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ABSTRACT

Drones have been widely employed in various fields, but the
number of drones being used illegally and for hazardous pur-
poses has recently increased. To prevent illegal drones, in this
work, we propose a novel framework for reconstructing three-
dimensional (3D) drone trajectories using a single camera. By
leveraging calibrated cameras, we exploit the relationship be-
tween 2D and 3D spaces. We automatically track the drones
in 2D images using a drone tracker and estimate their 2D ro-
tations. By combining the estimated 2D drone positions with
their actual length and camera parameters, we geometrically
infer the 3D drone trajectories. To address the lack of pub-
lic drone datasets, we also create synthetic 2D and 3D drone
datasets. The experimental results show that the proposed
methods accurately reconstruct drone trajectories in 3D space
and demonstrate the potential of our framework for single-
camera-based surveillance systems.

Index Terms— Drone, Trajectory reconstruction, Single
camera, Surveillance system

1. INTRODUCTION

Recently, drones have been widely employed in vari-
ous fields, including security, surveillance, and disaster re-
sponse [1]. However, drones without permission for illegal and
hazardous purposes have also increased. For instance, drones
equipped with recording devices, such as cameras and storage,
can occur security risks. To address these issues, an anti-drone
method that can automatically distinguish illegal drones can
be employed. To this end, estimating three-dimensional (3D)
trajectories of drones becomes crucial because their locations
and moving patterns provide significant information (e.g.,
their behavior and legality).

Several approaches [2, 3] have been studied to perform a
3D drone trajectory estimation using various sensors equipped
on the object, including global positioning systems (GPS),
inertial measurement units (IMU), and cameras. However,
in the context of detecting illegal drones, these methods are
unsuitable because it is not possible to access the data stored
in the drones. Therefore, we focus on trajectory reconstruction
approaches that analyze externally acquired data rather than
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Fig. 1: Example and challenges of 3D trajectory reconstruction
of drones using a single camera.

using internal drone data. To reconstruct 3D trajectories of
objects, numerous studies [4, 5, 6] have proposed methods
that use various sensors, including lidar, radar, and RGB-D
cameras. These methods aim to fuse sensor data to detect 3D
objects and accurately determine their positions. However,
using multiple sensors can be expensive and impractical.

In this work, we focus on a surveillance system using a
single static camera, such as closed-circuit television (CCTV),
because it is cost-effective and common in urban areas com-
pared to other multi sensor-based systems. Based on these
advantages, we propose methods for 3D drone trajectory recon-
struction using a single camera(Fig. 1 (a)). Recently, several
methods [7, 8] have attempted to reconstruct the 3D trajectory
of objects using a single camera. However, these methods
highly rely on prior knowledge, such as the ground plane
and calibration grids. Unlike common objects, reconstructing
the drone trajectory is challenging, as shown in Fig. 1 (b).
First, drone image scenes have limited prior knowledge (e.g.,
other object structures, buildings, and ground planes) because
drones fly at high altitudes. Second, drones can rotate freely
compared to other common objects. Third, a drone is not a
common object, but a novel object [9] that has not been ex-
tensively explored in detection applications. For example, the
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Fig. 2: Overall framework for 3D drone trajectory reconstruction.

third figure in Fig. 1 (b) shows object categories provided in
MSCOCO [10] dataset, but images for drones are missing.

To overcome the limitations, we propose a new framework
for 3D drone trajectory reconstruction using a single camera.
We employ calibrated cameras to exploit the relationship be-
tween 2D and 3D spaces. A drone tracker in our framework
automatically tracks each drone in the 2D image, and we find
further 2D drone rotations in Sec. 3.2. Using the estimated
2D drone position and its actual length information from the
drone speculation database, we infer the 3D drone positions as
proposed in Sec. 3.3. Moreover, we created both 2D and 3D
synthetic drone datasets including various scenarios to address
the lack of drone datasets in Sec. 4. In addition, we validated
our approach in various environments by generating real drone
data and estimating the trajectories.

Using our datasets, we validated the effectiveness of the
proposed methods in Sec. 5. Despite using a single camera
view, our methods accurately reconstructed the 3D trajecto-
ries of multiple drones. The proposed 2D rotation estimation
method effectively improved the trajectory reconstruction per-
formance. In addition, due to our 2D drone image datasets,
the performance of the drone detector was improved, result-
ing in improved trajectory reconstruction performance as well.
The results strongly affirm the capability of our framework
to accurately reconstruct drone trajectories in 3D space and
demonstrate the potential for applying the framework in single-
camera surveillance systems.

