫

∞

0
𝑑𝑢 𝑓𝛼(𝑢)𝑒−𝑥/𝑢 ≃

𝐿
∑
ℓ=1

𝑤ℓ𝑒−𝑥/𝑢ℓ .

Shape parameter: 𝛼 > 0. Heavy tailed for 0 < 𝛼 < 1.
Scale parameter: 𝜆 > 0. Unit mean (⟨𝑋⟩ = 1) for 𝜆 = 1/Γ(1 + 1/𝛼).
Clutter RV has product form 𝑋 = 𝑈𝐼, with speckle RV: 𝐼, texture RV: 𝑈.
Inclusion of thermal noise: 𝑈 ↦ 1 − 𝑞 + 𝑞𝑈
Clutter-to-interference ratio: 𝑞 ≡ 𝐶/(1 + 𝐶) for CNR 𝐶 ⇒ 0 ≤ 𝑞 ≤ 1.
Empirical texture distribution: PDF 𝑓𝛼(𝑢), SF ̄𝐹𝑈(𝑢; 𝛼)

𝑓𝛼(𝑢) =
𝐿

∑
ℓ=1

𝑤ℓ𝛿(𝑢 − 𝑢ℓ) , ̄𝐹𝑈(𝑢; 𝛼) =
𝐿

∑
ℓ=1

𝑤ℓ𝐼(𝑢ℓ > 𝑢) .
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Non-Coherent Pulse Integration
An explicit clutter texture distribution 𝑓𝛼(𝑢) simplifies the representation of many quantities of interest, e.g. Returned
(normalized) interference power (due to Weibull clutter + thermal noise) averaged over 𝑁 pulses:

𝑌 = 1
𝑁 ∑𝑁

𝑛=1 𝑋𝑛 ∶ 𝑋1, 𝑋2, … , 𝑋𝑁 ∼ 𝑋 ,

with single-pulse RV: 𝑋 = (1 − 𝑞 + 𝑞𝑈)𝐼n+c

Uncorrelated clutter speckle + thermal noise 𝐼n+c (⟨𝐼n+c⟩ = 1)

Perfectly correlated clutter texture 𝑈 (⟨𝑈⟩ = 1)

Survival function, given the texture distribution and its quadrature form:

̄𝐹𝑌(𝑦) = 1
Γ(𝑁)

∫
∞

0
𝑑𝑢 𝑓𝛼(𝑢)Γ (𝑁, 𝑁𝑦

1 − 𝑞 + 𝑞𝑢
) ≃ 1

Γ(𝑁)

𝐿
∑
ℓ=1

𝑤ℓΓ (𝑁, 𝑁𝑦
1 − 𝑞 + 𝑞𝑢ℓ

) ,

where Γ(𝑛, 𝑦) denotes the upper incomplete gamma function.
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Saddle-Point Method
Since the heavy-tailed Weibull distribution (0 < 𝛼 < 1) is completely monotonic, there exists 𝜙(𝑡) such that

̄𝐹𝑋(𝑥) = ∫
∞

0
𝑑𝑡 𝑒−𝑥𝑡𝜙(𝑡) ⟹ 𝑓𝛼(𝑢) = 𝑢−2𝜙(1/𝑢) .

The inverse Laplace transform yields 𝜙(𝑡) as

𝜙(𝑡) = ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑑𝑠
2𝜋𝑖

𝑒𝑠𝑡 ̄𝐹𝑋(𝑠) = ∫
𝑐+𝑖∞

𝑐−𝑖∞

𝑑𝑠
2𝜋𝑖

𝑒Φ(𝑠) , Φ(𝑠) ≡ 𝑠𝑡 − (𝑠/𝜆)𝛼 .

Compute 𝜙(𝑡) by applying saddle-point (SP) methodology to the phase function Φ(𝑠). Expanding about the SP
𝑠 = 𝑠0 ∶ Φ′(𝑠) = 0 gives rise to the basic SP approximation (exact for 𝛼 = 1/2)

𝜙sp(𝑡) = [2𝜋Φ″(𝑠0)]−1/2 𝑒Φ(𝑠0) , 𝑠0(𝑡) = 𝜆 (𝜆𝑡/𝛼)1/(𝛼−1) .
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Steepest Descent Path
Let 𝑠 ∈ ℂ be the steepest descent path (SDP) of Φ(𝑠) starting from the SP 𝑠0, and

𝑧 ≡ (𝑠0 − 𝑠)𝑡 , 𝜏(𝑧) ≡ Φ(𝑠0) − Φ(𝑠0 − 𝑧/𝑡) ∈ ℝ+
0 .

