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1. VIDEO-LEVEL COMPREHENSIVE RESULTS

Due to space limitations, we only present the performance
of our model on the metric of AUC. Here, we show the re-
sults in terms of AUC and AP. Also we show the results
within-dataset. Our results only 98.89% on FF++ [1] (within-
dataset), indicating a clear impact from NT [2], which signif-
icantly lowers the AUC. This is because the artifacts caused
by NT are subtle and difficult to capture. However, such
decrease is a normal phenomenon since the training process
lack specific samples of forgery method. In our future ap-
proaches, we will consider how to enhance the detection of
subtle artifacts.

Table 1. Comprehensive evaluation of our model in terms of
video-level AUC, AP on four datasets.

Metrics
Method Test Set “AUC AP
DF[3] 99.88 99.88
F2F[4] 99.21 99.34
FS[5] 99.47 99.43
NT [2] 96.98 97.22
SSCL-DED + SBIs FF++[1] 98.89 99.72
(Ours) CD2[6] 96.12 97.92
DFDC [7] 75.69 76.52
FFIW [8] 83.27 83.14

2. FRAME-LEVEL RESULTS ON CD2

In the main text, we only present the performance of our
model at the video-level. Here, we will present the results
at the frame-level. As shown in Table 2. All the methods
are trained on FF++ and evaluated on CD2 [6]. Our model
outperforms the state-of-the-art method (CGS[9]) and Swin
[10] by over 4.97% and 3.36%, respectively. The experimen-
tal results demonstrate that our method still maintains a good
effectiveness at the frame-level.

Table 2. Cross-dataset evaluation of our model in terms of
frame-level AUC on CD2 dataset. The results of comparable
methods are directly cited from the original papers for fair
comparison.

Method CD2 ( Frame-Level AUC )
Meso4 [11] 54.8
Mesolnception4 [11] 53.6
Xception [1] 65.3
UIA-ViT [12] 82.41
CGS [9] 84.97
Two-branch [13] 73.4
Multi-task [14] 54.3
Multi-Attention [15] 67.4
PCL + 12G [16] 81.8
SLADD [17] 79.7
Swin Transformer [10] + SBIs 86.58
SSCL-DFD + SBIs (Ours) 89.94
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