The main contributions of this work are summarized as fol-
lows. First, this attempt is the first to reconstruct the 3D drone
trajectory using a single camera without any known patterns.
Second, we propose new methods to overcome the challenges
in 3D drone trajectory reconstruction. Third, we provide new
2D and 3D synthetic and real-world datasets of drones. We
hope that this study provides meaningful guidelines to readers
who aim to implement a surveillance system for drones in
industrial and academic fields.

2. RELATED WORKS

Many studies have been proposed to localize an object in
3D space [4, 5, 6] using multiple 3D sensors, such as lidar,
radar, and RGB-D cameras. For example, Chen et al. [11]
utilized deep neural networks to reconstruct 3D trajectories
using a spectrum-sensing dataset. Further, Nabati et al. [5]
fused the radar and camera sensors for robust and accurate 3D
multi-object tracking. Many methods based on multiple cam-
eras have been proposed. For example, Rozantsev et al. [12]

estimated a six-degrees-of-freedom (6-DOF) trajectory of the
flying drone using multiple ground cameras. In addition, Li et
al. [13] proposed the 3D reconstruction of drone trajectory us-
ing multiple unsynchronized cameras with unknown extrinsic
camera parameters. The multiple camera systems can be ap-
plied to other applications, such as 3D human tracking [14, 15]
and 3D ball tracking [16, 17] in many sport scenes. However,
using such sensors or multiple cameras is expensive and im-
practical for standard surveillance systems (e.g., CCTV).

Geometrically, more than two camera views are required
to reconstruct a 3D object trajectory. Despite the challenge,
several methods have attempted to estimate the 3D positions
of target objects using a single camera. Rougier et al. [18]
estimated the 3D trajectory of the human head based on the as-
sumption of the known human height and a calibrated camera.
Similarly, Chen et al. [7] employed prior knowledge regard-
ing a basketball court to reconstruct the 3D trajectory of a
basketball. Recently, Srinivasan et al. [8] proposed a 3D re-
construction of bird flight trajectories with a known calibration
grid. In this way, these methods applied structural cues of
the scenes (e.g., ground plane, human heights, court structure,
and known grid patterns). In contrast, learning-based meth-
ods [19, 20] that directly estimate depth using a single camera
have also been proposed. However, in the case of drone trajec-
tory reconstruction, there is limited prior knowledge available,
such as scene and object structures, as shown in Fig. 1. There-
fore, previous approaches that heavily rely on prior knowledge
are ineffective for drone trajectory reconstruction.

3. PROPOSED METHODS

The overall framework for 3D drone trajectory estimation
is illustrated in Fig. 2. It consists of three primary parts: a
drone tracker, a drone 2D rotation estimator, and 3D drone
trajectory re-constructor. The framework takes consecutive
2D image frames as input and generates 3D drone trajectories
in a 3D camera coordinate system as outputs. First, the drone
tracker detects and tracks the drones to estimate their locations,
sizes, and identities in 2D image coordinates (Sec. 3.1). Next,
we further estimate the 2D rotations of the tracked drones using
the principal component analysis (PCA) [21] in Sec. 3.2. Fi-
nally, the 3D drone trajectory estimator determines the distance
between the camera and drones by leveraging their relation-
ships and the actual widths and lengths of the drones.
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Fig. 3: (a) The black area is the foreground drone area. Red
arrow is the eigenvect vλ. p1,p2 are the intersection points
between (x̄i, ȳi, w̄i, h̄i), and vλ. (b) Examples of 2D drone
rotation estimation results.

