
SPATIALITY-AWARE PROMPT TUNING FOR FEW-SHOT SMALL OBJECT DETECTION
SUPPLEMENTARY MATERIAL

A. VERBALIZERS

We provide a detailed description of the verbalizer used in our
proposed method, including its definition and the distribution
of labels.

A.1. Verbalizers definition
Verbalizers for bounding box size. For verbalizing the ma-
jor size of bounding boxes in each image, we use four words
“tiny”, “small”, “medium” and “large”. These words are
masked with the special token [MASK-S]. Each bounding
box within an image is classified based on Table 8, where r
is the area ratio of the bounding box size to the image size.
The label for each image is determined by the predominant
category of all bounding boxes contained within that image.

Table 8. Words for verbalizing the size of bounding box. r is
the area ratio of the bounding box size to the image size.

Word Range
SODA-D SmallCOCO

large 0.05 < r 0.3 < r
medium 0.02 < r  0.05 0.12 < r  0.3
small 0.01 < r  0.02 0.06 < r  0.12
tiny r  0.01 r  0.06

Verbalizers for bounding box count. For verbalizing
counts, we use three words “many”, “several”, and “few”.
These words are masked with the special token [MASK-C].
Words for the ground-truth expressions are chosen based on
Table 9, where c is the number of ground-truth bounding
boxes.

Table 9. Words for verbalizing the number of bounding
boxes. Given the ground-truth number of bounding boxes,
one of three words is chosen for each image.

Word Range

many 20 < c
some 10 < c  20
few c  10

Verbalizers for bounding box position. For verbalizing the
major positions of bounding boxes, we employ five descrip-
tive words: “center”, “left”, “right”, “top”, and “bottom.”
Each word is associated with specific regions of an image:
center is used when a bounding box lies within the middle
third of both the x and y axes; top and bottom correspond to
the upper and lower thirds of the y-axis, respectively, com-
bined with the middle third of the x-axis; left and right refer

to the leftmost and rightmost thirds of the x-axis. These po-
sition words are masked with the special token [MASK-P].
To determine the ground-truth expressions for an image, we
count the number of bounding boxes in each defined region
as shown in Figure 6, selecting the word that corresponds to
the most frequent region for each image.

top center bottom

left right

Fig. 6. Words for verbalizing major position of bounding
boxes. The ground-truth bounding boxes are counted for each
region and the word corresponding to the region with the most
frequent bounding boxes is chosen. The size of each region is
one-third of the image size.

A.2. Verbalizer label distribution
When extracting verbalization information following the def-
initions in A.1, the distribution of labels in each dataset is as
shown in Figure 7. Compared to the SmallCOCOC dataset,
the SODA-D dataset has a relatively higher number of boxes
per image, with the object locations being biased towards the
center.

B. IMPLEMENTATION AND EXPERIMENT
DETAILS

The implementation of the proposed method and comparative
methods, such as CoOp [24] and VPT [25], utilized imple-
mentation of CFINet [3]1 based on MMDetection, an open-
source toolbox for object detection. We conducted the exper-
iments using NVIDIA V100 GPUs for all experiments.
Hyperparameters. The hyperparamers with respect to the
optimizer we used are listed in Table 10. Our model adopts
the hyperparameter settings from the GroundingDINO [11],
applying consistent configurations across both few-shot and
full-shot learning scenarios. In the full-shot learning scenario,
we adhere to the GroundingDINO’s learning rate schedule,

1https://github.com/shaunyuan22/CFINet

https://github.com/shaunyuan22/CFINet


Fig. 7. Label distribution of verbalizers in SODA-D (left) and
SmallCOCO (right).

implementing a StepLR schedule with learning rate decay at
epoch 11. The optimizer, backbone learning rates, weight
decay, and architectural details, including the number and
size of encoder and decoder layers, remain aligned with the
Grounding DINO specifications, maintaining fidelity to the
established framework while addressing the nuances of our
specific tasks.

For CoOp, the number of learnable embeddings is set to
M = 16, following the settings from [24]. For VPT, the
number of learnable embeddings is determined experimen-
tally to be M 0 = 4, as this value yielded the best performance
on the SODA-D dataset among M 0 2 {1, 2, 4, 8, 16, 32}. The
number of optional learnable embeddings for SAPT is aligned
with VPT, set to M 0 = 4, to maintain consistency in the em-
bedding configuration. For verbalizer (A-C), character-level
tokenizer is applied and new embeddings are used for each.
For (D), learnable embeddings are appended to the end of the
sentence so that the total length becomes 128.

Architecture. We describe the architecture details of SAPT
applied to Grounding DINO. Let T , T̄ ,X and X̄ be a text
prompt, vanilla text features, an image prompt and vanilla im-

Table 10. Hyperparameters for few-shot and full-shot learn-
ing scenarios. The parameters above the separation line apply
to few-shot learning, with specific epoch settings for different
numbers of shots (k = 1, 2, 3, 5 and k = 10). The param-
eters below the separation line are exclusive to the full-shot
learning setup, including the learning rate schedule with de-
cay epochs.

