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Signal Model

Consider S wideband signals from θ = [θ1, θ2, · · · , θS]T impinging on a
uniform linear array (ULA) ofM identical and isotropic sensors located
at [0, d, · · · , (M − 1)d]T . The array output at the nth subband fn is

Y(fn) = A(fn,θ)C(fn) +W(fn). (1)

where the steering matrix A(fn,θ) and the vector a(fn, θs) at fn are

A(fn,θ) = [a(fn, θ1) a(fn, θ2) · · · a(fn, θS)], (2a)
a(fn, θs) = [1 e−j2πfnτ1(θs) · · · e−j2πfnτM−1(θs)]T , (2b)

where τm(θs) = (md/v) sin θs denotes the time delay of the sth signal.

Literature and Challenges
• Conventional subspacemethods: MUSIC (Schmidt, 1986), ESPRIT
(Roy and Kailath, 1989), ISM (Wax, Shan, and Kailath, 1984), CSM
(Wang and Kaveh, 1985), WAVES (Claudio and Parisi, 2001), and TOPS
(Yoon, Kaplan, and McClellan, 2006);

• Covariance-basedmethods: quasi-stationary (Ma, Hsieh, and Chi,
2010) and sparse array (Shen et al., 2015);

• Recent advancedmethods: atomic normminimization (ANM) (Wang
et al., 2021; Wu, Wakin, and Gerstoft, 2023).

Challenges
1. Gridless and covariance-freewideband DOA estimation problem;
2. Jointly processmultiple frequencies for wideband signals;
3. Nonlinearity of steeringmatrices frommultiple frequencies.

Joint Multi-Band Representation
To address this issue, we use the greatest common divisor (GCD) of
involved frequencies to construct a unified frequency grid (UFD) fgd.

Fig. 1. A diagram of the unified frequency grid.

• Definition: The UFD is defined as a set of linear and uniformly spaced
frequencies fgd, fn ⊂ fgd and fn = pnδf , where fn, δf ∈ Q+, pn ∈ Z+.

Let M̃ = 2pN(M − 1), the upsampled array output at fn is

ul,n =

S∑
s=1

ã(fn, θs)cls(fn), (3a)

ã(fn, θs) = [1 e−j2πδfτ1(θs) · · · e−j2πδfτM̃−1(θs)]T , (3b)

where ã(fn, θs) is an upsampling of a(fn, θs).

Low-Rank Hankel Matrix Recovery
• The UFD allows for formulating the joint multi-band DOA estimation
problem as a low-rank Hankel matrix recovery problem.

Given ul,n, the truncated Hankel matrix is

Hu,l,n
Ir,Ir

=

S∑
s=1

ãIr(fn, θs)ãIr(fn, θs)Tcls(fn), (4)

where Ir denotes the truncated index sets. Hu,l,n
Ir,Ir

contains Hankel
submatrices Hu,l,n

n at all subbands, with the minimum size.

Let X ∈ CM̂×LN , X:,(n−1)L+l := ul,n
I . A(X) ∈ CM×L×N approximates the

array output. H(X) ∈ CM̄×M̄LN forms the truncated Hankel matrices.
The nonconvex optimization problem of low-rank matrix recovery is

min
X

1

2
|| Y−A(X) ||2F +

β

2
|| X ||2F +δ

(
rank

(
H(X)

)
≤ S

)
, (5)

where β is the regularization parameter, δ
(
rank(·) ≤ S

)
denotes an

indicator function, which makes the above problem nonconvex.

• To tackle the nonconvex optimization problem directly, an iterative
algorithm is developed using proximal gradient descent (PGD).

Numerical Results
• Experimental set-up: a ULA of M = 5, S = 6, N = 3, L = 3.

Fig. 2. Simulation results of a comparative study.

Conclusions
1. Recovermore source angles than the number of sensors in a ULA;
2. Gridless and covariance-free DOA estimation with a few snapshots;
3. Average RMSE performance is better than that of the ISM and NNM.
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