
CATCH THEM UNATTENTIVE: AN ORIENTATION AWARE FACE
RECOGNITION MODEL

Supplementary Material

February 6, 2024

A. DATASET PREPROCESSING

As outlined in the main paper, we utilized a subset of the Ca-
sia WebFace dataset to train the model. The faces within the
Casia WebFace dataset have already undergone alignment and
resizing to dimensions of 112×112. To ensure the presence of
an adequate range of pose variations in the dataset, we applied
filtering to certain individual classes. These classes were se-
lected based on containing less than 60 percent of faces with a
pose angle of 30◦. Essentially, this indicates that the majority
of faces in those classes exhibit a frontal orientation.

A.1. Estimation of Roll and Face Alignment

We determined the roll, yaw, and pitch angles based on the
five facial landmarks identified through MTCNN (Multi-
Task Cascaded Convolutional Neural Networks). These fa-
cial landmarks consist of the left eye (xle, yle), right eye
(xre, yre), left tip of the mouth (xlm, ylm), right tip of the
mouth (xrm, yrm), and nose (xn, yn).

dPx = max ((xre − xle), 1) (1)
dPy = yre − yle (2)

roll, δ = tan−1

(
dPy

dPx

)
(3)

Here, dPx and dPy represent shifts in the eye positions along
the x and y directions, respectively. By employing the roll
angle δ, we can align the orientation of the faces so that both
eyes are parallel to the horizontal axis. Following this align-
ment process, all landmark positions need to be transformed
to new coordinates in a subsequent manner.

α = cos δ (4)
β = sin δ (5)
xr = α · x+ β · y + (1− α) · (xn/2)− β · (yn/2) (6)
yr = −β · x+ α · y + β · (xn/2) + (1− α) · (yn/2) (7)

Fig. 1: Facial alignment involves utilizing facial landmarks
like the left and right eyes for reference. By applying a ro-
tational adjustment of δ degrees to the face, it is aligned in a
manner that aligns both eyes horizontally on the same level.

Here, (x, y) represents the coordinate before rotation, while
(xr, yr) indicates the coordinate after rotation. The original
location of the nose is denoted by (xn, yn).

A.2. Estimation of Pitch and Yaw

To estimate the pitch and yaw, we need to determine two fac-
tors: the average distance between the eyes and mouth, and
the average distance between the eyes and nose.

Fig. 2: The pose angles were calculated using the described
algorithm. All faces were aligned using the roll angle, making
the roll angles irrelevant in these cases.

1



dXmtoe = (xrre − xrle + xrlm − xrrm)/2

dYmtoe = (yrrm − yrle + yrlm − yrre)/2

dXntoe = (xrre − xrn + xrlm − xrn)/2 (8)
dYntoe = (yrrm − yrle + yrlm − yrn)/2

Here, dXmtoe and dYmtoe represent the average distance
between the eyes and the mouth in the x and y directions, re-
spectively. Similarly, dXntoe and dYntoe indicate the average
distance between the eyes and the nose in the x and y direc-
tions, respectively. The coordinates (xrre, yrre), (xrle, yrle),
(xrrm, yrrm), (xrlm, yrlm), and (xrn, yrn) correspond to
the rotated positions of the right eye, left eye, right tip of the
mouth, left tip of the mouth, and nose, respectively.
The pose angles of roll, yaw, and pitch will span the range
from −90◦ to +90◦. Occasionally, the angles computed us-
ing the previously mentioned method produce values outside
this range. When this occurs, we have truncated the values to
stay within the −90◦ to +90◦ interval. A collection of pose
angle examples determined through this methodology is pre-
sented in Figure 2.

A.3. Low Resolution Augmentation

To enhance face recognition performance when dealing with
images of varying scales, we integrated a low-resolution aug-
mentation approach. This technique involves resizing images
to a scale chosen randomly from 20 percent to 100 percent of
the original size. Subsequently, these downscaled images are
brought back to their original size through upscaling. During
both downscaling and upscaling, we select an interpolation
method such as nearest neighbor, bilinear, bicubic, area, or
lanczos at random for each operation.

Fig. 3: An illustration of low-resolution augmentation is pro-
vided in this example. The initial image is presented as the
original, while the subsequent image demonstrates the effect
after applying the low-resolution augmentation technique.

B. ANALYSIS OF ORIENTATION TOLERANT
MARGIN AND GRADIENT

The orientation tolerant loss function is given as follows,

LCE(xi) = − log
exp(f(θyi

))

exp(f(θyi
)) +

∑C
j ̸=yi

exp(f(θj))
, (9)

where affinity function f(·) is defined as follows:

f(θj) =

{
s ·

(
cos(θj − αi) + βi

)
j = yi

s · cos(θj) j ̸= yi
(10)

The derivative of LCE w.r.t jth class weight vector Wj is
given as follows,

∂LCE(xi)

∂Wj
=

(
P

(i)
j − 1(yi = j)

) ∂f(cos θj)

∂ cos θj

∂ cos θj
∂Wj

(11)

Fig. 4: Gradient scale g by varying the difficulty indicator ξ
and angular distance θ from the true class (class 1) center.

The expression (P
(i)
j − 1(yi = j))

∂f(cos θj)
∂ cos θj

here is a
scalar quantity that changes in relation to the image difficulty
indicator ξ. Consequently, this scalar term can be designated
as the gradient scaling factor, denoted by g. On the other
hand, the component ∂ cos θj

∂Wj
represents the gradient direction

aspect and remains independent of ξ. In the context of the
proposed loss function, the gradient scaling factor g is formu-
lated as follows:

g =
(
P

(i)
j − 1(yi = j)

)
s

(
cosαi +

cos θi sinαi√
1− cos2 θi

)
(12)

Figure 4 illustrates how the gradient changes with respect to
variations in the image difficulty indicator ξ. The observation



reveals that an image with a higher difficulty (ξ closer to −1)
generates a more pronounced gradient, especially when it’s
situated near the boundary with a small θ value. Conversely,
an image with lower difficulty (ξ closer to +1) yields a greater
gradient when the sample is positioned far from the boundary,
corresponding to a larger θ value.