Item Value

optimizer AdamW
lr 1e-4
lr of image backbone 1e-5
lr of text backbone 1e-5
epochs (k = 1, 2, 3, 5) 4
epochs (k = 10) 3
weight decay 0.0001
clip max norm 0.1
number of encoder layers 6
number of decoder layers 6
dim feedforward 2048
hidden dim 256
dropout 0.0
nheads 8
number of queries 900
set cost class 1.0
set cost bbox 5.0
set cost giou 2.0
ce loss coef 2.0
bbox loss coef 5.0
giou loss coef 2.0
batchsize 644
running average coefficient �1 0.9
running average coefficient �2 0.999
epsilon ✏ 10�8

learning rate schedule StepLR
learning rate decay 0.1
learning rate decay epoch 11
epochs 12

age features, respectively, given by

T = [ TDet,V ], (7)
T̄ = TextBackbone(T ), (8)
X = [ E,P ], (9)
X̄ = ImageBackbone(X), (10)

where TextBackbone is the frozen BERT model and ImageBackbone
is the frozen Swin Transformer model. Note that following
VPT [25], the embeddings of added prompts are ignored dur-
ing patch merging stages of Swin. Then, assuming the vanilla
features can be written as

T̄ = [ T̄Det, V̄ ], (11)



Fig. 8. Qualitative comparison of results between CFINet [3] (top) and proposed SAPT (bottom).

the frozen encoder (feature enhancer) is applied to the fea-
tures as follows:

(T̃ , X̃) = Encoder(T̄ , X̄). (12)

This output can be written as follows:

T̃ = [ T̃Det, Ṽ ], (13)

X̃ = [ Ẽ, P̃ ]. (14)

The verbalizer head is a linear layer. Given a set of token
indexes of special mask tokens M (|M| = 3 for the three
masks), linear layers for each i 2 M is applied to predict
masked words:

ŷi = fi(v̂i). (15)

to which the masked prediction loss is applied as in Eq. (9).

C. DATASET DETAILS

In this research, we constructed k-shot datasets to evaluate the
performance of few-shot learning in small object detection,
due to the lack of existing benchmarks for few-shot small ob-
ject detection. The k-shot dataset used in the experiments was
constructed by randomly sampling k images from each cate-
gory that contain annotations relevant to that category, and
then integrating them all together.

In addition, to demonstrate the effectiveness of our ap-
proach beyond the SODA-D dataset, we constructed the
SmallCOCO dataset, a subset of the COCO dataset focused



Fig. 9. Visualizations of our SAPT predictions trained in one-shot learning scenario.

Table 11. Categories included in the SmallCOCO dataset

Id Super Category Category

1 person person
3 vehicle car
9 vehicle boat
10 outdoor traffic light
16 animal bird
31 accessory handbag
44 kitchen bottle
47 kitchen cup
62 furniture chair
84 indoor book

on categories containing a large number of small objects.
Specifically, following the evaluation criteria of SODA-D,
we targeted annotations with an area size of 2000 pixels or
less, counted the number of annotations, and sorted them
in descending order to narrow down to 10 categories. As a
result, the categories included in the SmallCOCO dataset are
as shown in Table 11. Furthermore, after narrowing down
the categories, similar to the SODA-D dataset, annotations
larger than 2000 pixels were replaced with an “ignore” class,
ensuring that the evaluation is appropriately conducted only
on small objects.

D. MORE RESULTS AND ANALYSIS

D.1. Qualitative comparison
We present a qualitative comparison of our proposed SAPT
method with the current state-of-the-art, CFINet [3], as shown
in Figure 8. For CFINet, we used a model that was retrained
in our own environment to ensure the integrity of the results.
Both methods demonstrate impressive detection capabilities
across a wide array of categories, evidencing their proficiency
in managing diverse object classes. A detailed analysis of
the visualized results reveals a marginal yet noticeable supe-
riority of SAPT, especially in reducing classification errors,
false positives, and missed detections - areas where CFINet,
while generally effective, shows occasional limitations. Fur-
thermore, the visualization from both methods underscores
the difficulty in differentiating between similar categories in
the SODA-D dataset, notably between “motor” and “bicycle”,
and “people” and “rider”. These observations not only ac-
centuate the intricacies of fine-grained categorization but also
suggest avenues for enhancement in future object detection
algorithm developments.

D.2. Class-wise results comparison
Table 12 provides a comparative analysis between the state-
of-the-art CFINet method [3] and our proposed SAPT ap-
proach, detailing their performance across various categories.
For each metric, superior results are emphasized in bold.



Table 12. Class-wise average precision (AP) results of CFINet [3] and SAPT (outs) on SODA-D dataset (Better results in bold).