Introduce residuum 𝑇 (𝑐0, 𝛼), 𝑐0 ≡ 1/(𝑠0𝑡), as the multiplicative correction to the SP approximation:

𝜙(𝑡) = 𝜙sp(𝑡)⋅𝑇 (𝑐0, 𝛼) , 𝑇 (𝑐0, 𝛼) = √2𝑟2
𝜋

∫
∞

0
𝑑𝜏 𝑒−𝜏 Im 𝑧(𝜏) , 𝑟2 ≡ Φ″(𝑠0)/𝑡2 .

Need to invert 𝜏(𝑧): Set ̄𝑧 = 𝑐0𝑧, ̄𝜏 = 𝛼𝑐0𝜏, and apply complex Newton-Raphson to

ℎ( ̄𝑧) − ̄𝜏 = 0 , with ℎ(𝑧) ≡ (1 − 𝑧)𝛼 + 𝛼𝑧 − 1 .

Since Im 𝑧(𝜏) ∼𝜏→0 √2𝜏/𝑟2, the 𝜏-integration for 𝑇 (𝑐0, 𝛼) is best performed by means of a Gauss-Laguerre
quadrature of index 1/2.
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Texture Integral
SP approximation via change of variable 𝑡 → 𝜉:

𝑡(𝜉) = 𝛼
𝜆

( 𝜉
1 − 𝛼

)
1−1/𝛼

⟹ 𝜙sp(𝑡)𝑑𝑡 = 1√
2𝜋𝛼

𝜉−1/2𝑒−𝜉𝑑𝜉 .

Exact Weibull SF:

̄𝐹 (𝑥) = ∫
∞

0

𝑑𝜉
Γ(1 − 𝛼)

𝜉−𝛼𝑒−𝜉⋅ ̃𝑇 (𝜉)𝑒−𝑥𝑡(𝜉) , ̃𝑇 (𝜉) ≡ Γ(1 − 𝛼)√
2𝜋𝛼

⋅𝜉𝛼−1/2𝑇 (𝑐0(𝜉); 𝛼) .

Texture PDF as function of 𝜉:

𝜓(𝜉)𝑑𝜉 = 𝜙(𝑡)𝑑𝑡 = 𝑓𝛼(𝑢)𝑑𝑢 ⟹ 𝜓(𝜉) = 𝜉−𝛼𝑒−𝜉

Γ(1 − 𝛼)
̃𝑇 (𝜉) .

Special exact cases for 𝛼 = 1/2, 1/3:

𝜓1/2(𝜉) =
√

2
𝜋

𝐾1/2(𝜉) = 𝑒−𝜉/√𝜋𝜉 , 𝜓1/3(𝜉) =
√

3
𝜋

𝐾1/3(𝜉) .
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Gaussian Quadrature

In terms of the standard Gauss-Laguerre quadrature nodes/weights 𝜉GL
ℓ , 𝑤GL

ℓ , ℓ = 1, 2, … , 𝐿:

ℐ[𝑔] ≡ ∫
∞

0

𝑑𝜉
Γ(𝜈)

𝜉𝜈−1𝑒−𝜉𝑔(𝜉) ≃
𝐿

∑
ℓ=1

𝑤GL
ℓ 𝑔(𝜉GL

ℓ ) ,

for 𝜈 = 1 − 𝛼, the Weibull-texture quadrature nodes and weights of the quadrature sum are given, respectively, by

𝑢ℓ = 𝜆
𝛼

(
𝜉GL

ℓ
1 − 𝛼

)
1/𝛼−1

, 𝑤ℓ = 𝑤GL
ℓ ⋅ ̃𝑇 (𝜉GL

ℓ ) .

NB: Other quadrature schemes are possible. It is sometimes more efficient to use a split quadrature scheme
comprising Gauss-Laguerre above a cut-off 𝜉c and Gauss-Jacobi below it.
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Weibull Texture 𝜉-PDF – SDP vs Exact
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Figure: Weibull texture PDF as a function of 𝜉 computed via the SDP for 𝛼 = 1/2, 1/3, and comparison with exact results.
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Prony’s method

The texture nodes and weights for Weibull clutter can also be derived by directly fitting to an exponential mixture via
use of a modern (least squares) (LS) implementation of Prony’s method.

Weibull SF is equidistantly sampled with 𝑁 = 150 points down to probability level 10−12.

To cover a large dynamic range, a segmented approach is used, splitting into body and tail intervals,

Separate Prony application to the two intervals, with 𝐿1,2 = 10 quadrature nodes assigned to each.

