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I. ADDITIONAL EXPERIMENTAL RESULTS

We first discuss additional experimental results, paralleling
Sec. 4.2 (latent code for shape representation), 4.3 (recon-
structed shape analysis), and 4.4 (ablation study) in the main
text.

I-A. Latent Code for Shape Representation

We first provide additional t-SNE plots, followed by a new ex-
periment demonstrating the added benefits of connectivity in-
formation for shape representation when the number of points
used to represent the shape is low.

I-A.1. Additional t-SNE Visualization

We additionally show t-SNE plots for both Manifold10 and
SHREC11 test sets of the learned latent codes from Wrap-
pingNet, in Fig. I, similar to the experiment in Sec. 4.2.
Similar to the t-SNE plot of Manifold40, we see that the la-
tent codes indeed cluster by class, demonstrating that Wrap-
pingNet learned global shape information in the latent codes.
All figures (both t-SNE figures here and the one in the main
text) use a perplexity parameter of 30.

I-A.2. Importance of Connectivity in the Sparse Regime

As shown in the Sec. 4.2 of the main text, WrappingNet
achieves similar classification performance as FoldingNet
and TearingNet for the full-resolution subdivision meshes as
well as the original manifold meshes. At the full resolution,
the subdivision-remeshed Manifold40 has, on average, 3000
points per mesh; the original manifold meshes have a density
of approximately 250 points per mesh. At these resolutions,
the density of points on the surface of each shape is high
enough such that the high-level information of the shape
(e.g., its class membership) is preserved whether or not mesh
connectivity is included. However, at much lower resolu-
tions, a lack of mesh connectivity can significantly degrade
the topology information of the shape. For example, a table
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Fig. I: t-SNE plots of test latent codes extracted from subdivision
WrappingNet.

top, which is flat, only needs 4 points (at the corners) with
mesh connectivity to represent the flat surface; if connectivity
is not available, 4 points at the corners will fail to represent
the topology accurately. Since WrappingNet employs a mesh
surface-based feature extraction, we expect it to maintain
good performance even at lower point densities, where point
cloud systems may begin to worsen in performance.

We experimentally test this by training the models at a
much lower point density of 50 points, on average. This
corresponds to the point density of the simplified base mesh
extracted during the subdivision remeshing. We use vanilla
WrappingNet since there is no subdivision structure for the
base mesh. For the point cloud autoencoders, we only use
the vertex positions of the lower resolution meshes, and their
decoder deforms a grid of similar size. Shown in Tab. I, all
models are able to maintain similar classification performance
at the 250 point level (original manifold meshes) and the 300
point level (subdivision meshes). However, at 50 points, the
performance of FoldingNet and TearingNet drops a signifi-
cant amount by ∼ 3% for Manifold40 and ∼ 4% for Mani-
fold10 when compared to the highest resolution. In compar-
ison, WrappingNet only drops by ∼ 1% for Manifold40 and
∼ 2% for Manifold10. Overall, at higher resolutions, Wrap-
pingNet achieves comparable classification performance to
the point cloud autoencoders, but at 50 points, WrappingNet
achieves a clearly better classification performance, demon-
strating the importance of utilizing mesh connectivity at lower
resolutions.



Table I: Average classification performance from test latent repre-
sentations using SVM with 5-fold cross-validation.

Dataset Manifold10 Manifold40

No. of Points 50 250 3000 50 250 3000

FoldingNet 86.8% 89.8% 91.0% 79.4% 82.5% 82.5%
TearingNet 86.7% 90.2% 90.8% 79.4% 82.9% 82.9%

WrappingNet 89.0% 90.8% 90.9% 82.2% 83.0% 83.3%

I-B. Reconstructed Shape Analysis

We describe in detail some of the metrics used to evaluate
the reconstruction performance, and provide additional re-
construction examples following the latent interpolation and
varying base graph experiment in Sec. 4.3. Then, we display a
gallery of reconstructed shapes generated from WrappingNet.

I-B.1. Reconstruction Metrics

To evaluate reconstruction performance with point cloud au-
toencoders, we use Chamfer distance (CD), normals error
(NE), and curvature preservation (CP). The latter two are in-
spired from surface-aware losses used in [1]. All metrics are
used to compare two sets of points S1, S2. In our setting, one
represents the ground-truth vertex positions, and the other
represents the reconstructed vertex positions. As mentioned
in the main text, these metrics are all point-based (i.e., they
do not consider connectivity information) for the purposes of
comparing to the point cloud autoencoders. CD is computed
as

CD(S1, S2) :=
1

|S1|
∑
x∈S1

min
x′∈S2

∥x− x′∥22

+
1

|S2|
∑
x∈S2

min
x′∈S1
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NE metric is computed as
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1
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,

(ii)

where nx is the normal vector at point x. Normals are esti-
mated via covariance methods if they do not exist. CP uses
the covariance-based curvature of a k-nearest neighborhood
around each point defined in [2, Sec. 3.1]. In our experiments,
we set k = 15 for calculating the CP metric.

