ON THE EXPLOITATION OF DCT-TRACES IN THE GENERATIVE-AI DOMAIN SUPPLEMENTARY MATERIAL

Orazio Pontorno, Luca Guarnera, Sebastiano Battiato

Department of Mathematics and Computer Science, University of Catania, Italy

In this supplementary material, all details concerning the experiments conducted are set out. We initially explain the sets calculated using the Explanable AI (XAI) LIME algorithm as described in Section 4.3 of the main paper. In detail we have:

 $\begin{aligned} \text{POS-LIME} &= \{ \beta_i^{AC} \quad \forall i \in \text{idx}_{\text{POS-LIME}} \} \\ \text{ABS-LIME} &= \{ \beta_i^{AC} \quad \forall i \in \text{idx}_{\text{ABS-LIME}} \} \end{aligned}$

where $idx_{POS-LIME}$ and $idx_{ABS-LIME}$ are the sets of coefficient indices belonging to the POS-LIME and ABS-LIME sets respectively. In detail we have:

 $idx_{\text{POS-LIME}} = \{1, 2, 3, 6, 9, 11, 17, 18, 20, 24, 26, 28, 29, 30, 32, 34, 35, 36, 38, 40, 42, 43, 45, 48, 49, 51, 53, 54, 56, 57, 58, 60, 61, 62, 63\}$

 $idx_{ABS-LIME} = \{1, 2, 3, 4, 5, 6, 9, 10, 15, 16, 17, 18, 19, 23, 25, 26, 27, 28, 31, 35, 36, 37, 39, 40, 41, 42, 48, 49, 54, 57, 63\}.$

Table 1 illustrates all the experiments described in Section 5. For each experiment, the table shows the Accuracy and F1-Score percentages achieved in the test phase by three machine learning models (K-NN, Random Forest and Gradient Boosting), trained on RAW image data. Specifically, the 'RAW' column presents metrics for tests conducted on RAW images, while the 'JPEG Compression Test' column shows results for images compressed to various quality factors (QF): 90, 70, 50, 30. Each row of the table explicitly lists the subset of coefficients β^{AC} used to train the models. The row β^{AC}_{ALL} indicates the test with all the coefficients β^{AC} , while the rows $\beta^{AC}_{i:j}$ specify the range of subsets $[\beta^{AC}_i, \beta^{AC}_j]$. Furthermore, $\beta^{AC}_{POS-LIME}$ and $\beta^{AC}_{ABS-LIME}$ represent the subsets generated by the LIME algorithm.

Explerimental results indicates that ensemble classifiers, which use the subsets of coefficients identified by LIME, performed most favourably in RAW images. As illustrated in the Table 1, it is evident that models trained with the subset $\beta_{POS-LIME}^{AC}$, despite containing only half of the coefficients, perform as well or better than those trained with the full set of coefficients. In particular, in RAW images, the latter coefficients, which correspond to higher image frequencies, show greater discriminatory ability. This observation supports our initial hypothesis that the hierarchical arrangement of the β^{AC} coefficients can be exploited by decision tree-based classifiers to effectively distinguish the nature of the image.

However, when examining the outcomes of the robustness tests, particularly with average JPEG compression, it becomes apparent that ensemble methods rooted in decision trees no longer possess the capability to distinguish the essence of digital images, meaning the discriminative trace disappears. Conversely, the K-NN model, despite beginning with a lower precision, shows greater resilience to compression-induced distortions. Additionally, while the initial coefficients exhibit greater discrimination in compressed images, K-NN effectively preserves the majority of the discriminative information found in the ABS-LIME subset, even under severe image compression.

Summarizing, our findings suggest that the detection of intrinsic signatures in generative models is effectively conducted at lower frequencies, employing models based on distance metrics. This method enables the identification of a distinct and discriminative fingerprint that serves to classify the nature of digital images and remains resilient even in the face of intense compression.