The nodes 𝑢ℓ from both regions are combined after thinning out the overlapping ones.

These are used in a constrained LS regression to recompute the combined set of weights 𝑤ℓ.

NB: Some limitations

The cut point 𝑥c that separates the two intervals is currently tuned by trial and error.

The number of nodes possible is limited by ill-conditioned matrices, emergence of complex values, etc.
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Weibull Texture Survival Function – Prony Method
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Figure: Weibull texture empirical SF on a log scale as a function of 𝑢 for 𝛼 = 1/3, constructed from the Prony weights and nodes.
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Scan-to-Scan Feedback Integration
Scan-to-scan feedback integration (0 ≤ 𝛽 ≤ 1) corresponds to the auto-regressive Markov process

𝑌𝑘 = 𝛽𝑌𝑘−1 + 𝑋𝑘 , 𝑌0 ≡ 0 , 𝑘 = 1, 2, … , 𝑀,

where 𝑌𝑀 is the returned interference power after 𝑀 samples (scans) of the innovation 𝑋𝑘 – iid Weibull + thermal
noise (⟨𝑋𝑘⟩ = 1).
Renormalize for fixed 𝑀, so that uniform sum (𝛽 = 1) is well-defined as 𝑀 → ∞ and ⟨𝑍𝑀⟩ = 1:

𝑍𝑘 ≡ 𝜂𝑀(𝛽)𝑌𝑘 , 1/𝜂𝑀(𝛽) =
𝑀−1
∑
𝑚=0

𝛽𝑚 = 1 − 𝛽𝑀

1 − 𝛽
.

Detection threshold 𝑧b, 𝑦b from the steady-state (𝑀 → ∞) RV 𝑍∞:

𝑃FA = ̄𝐹𝑍∞
(𝑧b) ≡ Pr(𝑍∞ > 𝑧b) , 𝑦b = 𝑧b/(1 − 𝛽) .
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Application to Discounted Sums

Equivalence, in distribution, with a discounted sum:

𝑌𝑀 ∼
𝑀−1
∑
𝑚=0

𝛽𝑚𝑋𝑚 , 𝑍𝑀 ∼
𝑀−1
∑
𝑚=0

𝜔𝑚𝑋𝑚 , 𝜔𝑚(𝛽, 𝑀) ≡ 𝜂𝑀(𝛽)⋅𝛽𝑚 .

MGFs:

ℳ𝑋(𝑠) ≡ ⟨𝑒−𝑠𝑋⟩𝑋 ≃
𝐿

∑
ℓ=1

𝑤ℓ
1 + 𝑢ℓ𝑠

, ℳ𝑍(𝑠) ≡ ⟨𝑒−𝑠𝑍⟩𝑍 =
𝑀−1
∏
𝑚=0

ℳ𝑋(𝜔𝑚𝑠) .

Rational form:

ℳ𝑍(𝑠) ≃
𝐿

∏
ℓ=1

𝑀−1
∏
𝑚=0

1 + 𝑏ℓ,𝑚𝑠
1 + 𝑎ℓ,𝑚𝑠

,

→ SF recovered via generic saddle-point methods.
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Uniform Weibull Sum – Compare with REMC
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Figure: Log-survival function for the uniform sum (𝛽 = 1) compared with published results from rare-event MC simulation.
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Discounted Weibull Sum – Compare With CMC
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Figure: Log-survival function for the discounted sum (𝛽 = 3/4) compared with results from rare-event conditional MC simulation.
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Discounted Sum – Weibull Clutter + Thermal Noise
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Figure: Log-survival function for the discounted sum (𝛽 = 31/32) compared with results from crude MC simulation.
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Conclusions
An explicit characterization of the heavy-tailed Weibull distribution as an example of a compound clutter model has
been developed.

A tractable representation of the Weibull texture distribution has several benefits:

For non-coherent pulse-to-pulse integration: Simplifies the computational aspects of Weibull clutter in the
presence of thermal noise. It also allows additional complexities to be introduced, such as clutter speckle
correlation.

For coherent pulse-to-pulse integration: Enables Weibull clutter to be explicitly implemented as a SIRP.

For scan-to-scan feedback integration: Facilitates the computation of the ensuing distribution that arises from
a discounted sum of RVs for Weibull clutter in thermal noise. Importantly, it allows accurate tail estimation,
required for computing the threshold from the desired PFA.

More generally: Enables efficient computation of the distribution of sums of uniformly or arbitrarily positively
weighted iid Weibull RVs in a way that remains accurate into the tail of the distribution. This has general
applicability in many diverse areas.
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