I-B.2. Additional Qualitative Reconstruction Comparison

We show additional qualitative topology comparisons with
TearingNet reconstructed point clouds and meshes in Tab. II.

Table II: Topology comparison of reconstructed shapes. Both a
point cloud and mesh rendering are provided for each object.

Ground Truth TearingNet WrappingNet

M
on

ito
r

M
es

h
Po

in
tC

lo
ud

Ta
bl

e

M
es

h
Po

in
tC

lo
ud

B
at

ht
ub

M
es

h
Po

in
tC

lo
ud

Again, as in the main text, WrappingNet clearly does a bet-
ter job in preserving the mesh topology, which supports the
lower reconstruction loss for the surface-aware metrics shown
in Tab. 3 of the main text.

I-B.3. Latent Interpolation

The additional reconstructed shapes generated via interpolat-
ing the latent codes can be seen in Fig. II, which follows the
procedure described in Sec. 4.3.

I-B.4. Reconstruction from Varying Base Graphs

The additional results demonstrating the reconstruction of
shapes from varying the base graphs can be found in Tab. III.
Again, we see that the codeword maintains global shape in-
formation, whereas the base graph influences the topology
of the reconstructed shape. When the genus is mis-matched
between the codeword and the base graph (gray-scale recon-
structions), the decoder tries its best to fit the mis-matched
topology to the global shape embedded in the codeword.

In particular, using the codeword from a higher genus ob-
ject and the base graph from a lower genus, the reconstructed
meshes still appear pleasant (the two gray meshes in the 3rd



(a) Inter-class. 1st row: bottle → glass box. 2nd row: sofa → cone. 3rd row:
toilet → bed.

(b) Intra-class. 1st row: glass box. 2nd row: cone. 3rd row: bed.

Fig. II: Latent space interpolation. Base graph in use is generated
from WrappingNet encoder on meshes from the left side.

row in Tab. III). On the contrary, if the codeword is from
a lower genus object and the base graph is from a higher
genus, the reconstruction is much less meaningful (the two
gray meshes in the 3rd column in Tab. III). This provides ad-
ditional evidence that the codeword is more dominant (than
the base graph) in rebuilding the global shape, that is aligned
with the intention of our autoencoder design.

I-B.5. Gallery of reconstructions

In Fig. III, we display a gallery of reconstructed meshes from
WrappingNet, on the Manifold40 test set. WrappingNet is
able to learn a shared latent space across all such meshes,
despite the heterogeneity of the dataset.

I-C. Ablation Study

We demonstrate t-SNE figures of extracted latent codes of
the first two configurations in the ablation study (Sec. 4.4),
shown in Fig. IV. These figures further support the benefit
of wrapping operations in pushing the global shape informa-
tion into the latent code. As shown, the first configuration
(sending the base mesh) fails to capture any class-related clus-

Table III: Reconstructions from various base graphs & latent codes.
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tering phenomenon in the latent codes, since the latent code
and base mesh are entangled. In this setting, the latent code
is merely used to upsample the base mesh. For the second
configuration (sending MAS), where we use wrapping oper-
ations but no matching, there is more disentanglement. The
full WrappingNet model with both wrapping operations and
matching (Fig. 5 of main text) displays the most disentangle-
ment achieved.

II. WRAPPINGNET IMPLEMENTATION DETAILS

The code will be made public upon publication.

II-A. Sphere Matching Details

Recall that the sphere grid of points on the sphere {(x̄i, ȳi, z̄i)}Ni=1

is defined by the Fibonacci lattice [3]. Let s̄i = (x̄i, ȳi, z̄i) be
the i-th point on the sphere grid, and let si = (xi, yi, zi) be
the i-th point of the output of the UnWrapping layers. Since
UnWrapping has been pretrained to output near unit spheres,
we expect the si’s to approximately lie on the surface of a
sphere. However, if we compute nearest neighbors between
s̄i’s and si’s, they may not be in correspondence with each
other. To resolve this, we use the assignment problem to
compute a correspondence between the two sets of points.

Let Ci,j ≜ ∥si − s̄j∥22 be the pairwise squared Euclidean
distance between the i-th and j-th points in the UnWrapping
output and sphere grid, respectively. Since the number of
points in the UnWrapped and sphere grid do not match, we
solve the unbalanced variant of the assignment problem [4]

σ̂ = argmin
σ:{1,...,N ′}→{1,...,N}

N ′∑
i=1

Ci,σ(i), (iii)



Fig. III: Gallery of reconstructed meshes. WrappingNet extracts a shared latent space across all such heterogeneous meshes.
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(a) Send base mesh: no wrapping
and no sphere matching.