	K-NN					RANDOM FOREST					GRADIENT BOOSTING				
Acc/F1 (%)	D 4337	0.500	JPEG Com	pression Test	0520	N 4117	0.000	JPEG Comp	pression Test	0.530		0.000	JPEG Com	pression Test	0.0720
BAC	68 76/66 05	QF90 68 45/65 65	QF70 64 34/61 53	QF50 56.46/53.55	QF30	RAW 79 59/77 81	QF90 41 75/39 58	QF70 33 30/30 23	QF50 29 54/26 81	QF 30 29 44/26 37	RAW 82 57/80 81	QF90 44.68/44.08	QF70 35 10/32 84	QF50 32 22/29 26	QF30 30 58/26 93
PALL _Q AC	43 45/42 13	44.02/42.63	42 62/42 20	12 67/12 26	42 28/42 02	45 07/44 01	46.12/45.07	46 15/45 00	46 1/45 03	15 87/11 82	45 88/44 77	45.71/44.62	46 1/44 02	46 12/44 08	46.06/44.81
β _{1:2} β _{4C}	45.43/42.13	46.69/45.11	45.02/42.29	45.07/42.20	45.38/42.02	50.39/48.74	50.46/48.83	50.54/48.93	50.46/48.89	50.05/48.55	43.88/44.77	50.3/48.6	50.6/48.98	50.28/48.66	40.00/44.81
$\beta_{1:4}^{AC}$	48.56/46.78	48.27/46.52	48.57/46.76	48.95/47.16	47.96/46.25	51.53/50.01	51.38/49.91	51.49/49.99	51.51/50.0	51.21/49.82	50.93/49.34	50.99/49.43	51.07/49.55	50.99/49.55	50.65/49.27
$\beta_{1:5}^{AC}$	49.53/47.87	49.7/48.08	49.65/47.99	49.54/47.89	49.65/47.93	51.6/50.18	51.65/50.33	51.52/50.19	51.46/50.13	51.56/50.32	52.55/50.94	52.57/50.95	52.58/51.05	51.95/50.42	52.07/50.56
$\beta_{1:6}^{AC}$	52.95/51.19	53.04/51.31	52.95/51.24	52.77/51.12	52.48/50.82	55.75/54.32	55.74/54.35	55.52/54.13	55.58/54.24	55.42/54.23	55.61/54.13	55.71/54.28	55.64/54.22	55.33/53.96	55.14/53.94
$\beta_{1:7}^{AC}$	54.64/52.55	54.45/52.42	54.17/52.22	54.22/52.36	53.41/51.59	56.66/55.11	56.82/55.3	56.62/55.1	56.22/54.78	55.82/54.48	56.71/55.12	56.64/55.04	56.78/55.2	56.55/55.07	55.83/54.47
$\beta_{1:8}^{AC}$	54.14/52.13	54.35/52.36	54.13/52.21	54.08/52.17	53.48/51.67	57.46/55.82	57.25/55.64	57.24/55.67	56.98/55.46	56.37/54.98	57.53/55.98	57.37/55.84	57.38/55.85	57.12/55.65	56.14/54.83
$\beta_{1:9}^{AC}$	55.31/53.27	55.21/53.22	55.06/53.03	55.08/53.12	54.99/53.12	58.65/56.9	58.68/56.99	58.39/56.77	58.53/56.98	57.93/56.46	58.63/57.07	58.41/56.86	58.38/56.86	58.0/56.51	57.45/56.09
β _{1:10} _{QAC}	58.7/56.3	58.57/56.22	58.36/56.12	57.01/55.66	57 8/55 55	61.99/60.1	61.82/59.96	61.59/59.74	61.81/59.95	62.54/60.46	62.1/60.19	62.07/60.2	62.02/60.18	61.93/60.02	62 54/59.84
β _{1:11} β _{4C}	58.73/56.5	58.62/56.43	58.11/56.02	58.04/55.88	58.26/56.08	62.85/60.89	62.82/60.91	62.42/60.47	62.58/60.59	62.27/60.21	62.56/60.61	62.47/60.58	62.3/60.4	62.05/60.14	62.62/60.67
