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ABSTRACT

Prompt learning was proposed to solve the problem of in-
consistency between the upstream and downstream tasks and
has achieved State-Of-The-Art (SOTA) results in various Nat-
ural Language Processing (NLP) tasks. However, Relation
Extraction (RE) is more complex than other text classifica-
tion tasks, which makes it more difficult to design a suitable
prompt template for each dataset manually. To solve this
issue, we propose a Adaptive Prompt Construction method
(APC) for relation extraction. Our method entails obtain-
ing context-aware prompt tokens by extracting and generating
trigger words associated with the entities. Furthermore, to al-
leviate the issue of instability in the prompt-tuning framework
during training, we introduce a novel joint contrastive loss to
optimize our model. Our method not only effectively reduces
the human effort used for prompt template construction, but
also achieves better performance in RE. We conduct the ex-
periment on four public RE datasets, which demonstrate the
proposed method outperforms the existing SOTA results in
both datasets and experimental settings.

Index Terms— Relation Extraction, Pretrained Language
Model, Prompt Learning, Contrastive Learning

1. INTRODUCTION

Relation extraction (RE) is a significant task that supports var-
ious NLP tasks. With the advancements made in Pretrained
Language Models (PLMs), the majority of relation extrac-
tion methods are currently based on the fine-tuning paradigm
[1, 2]. However, within the fine-tuning paradigm, the gap be-
tween downstream task objectives and pre-training task ob-
jectives severely constrains the performance of the tasks.

Recently, prompt-tuning was proposed to address these
issues [3, 4]. The core idea of prompt-tuning is to reformu-
late the task to a cloze-style task and use PLMs as a predictor,
which can bridge the gap between the pre-training and fine-
tuning in the training objective. Studies on prompt-based RE
methods have gained significant attention and demonstrated
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Fig. 1: The core idea of APC.

superiority over traditional fine-tuning methods [5, 3], such
as PTR[5], which introduced sub-prompt to construct prompt
templates and designed logic rules for extracting relations.
However, the manual prompt templates used for prompt-
based RE require manual design, and finding the optimal
one is difficult. Therefore, some studies have proposed auto-
matic constructed prompt templates, such as AutoPrompt[6].
But Autoprompt requires a lot of computation to retrieve
the useful prompt tokens, which makes it hard to general-
ize. Consequently, a more efficient approach to automated
prompt generation becomes imperative. Above all, despite
the promising results obtained from the use of prompt-based
RE methods, there are still some challenges that need to be
addressed. Firstly, the designing of an appropriate prompt
template for each dataset in different domains is a time-
consuming task and we need a more automated approach
for it. Secondly, the context related to the entity pair and
relation label of the sentence should not be overlooked when
constructing prompts as they play an important role in RE.
For example, as shown in Fig 1, the terms ”president” and
”city” has indicate the entities’ type and limit the scope of the
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relation when we extract the relation between Barack Obama
and Honolulu, Hawaii in the sentence ”The president Barack
Obama was born in the beautiful city Honolulu, Hawaii.”.
Pre-trained language models (PLMs) serve as classifiers in
prompt-tuning, and researching how to make them aware
of entities and contextual information is crucial for utilizing
prompt-tuning for RE.

In this paper, we propose a novel approach, the Adaptive
Prompt Construction method (APC), for generating context-
aware prompt tokens for RE. Our model uses contextual in-
formation to generate prompts for each instance, which effec-
tively reduces the requirement for human effort. The contri-
butions of the approach proposed in this paper can be summa-
rized as follows:

• We propose to use the prompt-tuning for relation ex-
traction, aims at bridging the gap between pre-trained
language models and downstream classifiers.

• We design a context-aware prompt generator that can
generate the effective prompt tokens based on the con-
text, thereby enhancing the performance of relation ex-
traction and alleviating the requirement for manual ef-
fort.

• We design an in-domain pre-training strategy and a
joint contrastive loss function to enhance the model’s
domain adaptability and robustness.

Experimental results on four public RE datasets has demon-
strated APC outperforms the existing SOTA result in both su-
pervised and few-shot settings.

2. PROPOSED METHOD

The overall framework of our proposed model is depicted in
Fig. 2.
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Fig. 2: The model architecture of APC. CE denotes the Cross-
Entropy Loss and CT Loss denotes the Contractive Loss de-
signed for APC.

2.1. Context-aware Prompt Generator

The context-aware prompt generator we proposed consists of
two components: a context-aware pre-extractor and a prompt
generator. Relying upon the text generation prowess of PLMs,
prompt-based relation extraction is fraught with instability.
Consequently, we design a context-aware pre-extractor to
avoid significant deviations in the model’s prediction.

The design of the pre-extractor is primarily inspired by
Attention Over Attention method [7], as illustrated in the
blue region of Fig.2. We employ scale-dot attention to
derive the attention matrix M between the text sequence
X = {w1, w2, . . . , wn−1, wn} and the set of relation labels
Y = {y1, y2, . . . , ym−1, ym} as shown in Equation 1.

