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Fig. 1: The top row represents the affinity matrices of the segmentation masks obtained in different configurations of projectors
and predictors of a particular image. The bottom row represents the affinity matrices of the ground truth mask. The values
reported on top of the figures are Frobenius Norm, Accuracy and mIOU scores.

1. IMPLEMENTATION DETAILS

Broadly, we present two modules: One is the SimSAM frame-
work, which is used for obtaining a semantically consistent,
improved semantic matrix (leading to better image segmenta-
tion). We trained our Siamese-based SimSAM framework for
10 iterations for each image.
Projector. We experimented with Principal Component
Analysis (PCA) as a projector with 64, 128, and 256 compo-
nents, as shown in Table 1. Among these configurations, 64
components gave the best accuracy and IOU scores for the
segmentation mask. We also conducted studies for multiple
configurations of the Projector as shown in Fig. 1. We found
that using a non-linear layer as Projector reported the best
Frobenius Norm, Accuracy and mIoU scores.

Predictor. We also conducted studies for multiple configura-
tions of predictors on a single image. Fig. 1 shows the affin-
ity matrix obtained in each configuration with respect to its
ground truth affinity. As we can see, the linear layer as a pre-
dictor reported the best accuracy scores, mIoU and Frobenius

norm.

Components 32 64 128
Accuracy 0.77 0.89 0.88

mIoU 0.54 0.75 0.72

Table 1: Number of PCA components. We tested 32, 64 and
128 PCA components. n=64 gave the best scores.

2. EXPERIMENTAL RESULTS

Object Segmentation masks Outputs. Fig. 2-4 are extended
outputs of Fig. 3 of the main manuscript. As shown, the pre-
dicted mask obtained with SimSAM (ours) is closest to the
ground truth mask as compared to DSM [1] and Deep Cut [2].
We reproduced the segmentation masks of baseline methods
with the GitHub codes available in DSM [3] and DeepCut [4].
Semantic Segmentation Outputs. Fig. 5 and Fig. 6 shows
the extended results of semantic segmentation masks of Fig. 5
and Fig. 1 of the main manuscript.



Distinguishable Dense Representations. Fig. 7-8 are de-
tailed scores of individual images whose corresponding aver-
age values were reported in Table 3, Ablation Study-(I) of the
main manuscript. Semantic Affinity Matrix, Frobenius Norm,
mIoU and accuracy scores of 10 randomly sampled images
from the ECSSD dataset are presented. The difference be-
tween DSM [1] and SimSAM is visible in the visualization of
affinity matrices with respect to ground truth affinity matrices
and with quantitative scores.

3. DATASETS

Object Segmentation. We considered ECSSD [5], DUTS
[6], DUTS-OMRON [7] and CUB[8] dataset for training and
evaluating the performance of segmentation masks obtained
with our method. During training on our SimSAM frame-
work, we considered a batch size of two. During inference,
we passed entire image on the trained network to obtain the
projected DINO-ViT features for computing a semantically
consistent better affinity matrix.
Semantic Segmentation. We performed qualitative and
quantitative experiments on the PASCAL VOC dataset for
the semantic segmentation task.

4. EVALUATION METRICS

Image Segmentation. We presented mIOU scores for eval-
uating the quality of the segmentation mask, as mentioned in
Section 4 of the main paper. Our method outperformed the
DSM method on ECSSD, DUTS and OMRON datasets. We
randomly sampled ten images from ECSSD data and com-
puted their Frobenius Norm, Accuracy and mIoU scores for
this. We found that our method performed better on those
individual images. See the Fig. 7 and 8.

5. ABLATION STUDIES

Ablation Study-(I). We performed more ablation studies to
explore the effect of normalization on the Vanilla affinity ma-
trix WA = (FK

L )(FK
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L )T . Let WA′ =

(FK
L )(FK

L )T be the matrix without subtracting mean as in
WA. Table 2 shows that subtracting the mean from the matrix
improves the accuracy and mIoU scores.

Affinity
Matrix

Accuracy mIoU

WA′ 0.859 0.678
WA 0.893 0.757

Table 2: Ablation Study-(I): Deep Spectral Affinity Matrix
on ECSSD dataset. Effect of subtracting mean of feature val-
ues from correlation affinity matrix.

Abalation Study-(II). We considered different for fine-
tuning the values of κ and found that κ = 0.1 works best
for obtaining the best scores on the object segmentation task
on ECSSD dataset.

κ=0.1 κ=0.3 κ=0.5 κ=0.7 κ=0.9
mIoU 0.762 0.742 0.723 0.733 0.752

accuracy 0.896 0.888 0.842 0.850 0.874

Table 3: Parametric tuning of κ on ECSSD dataset
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Fig. 2: Object Segmentation Outputs. SimSAM (ours) is closer to Ground Truth in comparison to baseline methods.
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Fig. 3: Object Segmentation Outputs. SimSAM (ours) is closer to Ground Truth in comparison to baseline methods.
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Fig. 4: Object Segmentation Outputs. SimSAM (ours) is closer to Ground Truth in comparison to baseline methods.
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Fig. 5: Semantic Segmentation Outputs.
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Fig. 6: Semantic Segmentation Outputs.
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Fig. 7: Values reported at bottom of DSM [1] and SimSAM (ours) method is Frobenius Norm, Accuracy and mIoU scores of
randomly sampled image from ECSSD dataset. Ablation Study-(I) of main manuscript.
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Fig. 8: Values reported at bottom of DSM [1] and SimSAM (ours) method is Frobenius Norm, Accuracy and mIoU scores of
randomly sampled image from ECSSD dataset. Ablation Study-(I) of main manuscript.
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