$\beta_{1:12}^{AC}$	59.17/56.85	59.03/56.79	58.63/56.5	58.3/56.13	58.01/55.77	62.98/60.85	62.8/60.66	62.65/60.57	62.33/60.18	62.22/60.05	63.15/61.15	62.88/60.9	63.06/61.14	62.8/60.81	62.75/60.76
$\beta_{1:14}^{AC}$	60.07/57.74	59.88/57.59	59.46/57.33	59.21/56.96	59.51/57.17	63.88/61.75	64.01/61.94	63.8/61.73	63.05/60.87	62.23/60.18	64.27/62.24	64.13/62.11	63.97/61.97	63.57/61.51	62.89/60.89
$\beta_{1:15}^{AC}$	61.31/58.88	61.33/58.95	61.12/58.66	61.3/58.69	61.23/58.41	65.17/62.93	65.25/63.16	63.0/61.08	58.56/57.28	51.58/51.51	65.41/63.29	65.22/63.22	63.6/61.61	60.75/59.17	53.5/53.36
$\beta_{1:16}^{AC}$	62.07/59.56	61.51/59.08	61.68/59.21	61.87/59.31	61.6/58.76	65.89/63.67	65.75/63.61	63.71/61.71	60.05/58.5	53.05/52.69	66.47/64.23	66.65/64.52	64.53/62.55	60.9/59.37	52.91/52.89
$\beta_{1:17}^{AC}$	61.74/59.26	61.71/59.29	61.69/59.19	61.64/59.08	61.71/59.02	65.94/63.73	65.92/63.76	63.89/61.94	59.9/58.49	52.22/51.97	66.5/64.34	66.35/64.23	64.34/62.34	60.82/59.32	52.9/52.73
$\beta_{1:18}^{AC}$	62.14/59.63	61.8/59.36	61.68/59.26	61.76/59.23	61.76/58.96	66.24/63.94	66.24/64.03	63.82/61.8	60.13/58.64	52.04/51.72	66.48/64.29	66.44/64.34	64.69/62.7	61.66/60.15	53.62/53.47
β _{1:19} _{βAC}	62.54/60.03	62.41/59.94	62.26/59.76	62.17/59.56	62.56/59.72	66 80/64 75	66 58/64.29	64.35/62.44	60.72/50.29	52.96/52.73	67.51/65.44	67 1/65 00	65.58/63.74	61.05/59.66	53.29/53.17
BAC BAC	63 1/60 54	62 88/60 35	62 65/60 08	62 66/59 9	62 44/59 39	67 9/65 84	67 31/65 32	61 16/59 92	52 12/51 81	40 72/40 94	69 22/67 23	68 17/66 35	59 85/59 07	50 71/50 69	40 21/40 48
$\beta_{1:21}^{AC}$	63.0/60.4	63.11/60.59	63.1/60.57	62.75/59.9	62.63/59.61	68.19/66.13	67.55/65.57	61.54/60.34	51.96/51.73	40.17/40.4	69.14/67.17	68.19/66.3	61.87/60.8	52.44/52.3	40.86/41.28
$\beta_{1:23}^{AC}$	63.19/60.57	63.3/60.78	63.25/60.69	62.91/59.98	62.56/59.52	68.11/66.08	67.58/65.57	61.88/60.62	52.61/52.25	40.52/41.0	69.56/67.61	68.57/66.77	60.82/60.06	52.12/52.14	40.47/41.28
$\beta_{1:24}^{AC}$	63.56/60.92	63.39/60.81	63.44/60.89	63.18/60.24	62.85/59.84	68.56/66.49	67.78/65.83	62.16/60.9	53.05/52.73	40.77/41.34	69.82/67.83	68.79/66.94	60.92/60.18	52.13/52.09	40.51/41.3
$\beta_{1:25}^{AC}$	63.68/61.07	63.57/61.01	63.6/61.03	63.5/60.59	63.01/60.08	69.03/66.99	68.11/66.18	62.47/61.23	53.31/52.98	40.47/41.13	70.27/68.34	69.45/67.65	61.88/61.02	53.02/53.07	40.65/41.76
$\beta_{1:26}^{AC}$	63.84/61.24	63.66/61.14	63.47/60.83	63.43/60.42	62.04/58.96	69.02/67.05	67.48/65.64	58.41/57.56	48.52/48.56	37.23/37.2	70.44/68.5	69.27/67.37	59.89/59.27	49.4/49.76	37.35/37.14
