
EXPLAINING 3D OBJECT DETECTION THROUGH
SHAPLEY VALUE-BASED ATTRIBUTION MAP

Michihiro Kuroki and Toshihiko Yamasaki

Dept. Information & Communication Engineering, The University of Tokyo, Tokyo

Appendix

Transformation of Equation

In this section, we describe the details of the transformation from Eq. 5 to Eq. 6 in the main paper. The expected value in Eq. 5
can be represented as follows:

ϕi(f,X ) ≈
1

d

d∑
k=1

E
[
f(Xsk)− f(Xsk′)

∣∣ ski = 1, sk′i = 0
]
, (5)

=
1

d

d∑
k=1

GX ,k,i. (5a)

GX ,k,i = E
[
f(Xsk)− f(Xsk′)

∣∣ ski = 1, sk′i = 0
]
. (5b)

The expected value of Eq. 5b can be expressed as the summation of all combinations of two mask patterns. We denote two
binary masks as sk,a and sk,b, which exhibit patterns similar to that of sk. If duplication is permitted, we need to consider two
conditions among the masks, namely sk,ai = 1, sk,bi = 0 and sk,ai = 0, sk,bi = 1.

GX ,k,i =
∑
mk,a

∑
mk,b

{(
f(Xmk,a)− f(Xmk,b)

)
P
[
sk,a = mk,a, sk,b = mk,b

∣∣∣ sk,ai = 1, sk,bi = 0
]

+
(
f(Xmk,a)− f(Xmk,b)

)
P
[
sk,a = mk,a, sk,b = mk,b

∣∣∣ sk,ai = 0, , sk,bi = 1
]}

.

(5c)

Here, P denotes probability. This equation can be further transformed as follows:

GX ,k,i =
∑
mk,a

∑
mk,b

{(
f(Xmk,a)− f(Xmk,b)

)
P
[
sk,a = mk,a, sk,b = mk,b, sk,ai = 1, sk,bi = 0

]
P [sk,ai = 1, sk,bi = 0]

+

(
f(Xmk,a)− f(Xmk,b)

)
P
[
sk,a = mk,a, sk,b = mk,b, sk,ai = 0, sk,bi = 1

]
P [sk,ai = 0, sk,bi = 1]

}
.

(5d)

GX ,k,i =
1

P [ski = 1] · P [ski = 0]

∑
mk,a

∑
mk,b

{(
f(Xmk,a)− f(Xmk,b)

)
P
[
sk,a = mk,a, sk,b = mk,b, sk,ai = 1, sk,bi = 0

]
+
(
f(Xmk,a)− f(Xmk,b)

)
P
[
sk,a = mk,a, sk,b = mk,b, sk,ai = 1, sk,bi = 0

]}
,

(5e)



=
1

P [ski = 1] · P [ski = 0]

∑
mk,a

∑
mk,b

{(
f(Xmk,a)− f(Xmk,b)

)(
mk,a

i −mk,b
i

)
P
[
sk,a = mk,a, sk,b = mk,b

]}
. (5f)

We now aim to reformulate the summation over mk,b in terms of its expected value.∑
mk,a

∑
mk,b

{(
f(Xmk,a)− f(Xmk,b)

)(
mk,a

i −mk,b
i

)
P
[
sk,a = mk,a, sk,b = mk,b

]}
,

=
∑
mk,a

{
f(Xmk,a) ·mk,a

i − f(Xmk,a) · E
[
sk,bi

]
− E

[
f(Xsk,b)

]
·mk,a

i + E
[
f(Xsk,b) · sk,bi

]}
P
[
sk,a = mk,a

]
, (5g)

≈
∑
mk,a

{
f(Xmk,a) ·mk,a

i − f(Xmk,a) · E
[
sk,bi

]
− E

[
f(Xsk,b)

]
·mk,a

i + E
[
f(Xsk,b)

]
· E

[
sk,bi

]}
P
[
sk,a = mk,a

]
, (5h)

=
∑
mk,a

{(
f(Xmk,a)− E

[
f(Xsk,b)

])(
mk,a

i − E
[
sk,bi

])}
P
[
sk,a = mk,a

]
. (5i)

In the transformation, we assumed independence between f(Xsk,b) and sk,bi . Given that mk,a and mk,b follow the same
distribution of sk, we can rewrite Eq. 5i as follows.

GX ,k,i ≈
1

P [ski = 1] · P [ski = 0]

∑
mk

{(
f(Xmk)− E

[
f(Xsk)

])(
mk

i − E
[
ski
])}

P
[
sk = mk

]
, (5j)

=
1

E
[
ski
](
1− E

[
ski
]) ∑

mk

{(
f(Xmk)− E

[
f(Xsk)

])(
mk

i − E
[
ski
])}

P
[
sk = mk

]
. (5k)

Using the definition of covariance, we ultimately rewrite the summation as the expected values over sk.

GX ,k,i ≈
E
[
f(Xsk) · ski

]
− E

[
f(Xsk)

]
· E

[
ski
]

E
[
ski
](
1− E

[
ski
]) . (5l)

ϕi(f,X ) ≈
1

d

d∑
k=1

E
[
f(Xsk) · ski

]
− E

[
f(Xsk)

]
· E

[
ski
]

E
[
ski
]
· (1− E

[
ski
]
)

(6)



Pseudocode
The pseudocode describing our method is shown in Algorithm 1.

Algorithm 1 Pseudocode for computing attribution map Φ

Inputs: The number of samplings N , number of approximation layers L, object detector function F , input point cloud X ,
explanation target detection Dt, detection score function Sim(·), and all-ones mask 1.

Outputs: Attribution map Φ
1: Φ← O
2: for l = 1, . . . , L do
3: Φl ← O
4: sum score← 0, sum mask← O, sum score mask← O
5: for r = 1, . . . , N do
6: slr ← The input point cloud space is divided into voxel units. The voxels are selected randomly

with probability p = l
L+1 , and a point i within the unselected voxels is masked (i.e. slri = 0).

7: f
(
Xslr

)
← maxDj∈F (X

slr
) Sim(Dt,Dj)

8: sum score← sum score + f
(
Xslr

)
9: sum mask← sum mask + slr

10: sum score mask← sum score mask + f
(
Xslr

)
· slr

11: end for
12: f

(
Xsl

)
← sum score/N

13: sl ← sum mask/N
14: f

(
Xsl

)
· sl ← sum score mask/N

15: Φl ← 1
L ·

{
f
(
Xsl

)
· sl − f

(
Xsl

)
· sl

}
⊘
{
sl ⊙

(
1− sl

)}
16: Φ← Φ+ Φl

17: end for
18: return Φ


