EXPLAINING 3D OBJECT DETECTION THROUGH SHAPLEY VALUE-BASED ATTRIBUTION MAP

Michihiro Kuroki and Toshihiko Yamasaki

Dept. Information \& Communication Engineering, The University of Tokyo, Tokyo

Appendix

Transformation of Equation

In this section, we describe the details of the transformation from Eq. 5 to Eq. 6 in the main paper. The expected value in Eq. 5 can be represented as follows:

$$
\begin{align*}
\phi_{i}(f, \mathcal{X}) & \approx \frac{1}{d} \sum_{k=1}^{d} \mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right)-f\left(\mathcal{X}_{\mathbf{s}^{k}}\right) \mid \mathrm{s}_{i}^{k}=1, \mathbf{s}_{i}^{k \prime}=0\right], \tag{5}\\
& =\frac{1}{d} \sum_{k=1}^{d} G_{\mathcal{X}, k, i} . \tag{5a}\\
G_{\mathcal{X}, k, i} & =\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right)-f\left(\mathcal{X}_{\mathbf{s}^{k}}\right) \mid \mathbf{s}_{i}^{k}=1, \mathbf{s}_{i}^{k \prime}=0\right] . \tag{5b}
\end{align*}
$$

The expected value of Eq. 5 b can be expressed as the summation of all combinations of two mask patterns. We denote two binary masks as $\mathbf{s}^{k, a}$ and $\mathbf{s}^{k, b}$, which exhibit patterns similar to that of \mathbf{s}^{k}. If duplication is permitted, we need to consider two conditions among the masks, namely $\mathrm{s}_{i}^{k, a}=1, \mathrm{~s}_{i}^{k, b}=0$ and $\mathrm{s}_{i}^{k, a}=0, \mathrm{~s}_{i}^{k, b}=1$.

$$
\begin{align*}
G_{\mathcal{X}, k, i}=\sum_{\mathbf{m}^{k, a}} \sum_{\mathbf{m}^{k, b}} & \left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b} \mid \mathbf{s}_{i}^{k, a}=1, \mathbf{s}_{i}^{k, b}=0\right]\right. \tag{5c}\\
+ & \left.\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b} \mid \mathbf{s}_{i}^{k, a}=0,, \mathbf{s}_{i}^{k, b}=1\right]\right\} .
\end{align*}
$$

Here, P denotes probability. This equation can be further transformed as follows:

$$
\begin{align*}
& G_{\mathcal{X}, k, i}=\sum_{\mathbf{m}^{k, a}} \sum_{\mathbf{m}^{k, b}}\left\{\frac{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b}, \mathbf{s}_{i}^{k, a}=1, \mathbf{s}_{i}^{k, b}=0\right]}{P\left[\mathbf{s}_{i}^{k, a}=1, \mathbf{s}_{i}^{k, b}=0\right]}\right. \\
&\left.+\frac{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b}, \mathbf{s}_{i}^{k, a}=0, \mathbf{s}_{i}^{k, b}=1\right]}{P\left[\mathbf{s}_{i}^{k, a}=0, \mathbf{s}_{i}^{k, b}=1\right]}\right\} \tag{5d}\\
& G_{\mathcal{X}, k, i}=\frac{1}{P\left[\mathbf{s}_{i}^{k}=1\right] \cdot P\left[\mathbf{s}_{i}^{k}=0\right]} \sum_{\mathbf{m}^{k, a}} \sum_{\mathbf{m}^{k, b}}\left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b}, \mathbf{s}_{i}^{k, a}=1, \mathbf{s}_{i}^{k, b}=0\right]\right. \\
&\left.+\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b}, \mathbf{s}_{i}^{k, a}=1, \mathbf{s}_{i}^{k, b}=0\right]\right\}, \tag{5e}
\end{align*}
$$

$$
\begin{equation*}
=\frac{1}{P\left[\mathbf{s}_{i}^{k}=1\right] \cdot P\left[\mathbf{s}_{i}^{k}=0\right]} \sum_{\mathbf{m}^{k, a}} \sum_{\mathbf{m}^{k, b}}\left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right)\left(\mathbf{m}_{i}^{k, a}-\mathbf{m}_{i}^{k, b}\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b}\right]\right\} . \tag{5f}
\end{equation*}
$$

We now aim to reformulate the summation over $\mathbf{m}^{k, b}$ in terms of its expected value.

$$
\begin{align*}
& \sum_{\mathbf{m}^{k, a}} \sum_{\mathbf{m}^{k, b}}\left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-f\left(\mathcal{X}_{\mathbf{m}^{k, b}}\right)\right)\left(\mathbf{m}_{i}^{k, a}-\mathbf{m}_{i}^{k, b}\right) P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}, \mathbf{s}^{k, b}=\mathbf{m}^{k, b}\right]\right\}, \\
= & \sum_{\mathbf{m}^{k, a}}\left\{f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right) \cdot \mathbf{m}_{i}^{k, a}-f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right) \cdot \mathbb{E}\left[\mathbf{s}_{i}^{k, b}\right]-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k, b}}\right)\right] \cdot \mathbf{m}_{i}^{k, a}+\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k, b}}\right) \cdot \mathbf{s}_{i}^{k, b}\right]\right\} P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}\right] \tag{5~g}\\
\approx & \sum_{\mathbf{m}^{k, a}}\left\{f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right) \cdot \mathbf{m}_{i}^{k, a}-f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right) \cdot \mathbb{E}\left[\mathbf{s}_{i}^{k, b}\right]-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k, b}}\right)\right] \cdot \mathbf{m}_{i}^{k, a}+\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k, b}}\right)\right] \cdot \mathbb{E}\left[\mathbf{s}_{i}^{k, b}\right]\right\} P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}\right], \tag{5h}\\
= & \sum_{\mathbf{m}^{k, a}}\left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k, a}}\right)-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k, b}}\right)\right]\right)\left(\mathbf{m}_{i}^{k, a}-\mathbb{E}\left[\mathbf{s}_{i}^{k, b}\right]\right)\right\} P\left[\mathbf{s}^{k, a}=\mathbf{m}^{k, a}\right] \tag{5i}
\end{align*}
$$