Class Method AP AP50 AP75 APeS APrS APgS APN

people CFINet 37.7 66.8 35.6 11.4 30.2 43.5 53.8
SAPT 40.6 72.1 38.9 10.5 32.3 47.1 59.8

rider CFINet 18.5 49.6 9.3 7.5 14.7 23.2 31.9
SAPT 22.1 58.2 12.5 8.6 19.7 27.0 33.7

bicycle CFINet 13.7 33.0 8.7 3.1 10.1 16.7 28.4
SAPT 15.5 36.7 11.3 3.3 8.6 19.9 37.4

motor CFINet 25.6 61.4 16.1 13.7 25.4 29.0 33.3
SAPT 29.0 65.6 18.8 14.8 27.2 34.0 37.4

vehicle CFINet 46.4 80.4 47.2 23.6 41.1 53.7 65.9
SAPT 47.8 81.9 49.2 21.3 41.0 56.9 70.4

traffic-sign CFINet 46.6 76.8 50.3 24.1 42.3 54.1 63.9
SAPT 47.8 78.8 51.8 24.1 42.4 56.4 66.8

traffic-light CFINet 38.5 74.0 35.3 24.2 37.2 45.1 54.0
SAPT 40.1 78.7 36.6 23.8 37.9 48.4 57.6

traffic-camera CFINet 15.2 34.9 10.0 7.5 15.9 21.8 28.7
SAPT 12.5 29.1 8.5 5.8 13.0 18.9 29.7

warning-cone CFINet 31.6 65.5 26.1 13.1 28.5 38.3 47.5
SAPT 34.8 73.0 27.8 16.7 30.7 42.4 52.1

Table 13. Class-wise average precision (AP) resuls of one-shot learning with SAPT (validation set).

Class AP AP50 AP75 APeS APrS APgS APN

people 17.1 35.4 13.7 2.6 9.3 22.2 33.6
rider 1.8 6.0 0.7 0.0 1.3 2.6 4.7
bicycle 7.8 22.4 3.6 0.1 3.3 11.2 19.6
motor 0.1 0.3 0.1 0.0 0.0 0.2 0.4
vehicle 15.9 32.3 14.2 5.3 13.4 19.9 24.4
traffic-sign 22.2 41.4 21.5 7.8 17.0 29.4 36.5
traffic-light 25.1 52.5 21.0 10.8 23.5 33.1 43.2
traffic-camera 2.5 5.6 1.7 0.7 2.7 4.8 7.2
warning-cone 7.4 16.5 5.4 0.3 6.7 9.1 17.5

SAPT, our proposed method, shows significant performance
improvements in most classes. While both SAPT and CFINet
have limited effectiveness in the “traffic-camera” category,
which is considered a challenging domain for detection,
CFINet slightly outperforms SAPT in this area. This sug-
gests potential areas for further improvement in our method.

D.3. Detailed results in one-shot learning scenario

We present the visualization of prediction results for the
one-shot learning scenario of our proposed SAPT method
in Figure 9, along with detailed class-wise results in Ta-
ble 13. While there is a noticeable degradation in perfor-
mance compared to the full-shot scenario, it is remarkable

that SAPT successfully detects a significant number of cat-
egories even in the one-shot setting. Notably, as discerned
from the class-wise detailed results in Table 13 and the visu-
alization outcomes, SAPT demonstrates efficient detection in
categories like “traffic-sign” and “traffic-light”. Additionally,
the method shows reasonably good results for “bicycle” and
“warning-cone”. While the “vehicle” class exhibits relatively
good performance in quantitative results, qualitative analysis
through visualization suggests that the performance might not
be as satisfactory. One reason for this could be the ambiguous
class name “vehicle” in the SODA-D dataset to define cars.
This ambiguity might not translate well qualitatively, and is
considered to have a moderate impact on the effectiveness



Table 14. Detailed result of various verbalizer prompt comparison (Table 6).

[MC] [MS] [MP] mAP mAP50 mAP75 mAPeS mAPrS mAPgS mAPN

(A) X 10.0 21.5 8.2 2.9 7.9 13.1 18.4
(B) X 9.7 20.9 7.9 2.8 7.6 12.8 17.9
(C) X 10.2 21.9 8.3 2.9 7.8 13.5 19.0
(D) X X X 11.1 23.6 9.1 3.1 8.6 14.7 20.8

Table 15. Detailed result of effectiveness comparison of learnable embeddings for image prompts (Table 7).

Method mAP mAP50 mAP75 mAPeS mAPrS mAPgS mAPN

CoOp 8.4 18.7 6.6 2.4 6.4 11.1 16.0
VPT 8.3 18.9 6.3 2.5 6.5 10.9 15.6
CoOp + VPT 8.2 18.8 6.0 2.4 6.3 10.8 15.5
SAPT w/o optional LE 11.1 23.6 9.1 3.1 8.6 14.7 20.8
SAPT w/ optional LE 11.2 24.0 9.1 3.1 8.7 14.7 20.8

of vision-language detection models. Traditionally, dataset
category names have been largely symbolic, but with the
growing significance of vision-language models, reassessing
the suitability of these category names in datasets becomes
increasingly important.

D.4. Detailed results of ablation study
The detailed results of the comparative experiments involv-
ing various verbalizer prompts and learnable embeddings for
image prompts, as conducted in Subsection 4.4 of the main
manuscript, are respectively presented in Table 14 and Ta-
ble 15. These findings consistently underscore the advantage
of using multiple verbalizer masked tokens, among other in-
sights. This aligns with the trends and conclusions reported
in the main text.