$\beta_{1:27}^{AC}$	64.34/61.7	64.11/61.56	64.0/61.36	63.52/60.4	61.69/58.62	68.98/66.88	67.9/65.86	61.0/59.9	49.97/49.92	37.43/37.52	70.82/68.85	69.34/67.46	60.27/59.67	48.89/49.28	37.41/37.38
$\beta_{1:28}^{AC}$	64.56/61.87	64.61/62.02	63.82/61.22	63.16/60.13	61.43/58.60	71.13/69.11	69.32/67.42	56.34/55.64	43.63/43.44	34.58/33.94	72.33/70.32	70.86/68.83	57.63/57.09	43.71/44.07	35.01/34.58
ρ _{1:29} βAC	64.90/62.30	64.66/62.12	64.08/61.44	63.17/60.14	60 35/57 30	71.78/69.18	69.49/67.54	54.91/54.27	41.19/40.80	32.84/31.85	73.03/70.99	71.84/69.82	56 23/56 00	41.49/41.09	33.02/31.91
P1:30	60.62/67.08	67 70/65 41	48.00/48.22	22 25/21 78	24 78/22 57	74 10/72 12	52 42/52 20	24 25/21 02	28 54/25 10	20 22/22 08	76 71/74 66	52 21/52 47	36 21/33 06	31 10/26 00	20 68/22 54
βAC βAC	70.21/67.55	67.86/65.50	47.13/47.40	31.84/31.30	24.00/22.75	74.44/72.45	50.71/50.58	34.28/31.74	29.52/25.50	29.15/21.32	76.49/74.39	53.89/54.01	36.12/33.79	31.32/27.12	29.69/22.54
$\beta_{18:44}^{AC}$	69.65/66.76	66.51/64.10	45.23/45.55	30.42/29.69	23.74/22.25	73.93/71.85	51.46/51.36	33.98/31.52	29.22/25.49	28.83/21.22	76.06/74.00	54.79/54.84	35.51/33.04	31.41/27.50	29.66/23.16
$\beta_{19:43}^{AC}$	69.17/66.42	66.26/64.05	45.38/45.64	30.68/30.01	23.79/22.35	73.34/71.22	60.56/59.83	35.72/33.81	29.25/26.32	28.73/22.46	75.59/73.27	60.91/60.37	36.76/34.91	30.94/27.67	29.59/23.97
$\beta_{20:42}^{AC}$	69.68/67.07	66.38/64.22	44.59/44.83	30.6/29.89	23.87/22.58	73.17/71.01	60.99/60.15	36.49/34.86	29.06/26.52	28.46/23.69	75.6/73.29	61.66/60.98	36.56/34.61	30.99/27.81	29.44/23.99
$\beta_{21:41}^{AC}$	68.92/66.27	65.6/63.48	44.63/44.79	30.15/29.56	23.71/22.43	72.54/70.4	60.91/60.07	37.37/36.09	28.79/26.43	27.98/22.93	74.45/72.15	59.95/59.26	36.19/34.46	30.98/28.0	28.8/23.31
$\beta_{22:40}^{AC}$	68.51/65.86	65.25/63.1	44.46/44.57	29.83/29.29	23.55/22.32	72.09/70.05	59.68/58.98	36.39/35.02	27.79/25.72	27.29/22.44	73.43/71.23	59.39/58.78	36.16/34.61	30.08/27.6	28.55/23.3
$\beta_{23:39}^{AC}$	68.47/65.78	65.78/63.56	44.68/44.75	30.3/29.94	24.07/22.97	71.91/69.9	57.55/57.0	35.01/33.32	28.13/25.89	27.37/21.71	73.16/70.92	59.12/58.51	35.83/34.27	30.05/27.67	28.68/23.7
ρ _{24:38} βAC	67.01/64.27	64 58/62 38	45.10/45.51	30.72/30.11	24.37/23.07	70.25/68.21	57 54/56 99	36.18/35.03	28.40/20.05	28.01/24.66	71.11/68.08	58 15/57 6	36.03/34.73	29.77127.85	28.0/24.87