3.1. Drone Detection and Tracking
To estimate the 3D drone trajectory, we first estimated the

2D drone trajectories given the image frames. To this end,
we can utilize real-time multiple object trackers [22, 23, 24].
Recently, many trackers have adopted a tracking-by-detection
strategy that associates the detection responses with build-
ing the object trajectory. Therefore, they essentially include
object detectors such as the you only look once (YOLO) se-
ries [25, 26] or the faster region-based convolutional neural
network (Faster R-CNN) [27] in their frameworks. The object
detection results are represented by Dn(t), where n repre-
sents the index of detection responses, and t denotes the frame
index. Each detection consists of five-dimensional vectors
Dn = (xn, yn, wn, hn, cn), where (x, y) indicates the center
position, (w, h) denotes the width and height, and c repre-
sents the drone class. After applying multiple object tracking,
the track is denoted by Ti(τ) =

(
x̄i, ȳi, w̄i, h̄i, ci

)
, where i

represents an index of the track, τ denotes the track lifetime,(
x̄, ȳ, w̄, h̄

)
denotes the ith track area estimated by the tracker,

and ci indicates the tracked drone class.
Our framework can apply to any kind of drone tracker and

detector. However, a large drone image dataset is required to
train a drone detector. Unfortunately, the drone is considered
novel objects [9], which have not been extensively explored in
drone detection applications. Many public datasets for object
detection, such as ImageNet [28] and MSCOCO [10], do not
provide drone images. Although several studies [29, 30] have
a drone image dataset, they provide only a single drone class.
Considering this problem, we built a new 2D drone image
dataset in Sec. 4.1.

3.2. Drone 2D Rotation Estimation
Drones can freely rotate in the air compared to other com-

mon objects, so estimating the rotation of drones is impor-
tant than other common objects. However, the bounding
box (bbox) of a drone only offers a simple rectangular posi-
tion (x, y, w, h) that cannot precisely depict the drone rotation.
To find the drone rotation in the rectangular bbox, we applied
the PCA [21]. Based on the tracking results, the estimated
drone position is defined by (x̄i, ȳi, w̄i, h̄i). Then, a set of
pixel coordinates belonging to the foreground drone area is
defined as follows:
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Fig. 4: Geometric relationship between camera and image
coordinate systems. The green line is the distance D between
the center of drone and camera. Best viewed in color.

C = {(xk, yk) |1 ≤ k ≤ K}, (1)
where K is the total number of pixels. We omit the track index
i for convenience. To automatically find the foreground area
of the drone, we utilized U2-net [31]. Then, we calculate the
covariance matrix of C as

Σ =
1

K

( ∑
(xk −mx)2

∑
(xk −mx)(yk −my)∑

(xk −mx)(yk −my)
∑

(yk −my)2

)
, (2)

where mx,my are means of x and y values, respectively.
Based on the PCA, two eigenvalues and eigenvectors are

calculated from the covariance matrix Σ, and we selected the
eigenvector vλ corresponding to a larger eigenvalue λ. The
eigenvector reflects the drone rotation, as shown in Fig. 3 (a).
Based on the vector, we find two points (p1,p2) of intersection
between the eigenvector and drone position (x̄i, ȳi, w̄i, h̄i).
To find the intersection points, we defined a line that passes
through the drone center point (x̄, ȳ), with its direction de-
termined by the eigenvector vλ. As a result, we can approx-
imately estimate the 2D drone rotations regardless of their
poses, as shown in Fig. 3 (b). This aids in enhancing the
overall accuracy of the 3D drone trajectory reconstruction.

3.3. Drone 3D trajectory reconstruction
To reconstruct the 3D trajectory of the drone, in this sec-

tion, we exploit the prior knowledge of each drone such as its
specification information. We assume that the principle line
p1p2 of the drone corresponds to the the longest side of the
drone. In general, the width length of the drone is longer than
its other sides e.g., height and depth. Based on this assumption,
we retrieve an actual drone’s width length l from the drone
specification database when the drone detector predicts the
class of the drone as c. Then, we have two end points (p1,p2)
of the drone in 2d image, and its real 3D length l.

Using those cues (i.e., p1,p2, l) of the drone, we can es-
timate 3D position of the drone. To this end, we calibrate
the camera to find the relationship between 2d image coor-
dinate (u, v) and 3D world coordinate systems (X,Y, Z) asuv

1

 = K[R|t]


X
Y
Z
1

 , (3)

where K3×3 matrix denotes camera intrinsic parameters,
R3×3, t3×1 denote camera extrinsic parameters.
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Fig. 5: Examples of image frames and the corresponding 3D drone trajectories of the 3D drone synthetic dataset. The • and ×
symbols denote the start and end of the drone trajectory, respectively. Scenario#1 – #9 are the synthetic and Scenario#10 – #11
are the real-world dataset.