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

3
6
9
12
15
18
21
24
27
30
33
36
39

(b) Send MAS: with wrapping but
without sphere matching.

Fig. IV: t-SNE plots of latent codes extracted from Manifold40 on
different configurations (ablation study) of WrappingNet. Configu-
ration with both wrapping/unwrapping and matching can be found
in Fig. 5 of the main text.

where N ′ is the number of points the UnWrapping output.
This can be solved using the Hungarian algorithm [5], which
will return a bijection σ̂.

Once the UnWrapping output gets matched with the
sphere grid, the base graph (base mesh connectivity) gets re-
indexed to be in the ordering of the sphere grid via σ̂, and sent
to the decoder. To enforce the vertex-to-vertex loss between
the reconstructed mesh and ground-truth mesh, the matching
σ̂ can be used to ensure the input mesh and reconstructed
mesh are in the same node ordering (either that of the original
mesh or of the sphere grid). We clarify that the use of the

matching σ̂ to align the input mesh and reconstructed mesh
is only needed to enforce the loss during training; during
inference, all that is needed is to use the matching to re-index
the base graph before sending it to the decoder.

For subdivision meshes, the sphere matching is performed
at the lowest level of subdivision (the base mesh). Since sub-
division meshes’ face and vertex indexing is deterministic and
completely determined by the base mesh’s indexing, the bi-
jection σ̂ at the base mesh level is sufficient to compute the
corresponding bijection at any level of subdivision.

II-B. Face Feature Initialization

We wish to ensure that the input features are invariant to the
ordering of nodes and faces, and the global position or ori-
entation of the face. Hence, we choose the input face fea-
tures to be the normal vector of the face, the face area, and a
vector containing curvature information of the face, which is
defined as follows. For face i, let j0, j1, j2 denote the face
indices of its 3 neighbors. The curvature vector is simply
bc
i − 1

3 (b
c
j0
+bc

j1
+bc

j2
) where bc

i ,b
c
j0
,bc

j1
,bc

j2
are the cen-

troids of the faces respectively. Thus, we have a total of 7
input features. These are used for the meshes that are inputs
to the Wrapping and UnWrapping modules. For the Wrap-
ping modules at the decoder, they are concatenated with the
copied codeword.
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Decoder

Fig. V: Subdivision-enhanced WrappingNet architecture. The input mesh is assumed to be a subdivision mesh with base mesh containing mb

faces. Loop pooling and subdivision are incorporated into the feature extractor (FE) at the encoder, and 2nd Wrapping stage at the decoder.

II-C. Model Architecture

All FaceConv layers use a kernel size of 3 and dilation of
1 defined in [6]. The convolution operation, defined there
as well, is order-invariant, since it uses 4 learnable weights
w0, . . . , w3 to apply the convolution, which is given by

F′
i = w0Fi + w1

∑
j∈Ni

Fj + w2

∑
j∈Ni

|Fj+1 − Fj |

+ w3

∑
j∈Ni

|Fi − Fj |, (iv)

where Fi is the face feature on face i and Ni is the set of three
face indices adjacent to face i corresponding to its edges. This
is done for each input-output channel pair.

We use the PyTorch framework [7] for the implementa-
tion of WrappingNet, along with PyTorch Geometric [8] to
implement sparse batching of meshes. The full parameter
list is found in Tab. IV. Multi-layer perceptron (MLP) layers
are applied face-wise. All MLP and FaceConv layers use bi-
ases. ReLU activations exist after each fully connected layer
in MLPs except for the last layer. MLPs in the Face2Node
modules have 2 layers, and follow the same style as other
MLPs. At the encoder, the feature extractor uses 4 FaceConv
layers with hidden dimension of 128, and the shared MLP has
4 hidden layers of dimension 1024. The Wrapping module
uses a hidden dimension of 64. At the decoder, the UnWrap-
ping module uses a hidden dimension of 128.

II-D. Subdivision Enhanced WrappingNet

In the subdivision-enhanced version of WrappingNet, the pri-
mary difference is that Loop pooling and subdivision is ap-
plied at the encoder and decoder in order to incorporate hier-
archical feature extraction, as well as perform the matching on
a smaller base mesh. The feature extractor (FE) now applies
Loop pooling after each of its face convolutions layers, and
outputs a feature map on the base mesh, which contains mb

faces. UnWrapping and codeword pooling now takes place
on the base mesh. At the decoder, we now have two Wrap-
ping modules. The first stage is the same as before, with no

Loop subdivision; this recovers an approximate base mesh.
Then, a second Wrapping stage is applied, which interleaves
Loop subdivision into the layers1. In all experiments, we use
3 levels of subdivision, which is reflected in our architecture;
the FE uses 3 Loop pooling layers, and Wrapping 2nd stage
uses 3 Loop subdivision (unpooling) layers.