β _{25:37} β _{26:36}	66.45/63.85	63.09/60.99	41.49/42.04	31.24/30.76	24.82/23.86	69.16/67.04	56.58/56.11	35.85/34.62	28.05/26.09	28.04/24.98	70.21/67.93	57.12/56.61	36.21/35.13	29.1/26.88	29.06/25.39
$\beta_{27:35}^{AC}$	64.55/61.58	61.26/59.15	40.05/40.27	30.35/29.26	24.49/23.04	67.58/65.35	53.66/53.35	34.05/32.76	28.14/25.96	28.13/24.49	67.99/65.78	53.38/53.13	33.91/32.61	28.46/26.16	28.42/24.38
$\beta_{28:34}^{AC}$	62.12/59.14	59.93/57.45	44.43/43.73	32.31/31.41	26.2/24.95	63.75/61.14	58.06/56.57	39.91/38.97	30.25/28.52	27.35/24.58	63.83/61.23	58.0/56.57	38.34/37.24	29.82/27.87	28.05/24.66
$\beta_{29:33}^{AC}$	60.3/56.83	55.87/53.17	41.25/40.38	31.43/30.3	26.26/24.73	61.04/57.47	55.98/53.59	39.7/38.63	29.66/27.59	26.71/23.38	60.83/57.37	55.37/53.06	37.99/36.78	28.69/26.32	26.6/22.98
$\beta_{30:32}^{AC}$	55.72/51.27	52.6/49.08	41.18/39.15	32.09/30.24	26.71/25.06	59.07/53.7	55.99/51.36	43.46/39.95	33.97/30.66	27.66/24.49	58.16/53.35	55.22/51.07	42.24/39.37	32.93/30.11	27.31/24.65
$\beta_{29:63}^{AC}$	72.91/70.04	54.56/54.41	31.63/30.68	26.55/24.94	23.51/21.94	80.10/78.19	40.34/37.98	34.28/31.19	31.73/28.47	29.89/25.98	81.73/79.79	42.34/41.02	35.01/32.18	32.65/29.33	30.26/26.02
$\beta_{30:63}^{AC}$	73.08/70.15	54.06/53.90	31.36/30.23	26.14/24.44	23.54/21.81	80.01/78.08	40.44/38.08	34.53/31.43	31.86/28.63	29.90/26.05	81.54/79.60	42.21/40.93	35.09/32.28	32.31/28.89	30.38/26.27
β _{31:63} βAC	73.45/70.56	53.70/53.53	30.77/29.52	26.09/24.43	23.63/21.78	70.81/77.85	40.40/38.03	34.23/31.10	32.02/28.79	29.91/26.28	81.48/79.57	42.25/40.90	34.77/31.89	32.53/29.12	30.17/25.96
βac βac	73 37/70 54	54 2/53 88	30.58/29.25	26.32/24.71	23.05/21.95	79.45/77.43	40.87/38.07	33.81/30.63	31 99/28 77	29.55/20.44	80.93/78.91	42.78/41.40	34 59/31 47	32.4/29.0	30.52/26.67
$\beta_{33:63}^{AC}$ $\beta_{34:63}^{AC}$	73.16/70.31	54.07/53.53	30.91/29.74	26.46/24.89	24.7/23.14	79.14/77.13	39.99/37.74	34.34/31.01	32.34/28.91	29.5/26.23	81.18/79.19	42.2/40.73	34.51/31.41	32.49/29.08	29.85/26.39
$\beta_{35:63}^{AC}$	72.79/69.91	53.53/52.94	31.07/29.97	26.98/25.4	25.06/23.46	79.38/77.35	40.02/37.66	34.03/30.8	31.99/28.7	29.23/26.42	81.0/78.99	41.03/39.29	34.97/31.88	32.64/29.27	30.23/26.45
$\beta_{36:63}^{AC}$	73.53/70.66	53.0/52.56	30.34/29.08	27.68/26.25	25.17/23.62	79.2/77.11	40.03/37.75	34.08/30.83	32.42/29.12	28.81/26.17	80.67/78.6	41.49/39.88	34.6/31.52	32.84/29.4	29.81/26.47