By calculating [R|t] · [X,Y, Z, 1]⊤, the world coordinate
system is transformed into a camera coordinate system asuv

1

 = K

Xc

Yc

Zc

 . (4)

In the camera coordinate system, the origin Oc = [0, 0, 0]
represents the center of the camera. Since the K matrix is
invertible, we can have a linear transformation of the 2D image
coordinate to the 3D camera coordinate system byXc

Yc

Zc

 = K−1

uv
1

 . (5)

According to Eq. 5, we can transform the points (p1,p2)
in the 2d image coordinates system into 3D vectors in the
camera coordinate system by calculating

vp1 = K−1

[
p1

1

]
, vp2 = K−1

[
p2

1

]
. (6)

The vectors vp1
and vp2

are heading to the points (p1,p2)
from the origin (Oc). Additionally, a camera viewpoint vector
to the center of the drone is defined by vcam =

vp1
+vp2

2 .
Fig. 4 visualizes both image and camera coordinates with the
2D image points (p1,p2) and vectors (vp1 ,vp2 ,vcam).

Assuming that the vector −−−−→vp1vp2 is orthogonal to a
camera-view point vector vcam, we can calculate the distance
between the drone and camera center using the following steps.
First, we compute a vector angle θ between vp1

and vp2
as

follows:
θ = cos−1 vp1

· vp2

∥vp1∥ ∥vp2∥
. (7)

The distance between two vectors is known as l, which is
an actual drone length. Based on the θ and l values, we can
calculate the distance between the camera and drone by

D =
l

2 tan θ
2

. (8)

Then, we can determine the 3D position of the drone ac-
cording to the distance D and camera-view point vector vcam.
The 3D drone position estimation can be conducted across
multiple image frames to build the 3D trajectory. However, a
reconstructed 3D trajectory using a single camera may contain
noise and error. To mitigate these problems, we applied an
average filter to the initial trajectory. By smoothing out varia-
tions in the trajectory, it helps the average filter enhance the
accuracy of the 3D drone position estimation.

4. DATASETS

All datasets in this section are available at https://
will_be_available.

4.1. 2Drone(on+aug): 2D Drone Image dataset
Public object detection datasets (e.g., ImageNet [28] and

MSCOCO [10]) do not provide drone images for training
the detector. Several studies [29, 30] have built drone image
datasets, but they only provide a single drone class. Con-
sidering these problems, we created a new 2D drone image
dataset called 2Drone to train drone detectors. The dataset
provides multi-class drone models (Air2S, Mavic3, Mini3Pro,
and Tello) with diverse poses and backgrounds.

We first collected 1,107 real drone images of the four
models available online and called this drone image set

https://will_be_available
https://will_be_available


Sequences Seq. #01 Seq. #02 Seq. #03 Seq. #04 Seq. #05 Seq. #06 Seq. #07 Seq. #08 Seq. #09 Seq. #10 Seq. #11
Drones Air2S Air2S Air2S Air2S

Tello
Mavic3

Mini3Pro Air2S Mini3Pro Air2S Tello
Mavic3 Tello Tello

Frames(30) 180 180 180 180 180 300 300 810 300 120 120
Translation x y z x, y, z x, y, z x, y, z x, y, z x, y, z x, y, z x, y, z x, y, z

Rotation None None None None None None None ✓ ✓ ✓ ✓

Motion Linear Linear Linear Linear Linear Non-
linear

Non-
linear

Non-
linear

Non-
linear

Non-
linear

Non-
linear

Table 1: Properties of scenarios in the proposed 3D drone dataset. Translation denotes the direction of the drone movements.
Rotation denotes the changes in the drone pose angle. Motion (linear) and motion (nonlinear) indicate the drone movements with
constant and variable velocity, respectively.

Training Dataset MOTA(↑) FN(↓) FP(↓) IDs(↓)
2Drone(on) 75.3 693 58 5
2Drone(aug) 80.0 393 214 6

2Drone(on+aug) 81.0 343 236 3

Table 2: Multi-drone tracking results on Syn3Drone dataset
according to different training datasets for the drone detector.