II-E. Model Size and Efficiency

A forward pass during evaluation (without accumulating gra-
dients), consisting of encoding and decoding, using Wrap-
pingNet takes ≈ 254 ms per mesh on the Manifold40 test set.
This is evaluated on an NVIDIA GeForce RTX 2080 Ti GPU.
Shown in Tab. IV, the total number of parameters is ≈ 4.6M,
which is on the same order of magnitude with [9, 10].

II-F. Remeshing Details for Generating Subdivision Meshes

In this section, we elaborate on the remeshing methods used
for SHREC11 and Manifold40. All remeshing techniques that
generate subdivision meshes have the same overall process:

(1) Apply a series of edge collapses to the original mesh in
order to generate a low-resolution base mesh.

(2) Subdivide the base mesh L times, with new vertex posi-
tions on the midpoints of edges.

(3) Project all vertex positions onto the original mesh to ap-
proximately recover the shape at subdivision level L.

The primary differences among remeshing methods are in
steps (1) and (3). For SHREC11, we use the subdivision
meshes generated from [6], who use the MAPS [11] method.
For Manifold40, we use the original Manifold40 meshes from
[6] (not subdivision), and remesh them using the improved
version of MAPS from [12]. In this case, for step (1) we use
quadric error simplification [13] to simplify down to a base
mesh containing approximately 50 vertices, and for step (3)

1The subdivided points’ vertex positions take the midpoints of the edges
they lie on.



we use the parametrization between the subdivided mesh and
the original mesh explained in [12].
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Table IV: Layers in each module in subdivision-enhanced Wrap-
pingNet (with 3 levels of subdivision). Shape column for each layer
contains (# input faces, # input channels, # output channels).

Layer Shape # Param.
FaceConv w/ ReLU (nf , 7, 128) 3684

SubdivPool (nf , 128, 128) 0
FaceConv w/ ReLU (nf/4, 128, 128) 65664

SubdivPool (nf/4, 128, 128) 0
FaceConv w/ ReLU (nf/16, 128, 128) 65664

SubdivPool (nf/16, 128, 128) 0
FaceConv w/ ReLU (nf/64, 128, 1024) 524416

(a) SubdivNet backbone feature extractor in WrappingNet encoder.

Layer Shape # Param.
MLP (2-layer) (nf/64, 1024, 1024) 2099200

MaxPool (nf/64, 1024, 1024) 0
MLP (3-layer) (nf/64, 1024, 512) 1050112

(b) Shared MLP with global pooling module in WrappingNet encoder. First
MLP’s hidden layer dim: 1024; second MLP’s hidden layer dim: 512

Layer Shape # Param.
FaceConv w/ ReLU (nf/64, 7, 64) 576
FaceConv w/ ReLU (nf/64, 64, 64) 4224

Face2Node (nf/64, 64+9, 64+3) 8899
FaceConv w/ ReLU (nf/64, 64, 64) 4224
FaceConv w/ ReLU (nf/64, 64, 64) 4224

Face2Node (nf/64, 64+9, 64+3) 8899
FaceConv w/ ReLU (nf/64, 64, 64) 4224
FaceConv w/ ReLU (nf/64, 64, 64) 4224

Face2Node (nf/64, 64+9, 3) 4739
(c) UnWrapping module in WrappingNet encoder.

Layer Shape # Param.
FaceConv w/ ReLU (nf/64, 512+7, 128) 265856

Face2Node (nf/64, 128+9, 128+3) 34179
FaceConv w/ ReLU (nf/64, 128, 128) 65664

Face2Node (nf/64, 128+9, 128+3) 34179
FaceConv w/ ReLU (nf/64, 128, 128) 65664

Face2Node (nf/64, 128+9, 128+3) 34179
(d) 1st Wrapping module in WrappingNet decoder.

Layer Shape # Param.
SubdivUnpool (nf/64, 128, 128) 0

FaceConv w/ ReLU (nf/16, 128, 128) 65664
Face2Node (nf/16, 128+9, 128+3) 34179

SubdivUnpool (nf/16, 128, 128) 0
FaceConv w/ ReLU (nf/4, 128, 128) 65664

Face2Node (nf/4, 128+9, 128+3) 34179
SubdivUnpool (nf/4, 128, 128) 0

FaceConv w/ ReLU (nf , 128, 128) 65664
Face2Node (nf , 128+9, 3) 17667

(e) 2nd Wrapping module in WrappingNet decoder.