$\beta_{37:63}^{AC}$	73.71/70.88	50.45/50.07	30.11/28.85	27.48/25.92	25.57/23.52	79.36/77.31	39.86/37.49	33.97/30.77	32.44/29.06	29.25/26.57	80.9/78.84	40.99/39.17	34.81/31.77	32.89/29.22	30.09/25.9
$\beta_{38:63}^{AC}$	73.78/70.82	49.3/48.7	30.31/29.09	28.0/26.29	26.29/23.93	79.52/77.42	39.84/37.45	34.33/31.08	32.55/29.21	29.3/26.72	80.92/78.83	41.2/39.44	34.86/31.66	33.62/30.09	30.29/26.47
β39:63 _{QAC}	/5.68//0.94	30.54/50.08 46.80/46.50	31.05/29.87	28.4/26.95	26.35/24.35	79.15/77.05	39.35/36.99	33.85/30.71	32.23/28.82	28.8//26.47	80.18/79.12	41.02/39.33	35.04/32.14	35.5//29.7	30.24/26.62
β40:63 β4C	72,92/69 97	45.2/44.8	29,79/28 3	27.13/25.36	25.49/23.62	78.39/76.13	38,5/36.09	33,18/30.75	32.6/29.32	27,47/25.66	79,14/76.04	39,09/37 17	34,25/31.47	32.64/29 52	29.54/26.06
$\beta_{42:63}^{AC}$	72.76/69.74	44.81/44.41	28.89/27.46	27.23/25.4	25.65/23.5	77.85/75.52	37.91/35.44	33.05/30.2	32.01/28.9	27.62/25.64	79.39/77.13	39.9/38.13	34.0/31.49	32.51/29.3	29.4/26.33
$\beta_{43:63}^{AC}$	72.77/69.86	43.27/42.82	28.91/27.52	27.45/25.94	26.47/24.21	78.46/76.16	37.98/35.58	32.92/30.34	31.76/28.97	26.96/25.15	79.38/77.17	38.96/37.06	34.2/31.78	32.76/29.8	28.89/25.73
$\beta_{44:63}^{AC}$	73.25/70.35	43.29/42.79	28.89/27.63	27.02/25.58	25.9/24.21	78.12/75.76	37.66/35.28	33.49/31.04	31.94/29.15	26.09/24.57	79.05/76.81	38.23/36.19	34.0/31.63	32.6/29.5	28.19/25.37
$\beta_{45:63}^{AC}$	73.7/70.78	42.49/41.81	29.48/28.26	27.99/26.13	26.57/24.54	78.0/75.6	37.24/34.87	33.26/30.67	32.22/28.77	26.04/24.61	78.5/76.18	37.17/34.86	33.66/31.15	32.41/29.17	28.18/25.26
$\beta_{46:63}^{AC}$	73.02/70.2	42.89/42.17	29.22/27.96	27.6/25.91	27.38/25.39	77.61/75.27	37.19/34.81	32.42/29.87	31.83/28.52	25.71/24.3	78.33/76.02	37.27/35.01	33.62/31.28	31.86/28.75	28.07/25.28
$\beta_{47:63}^{AC}$	73.3/70.3	40.42/39.65	28.65/27.32	28.76/26.32	27.06/24.6	76.6/74.59	36.66/34.09	32.43/30.1	30.0/26.92	25.14/24.05	78.18/75.83	36.75/34.13	33.28/30.8	31.88/28.56	27.59/25.05
P48:63	73.08/70.1	26 74/25 72	28.23/27.11	28.3/23.92	26.3//24.33	76.62/74.12	25 02/22 04	21 40/29 94	20.70/26.74	24.4/25.50	76 77/74.91	24.09/21.95	32.47/29.84	20.44/26.97	26.79/24.72
β49:63 β£0.co	72.68/69.63	35.73/34.29	27.7/26.27	29.27/26.74	26.53/24.13	76.71/74.19	34.94/32.08	31.77/29.15	29.8/26.45	24.13/22.92	76.31/73.82	34.89/31.78	32.19/29.36	30.6/26.84	26.64/24.31
β ^{AC} β ^{51.62}	73.02/70.1	35.2/33.61	27.79/26.39	29.17/26.52	26.82/24.32	76.5/74.05	34.68/31.7	31.38/28.69	29.71/26.31	24.81/23.25	76.28/73.72	34.76/31.68	31.71/28.82	29.82/26.15	26.75/24.63