2Drone(on). However, the volume of the dataset is insuf-
ficient to train a robust and accurate drone detector. Another
work [32] synthesized objects and background images to make
an object detection dataset; therefore, we synthesized drone
source images with background images to augment more 2D
drone images in the dataset. For this purpose, the total number
of collected images is as follows: 25 for Air2S, 32 for Mavic3,
39 for Mini3Pro, 41 for Tello, and 100 for the background.

Then, we randomly selected drone and background source
images and mixed them. The total number of images is
11,434, and the numbers of each drone in the images are
as follows: Airs2S: 2,085, Mavic3: 2,668, Mini3Pro: 3,245,
and Tello: 3,436. The dataset is called 2Drone(aug). To
sum up, our dataset named 2Drone(on+aug) consists of
2Drone(on) and 2Drone(aug) and involves 12,541 im-
ages and their ground-truth bounding boxes.

4.2. Syn3Drone: Synthetic 3D Drone Dataset
To validate the proposed methods, we require a 3D drone

trajectory dataset (Syn3Drone) that provides 2D image
frames and ground-truth 3D drone positions. As we know,
there is no public dataset for 3D drone tracking. In this work,
we built a new synthetic 3D drone trajectory dataset using an
open-source 3D computer graphics software tool (blender).
We collected 3D models of the four drones (Airs2S, Mavic3,
Mini3Pro, and Tello) and constructed two 3D background
scenes. Then, we rendered nine different drone scenarios as
depicted in Fig. 5. The properties of sequences in the dataset
are summarized in Tab. 1. We set the drones considering their
actual sizes. The drone widths, depths, and heights in millime-
ters are as follows: Air2S (W:253.0, D:183.0, H:77.0), Mavic3
(W:347.5, D:283.0, H:107.7), Mini3Pro (W:245.0, D:171.0, H:62.0),
and Tello (W:176.3, D:98.0, H:41.0).

4.3. Real3Drone: Real-world 3D Drone Dataset
To validate our proposed framework in real-world scenar-

ios, we generated real-drone data using the Tello drone model.
To this end, we set calibrated two different cameras (i.e., stereo

(a) Initial estimation (b) Window size: 5 (c) Window size: 10

Fig. 6: Trajectory smoothing results according to window
sizes.
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Fig. 7: Determining drone 2D points p1,p2.

camera) and calculated the 3D positions of drones by bipolar
geometry.

5. EXPERIMENTAL RESULTS

5.1. Settings and Evaluation Metrics
For the multi-object tracker, we used byteTrack [23], which

can perform real-time tracking. As an object detector for the
tracker, we trained a YOLOv5x [33] using NVIDIA RTX
3070ti and 3090 (two cards) with the following parameter
settings: 100 epochs, a batch size of 4, and a learning rate of
0.0001. Using the proposed dataset in Sec. 4.1, we evaluated
the drone detector with various training & testing scenarios.

To evaluate the accuracy of multi-object trackers, we mea-
sured the multi-object tracking accuracy (MOTA) [34] de-
fined by MOTA = 1−

∑
t FNt+FPt+IDst∑

t gt
, where FNt, FPt,

IDst, and gt are the number of misses (false negatives), false
positives, identity switches, and objects, respectively. To evalu-
ate the performance of 3D trajectory estimation, we measured
two commonly used metrics, the mean absolute error (MAE)
and root mean squared error (RMSE). The MAE calculates the
absolute differences between the predicted and actual values
and measures an average summation of the differences. It pro-
vides an average measure of the absolute deviation between
the predicted and actual values and is not sensitive to outliers
because it treats all differences equally [35]. The RMSE also
calculates the differences between the predicted and actual
values, but it further squares the differences for the average of



CAM
GT
Ours

(a) Sequence #06

CAM
GT
Ours

(b) Sequence #08

CAM
D1 - GT
D1 – Ours
D2 – GT
D2 - Ours

(c) Sequence #09

CAM
GT
Ours

(d) Sequence #11 (real)

Fig. 8: Qualitative results of the three-dimensional (3D) drone trajectory reconstruction based on the proposed methods.