In the transformation, we assumed independence between $f\left(\mathcal{X}_{\mathbf{s}^{k, b}}\right)$ and $\mathbf{s}_{i}^{k, b}$. Given that $\mathbf{m}^{k, a}$ and $\mathbf{m}^{k, b}$ follow the same distribution of \mathbf{s}^{k}, we can rewrite Eq. 5i as follows.

$$
\begin{align*}
G_{\mathcal{X}, k, i} & \approx \frac{1}{P\left[\mathbf{s}_{i}^{k}=1\right] \cdot P\left[\mathbf{s}_{i}^{k}=0\right]} \sum_{\mathbf{m}^{k}}\left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k}}\right)-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right)\right]\right)\left(\mathbf{m}_{i}^{k}-\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\right)\right\} P\left[\mathbf{s}^{k}=\mathbf{m}^{k}\right] \tag{5j}\\
& =\frac{1}{\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\left(1-\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\right)} \sum_{\mathbf{m}^{k}}\left\{\left(f\left(\mathcal{X}_{\mathbf{m}^{k}}\right)-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right)\right]\right)\left(\mathbf{m}_{i}^{k}-\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\right)\right\} P\left[\mathbf{s}^{k}=\mathbf{m}^{k}\right] \tag{5k}
\end{align*}
$$

Using the definition of covariance, we ultimately rewrite the summation as the expected values over \mathbf{s}^{k}.

$$
\begin{align*}
G_{\mathcal{X}, k, i} & \approx \frac{\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right) \cdot \mathbf{s}_{i}^{k}\right]-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right)\right] \cdot \mathbb{E}\left[\mathbf{s}_{i}^{k}\right]}{\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\left(1-\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\right)} \tag{51}\\
\phi_{i}(f, \mathcal{X}) & \approx \frac{1}{d} \sum_{k=1}^{d} \frac{\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right) \cdot \mathbf{s}_{i}^{k}\right]-\mathbb{E}\left[f\left(\mathcal{X}_{\mathbf{s}^{k}}\right)\right] \cdot \mathbb{E}\left[\mathbf{s}_{i}^{k}\right]}{\mathbb{E}\left[\mathbf{s}_{i}^{k}\right] \cdot\left(1-\mathbb{E}\left[\mathbf{s}_{i}^{k}\right]\right)} \tag{6}
\end{align*}
$$

Pseudocode

The pseudocode describing our method is shown in Algorithm 1.

```
Algorithm 1 Pseudocode for computing attribution map \(\Phi\)
Inputs: The number of samplings \(N\), number of approximation layers \(L\), object detector function \(F\), input point cloud \(\mathcal{X}\),
    explanation target detection \(\mathcal{D}_{t}\), detection score function \(\operatorname{Sim}(\cdot)\), and all-ones mask 1.
Outputs: Attribution map \(\Phi\)
    \(\Phi \leftarrow O\)
    for \(l=1, \ldots, L\) do
        \(\Phi^{l} \leftarrow O\)
        sum_score \(\leftarrow 0\), sum_mask \(\leftarrow O\), sum_score_mask \(\leftarrow O\)
        for \(r=1, \ldots, N\) do
            \(\mathbf{s}^{l_{r}} \leftarrow\) The input point cloud space is divided into voxel units. The voxels are selected randomly
                with probability \(p=\frac{l}{L+1}\), and a point \(i\) within the unselected voxels is masked (i.e. \(\mathbf{s}_{i}^{l_{r}}=0\) ).
            \(f\left(\mathcal{X}_{\mathbf{s}^{l_{r}}}\right) \leftarrow \max _{\mathcal{D}_{j} \in F\left(\mathcal{X}_{\mathbf{s}^{l_{r}}}\right)} \operatorname{Sim}\left(\mathcal{D}_{t}, \mathcal{D}_{j}\right)\)
            sum_score \(\leftarrow\) sum_score \(+f\left(\mathcal{X}_{\mathbf{s}^{l} r}\right)\)
            sum_mask \(\leftarrow\) sum_mask \(+\mathbf{s}^{l_{r}}\)
            sum_score_mask \(\leftarrow\) sum_score_mask \(+f\left(\mathcal{X}_{\mathbf{s}^{l_{r}}}\right) \cdot \mathbf{s}^{l_{r}}\)
        end for
        \(\overline{f\left(\mathcal{X}_{\mathbf{s}^{l}}\right)} \leftarrow\) sum_score \(/ N\)
        \(\overline{\mathbf{s}^{l}} \leftarrow\) sum_mask \(/ N\)
        \(\overline{f\left(\mathcal{X}_{\mathbf{s}^{l}}\right) \cdot \mathbf{s}^{l}} \leftarrow\) sum_score_mask \(/ N\)
        \(\Phi_{l} \leftarrow \frac{1}{L} \cdot\left\{\overline{f\left(\mathcal{X}_{\mathbf{s}^{l}}\right) \cdot \mathbf{s}^{l}}-\overline{f\left(\mathcal{X}_{\mathbf{s}^{l}}\right)} \cdot \overline{\mathbf{s}^{l}}\right\} \oslash\left\{\overline{\mathbf{s}^{l}} \odot\left(\mathbf{1}-\overline{\mathbf{s}^{l}}\right)\right\}\)
        \(\Phi \leftarrow \Phi+\Phi_{l}\)
    end for
    return \(\Phi\)
```