$\beta_{52:63}^{AC}$	72.75/69.96	35.76/34.12	27.67/26.47	28.23/25.66	26.42/24.34	75.64/73.12	33.98/30.59	31.1/28.39	29.3/26.01	24.62/23.09	75.7/73.22	34.22/30.89	31.57/28.78	29.65/26.28	26.09/23.96
$\beta_{53:63}^{AC}$	72.02/69.03	34.69/33.02	27.77/26.43	28.59/25.82	26.14/23.61	75.6/73.09	33.99/30.85	30.96/28.34	28.18/24.89	25.55/23.8	75.42/73.01	34.02/30.67	31.21/28.4	29.15/25.86	26.42/24.11
$\beta_{54:63}^{AC}$	72.42/69.56	34.31/32.21	27.85/26.18	27.66/26.22	24.53/23.68	75.33/72.74	33.36/30.36	30.4/27.46	26.9/24.44	24.96/24.19	74.92/72.42	33.3/29.95	30.63/27.56	27.68/25.15	25.53/24.66
$\beta_{55:63}^{AC}$	71.37/68.49	33.8/31.64	27.9/25.9	27.0/25.95	23.03/22.82	73.84/71.33	32.26/28.54	30.25/27.21	25.73/23.97	23.53/23.27	73.62/71.11	32.24/28.72	30.9/27.67	26.68/24.6	24.31/23.84
$\beta_{56:63}^{AC}$	70.52/(7.72	34.16/31.95	28.62/26.4	25.48/23.75	22.75/22.52	/3.85/71.37	32.18/28.5	30.05/26.82	26.34/24.36	23.62/23.21	73.49/70.99	32.38/28.85	30.57/27.2	26.85/24.69	24.32/23.78
P57:63 <u>BAC</u>	70 4/67 30	33.26/31.26	29.07/20.0	25.45/25.74	22.10/21.75	71 44/68 08	32 7/20 15	29 93/26 81	26.08/24.25	22.14/22.26	71 28/68 66	32.82/29.41	30.89/21.35	20.70/24.69	25.51/22.93
β ^{AC} β ^{AC}	69.31/66.55	32.52/30.31	28.33/25.88	26.05/25.28	21.58/21.4	70.19/67.67	31.5/27.94	29.29/26.08	26.16/24.97	22.17/21.79	69.83/67.29	31.43/27.54	29.23/25.8	25.98/24.81	21.24/21.0
$\beta_{60:63}^{AC}$	66.8/63.97	31.89/29.46	27.67/25.05	25.42/24.52	21.89/21.55	67.84/65.31	31.52/28.11	28.97/25.87	25.66/24.54	21.73/21.37	67.95/65.43	31.49/27.14	28.68/25.18	26.17/24.97	22.21/21.92
$\beta_{61:63}^{AC}$	64.77/62.03	31.09/28.31	28.02/26.43	23.78/23.75	22.06/21.9	65.84/63.34	31.24/27.5	27.93/25.95	24.38/24.08	22.03/21.86	65.8/63.39	31.05/27.0	27.83/25.65	24.49/24.21	22.11/21.96
$\beta_{62:63}^{AC}$	61.55/58.75	30.24/27.54	25.31/24.51	23.95/24.3	21.7/21.64	63.42/61.04	30.88/27.34	25.87/24.51	24.49/25.02	21.24/21.12	63.29/60.86	30.69/27.12	26.3/24.62	24.98/25.31	21.77/21.69
$\beta^{AC}_{POS-LIME}$	67.74/64.77	67.23/64.22	61.77/59.00	53.24/50.81	44.86/42.87	80.05/78.16	41.92/39.85	33.42/30.25	30.23/27.49	29.02/26.06	82.21/80.34	44.62/43.84	34.72/32.00	31.48/28.62	30.64/27.03
BAC	68 07/65 25	67 51/64 64	64 81/61 91	59 89/56 94	53 05/50 30	78.08/76.03	43 54/41 97	32 98/30 04	29 79/27 14	29 46/26 33	80 68/78 68	45 33/44 45	34 49/32 12	31 42/29 06	30 58/27 10

Table 1: Experimental results in detail.