Sequences Metric Width Height Diagonal Ours

#01 MAE 4.2 32.38 3.84 4.53
RMSE 5.05 48.38 4.24 5.63

#02 MAE 1.34 17.23 4.96 1.23
RMSE 1.76 27.33 6.94 1.72

#03 MAE 1.15 27.78 5.05 2.16
RMSE 1.58 48.49 9.04 3.8

#04 MAE 5 23.08 2.38 5.1
RMSE 8.07 33.02 3.8 8.26

#05 MAE 23.54 31.86 20.27 25.57
RMSE 27.51 38.02 22.71 35.05

#06 MAE 2.75 25.31 4.23 3.03
RMSE 3.73 37.74 5.26 4.24

#07 MAE 5.34 11.13 8.6 5
RMSE 6.89 18.7 11.14 6.45

#08 MAE 3.35 39.3 8.11 2.91
RMSE 5.24 71.53 12.8 4.28

#09 MAE 9.78 38.94 7.16 4.1
RMSE 13.79 58.78 10.05 5.85

#10 MAE 11.9 53.42 16.43 11.21
RMSE 13.51 76.24 18.49 13

#11 MAE 12.91 63.92 15.34 12.74
RMSE 15.6 89.19 18.9 15.31

Average MAE 6.09 32.5 8 5.66
RMSE 8.03 51.97 10.68 7.93

Table 3: Performance comparison of 3D trajectory reconstruc-
tions. This result is cm scale.

the squared differences. Small values indicate high perfor-
mance for both metrics.

5.2. Effects of 2D drone detectors
For the multi-drone tracker, we trained various drone detec-

tors according to our drone image dataset 2Drone. We then
tested the trackers on 2D synthetic sequences in Syn3Drone
dataset as summarized in Tab. 2. The detector trained with
2Drone(on) often failed to detect drone, due to the lack
of training dataset. On the other hand, the detector trained
by 2Drone(on+aug) improved drone detection rate signifi-
cantly and helped the tracker operate properly. In addition, it
reduced the drone ID switch cases. These results support that
effectiveness of our datasets in training a reliable drone de-
tector and tracker. We anticipate further enhancements of the
tracker by fine-tuning it using additional test domain images.

5.3. 3D Trajectory Reconstruction Results
To validate the proposed methods, we employed the

Syn3Drone and Real3Drone datasets. During the exper-
iments, we used ground-truth 2D drone bounding boxes to
evaluate the effectiveness of our 3D trajectory reconstruction
methods, independent of the performance of the drone de-
tectors. Initially, the reconstructed 3D trajectories of drones
may contain errors due to limited information from a single

camera setting. To mitigate reconstruction errors, we applied
a moving average filter on the initial 3D trajectory. Fig. 6
shows the trajectory smoothing results of Seq. #01 compared
to the initial estimation. While a larger window size can
provide a smoother trajectory, we empirically observed that a
window size of 5 yields the best 3D trajectory reconstruction
performance.

To prove the effect of the proposed 2D drone rotation
estimation in Fig. 3, we compared three simple approaches
for determining 2D drone points p1,p2 as shown in Fig. 7.
Tab. 3 presents the 3D trajectory reconstruction performance
of the different approaches and our method. The proposed
method performed the best average reconstruction in terms
of both evaluation metrics (MAE and RMSE). Moreover, the
proposed exhibited superior performance in the most complex
scenarios (Seq. #08 and #09), including drone rotation and
nonlinear motion. Above all, it showed good performance
not only for synthetic input but also for real-world sequences
(Seq. #10 and #11). With this, our methods can be used appli-
cation in the real-world. We observed the qualitative trajectory
reconstruction results of our methods in Fig. 8. Compared
to the ground-truth trajectories, our methods performed reli-
able and reasonable reconstruction. The results indicate that
the proposed method efficiently handles complex scenarios,
and demonstrates the potential for applying our methods to
standard surveillance systems using a single static camera.

6. CONCLUSIONS

In this work, we proposed a novel framework for recon-
structing 3D drone trajectories using a single static camera.
To this end, we exploited calibration to leverage the relation-
ship between 2D and 3D spaces and tracked the drones in 2D
images based on the drone tracker. For the tracker, we aug-
mented the 2D drone image dataset and trained an accurate 2D
drone detector. Furthermore, we proposed a 2D drone rotation
estimation method.

By combining the 2D drone rotation information with its
actual length, we geometrically inferred the 3D drone trajecto-
ries in the camera coordinate system. The experimental results
revealed that the proposed methods could perform reliable 3D
drone trajectory reconstruction and demonstrated the potential
for applying our framework in common surveillance systems
using a single static camera.
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