M(i, j) = wi
T · yj , wi ∈ X , yj ∈ Y (1)

Then, utilizing column-wise softmax and row-wise softmax
operations on M , we can obtain the context-to-label relevance
matrix Mc2l ∈ R|x|×|Y| and the label-to-context relevance
matrix Ml2c ∈ R|x|×|Y|. By performing column-wise aver-
aging on Ml2c and then matrix multiplication of the resulet
with Mc2l, the result is subsequently normalized to obtain the
pre-extracted probability distribution α ∈ R|X |.

In order to efficiently attain valuable prompt templates,
we propose a pre-trained prompt generator employing an
encoder-decoder architecture. The application of the encoder-
decoder framework is pervasive in text summarization tasks[8]
due to its dual capacity for text extraction and generation.
Thus, we can extract or generate the valuable contextual
words from the input via prompt generator. And we term
these words as ”triggers”. These triggers are subsequently
embedded into the prompt tokens. We employ a single-layer
bidirectional GRU as the encoder. The given textual em-
beddings, denoted as X = {w1, w2, . . . , wn−1, wn}, are
sequentially input into the encoder one by one, yielding the
encoder’s output H = GRUenc(X ). Subsequently, we utilize
the embedding of the head entity Tsub and tail entity Tobj

with Equation 2 and 3 as the start token, and input them into
the decoder with H = {h1, h2, · · · , hi, · · · , hn}, where s
and o denote the starting indices of the entities, and i and j
denote the lengths of the entities.

Tsub =

s+i∑
p=s

φ(wp) · Emb(wp) (2)

Tobj =

o+j∑
q=o

φ(wq) · Emb(wq) (3)

We employ a single-layer unidirectional GRU as the de-
coder. At each step t of the decoding stage, the decoder com-
putes the current time step’s attention distribution at based on
the decoder state st and the encoder’s output H .

eti = vT tanh (Whhi +Wsst + battn) (4)

at = softmax
(
et
)

(5)
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where v, Wh, Ws and battn are learnable parameters. The
attention distribution is then utilized to compute a weighted
sum of the encoder hidden states, known as the context vector
ct =

∑
i a

t
ihi. Subsequently, the decoder’s output at the t th

time step can be computed by the following equation:

Pvocab(G
t
∗) = softmax (V ′ (V [st, ct] + b) + b′) (6)

where V , V ′ , b and b′ are learnable parameters. Pvocab(G
t
∗)

denotes the probability distribution over the vocabulary, and
the word Gt

∗ predicted at step t has the highest probability
value within the distribution, where ∗ ∈ {sub, obj} corre-
sponds to different starting tokens (Tsub or Tobj).

Furthermore, we introduce the pointer mechanism[9]
to promise the valuable contextual information such as
the words ”president” and ”city” in Fig 1 will not be dis-
carded during generation stage. The generation probability
pgen ∈ [0, 1] can be obtained by:

pgen = σ
(
wT

c ct + wT
s st + wT

x xt + bpt
)

(7)

P ′
vocab(G

′t
∗ ) = pgen Pvocab(G

t
∗) + (1− pgen )

∑
i:wi=Gt

∗

at

(8)

where σ is the sigmoid function. Note that if Gt
∗ is a special

token (such as ”[UNK]”,”[PAD]”, etc.), then the Pvocab(G
t
∗)

will be set as zero. If Gt
∗ does not appear in the input, then∑

i:wi=w′ at will be set as zero. And G
′t
∗ are the generated

trigger words.
After obtaining all the triggers, we embed them into

prompt tokens PT∗ =
∑u

i=1 φ(G
i
∗) · Emb(Gi

∗). And the
prompt tokens will be concatenated with the input and fed
into the PLMs for RE.

2.2. In-domain Adaptive Pre-trainning

The existing work [10] has demonstrated that the performance
of prompt-tuning decreases when the pre-trained corpus and
the training datasets belong to different domains. In this pa-
per, we propose an in-domain adaptive pre-training strategy to
inject the domain-relevance knowledge to the PLMs. We ex-
tract a maximum of 100 sample data instances from the train-
ing data. Subsequently, we retrieve relevant corpus content
from a large-scale corpus (SST2 , DBPedia , AGNews ) re-
lated to the current dataset and employ this corpus to perform
incremental training on the PLMs. Inspired by the search-
based pre-training methods [11], we chose BM25 score [12]
as the metric for measuring text relevance. Additionally, we
employ Pyluence1 for retrieving and utilize N-gram masking
strategy [13, 14] for incremental training.

2.3. Joint Contrastive Loss

To enhance model convergence, we design a Joint Contrastive
Loss to optimize our model. We employ the hidden layer vec-

1https://lucene.apache.org/pylucene/

tor of the [CLS] token from the last layer of the PLMs to de-
termine the ultimate distribution of relation predictions yplm.
This distribution is then combined with the pre-extracted dis-
tribution α to obtain the final predictions, denoted as ŷ =
softmax(α+yplm). Subsequently, we can compute the cross-
entropy loss LCE for RE:

LCE = Cross-Entropy(yi, ŷ) (9)

Furthermore, to ensure the consistency of the model’s pre-
diction, we think that the prediction vectors of the [MASK]
token ypre should also be closer to the correct relation labels
embeddings y+ and farther away from incorrect relation la-
bels embeddings y−. Thus, we can compute the contrastive
loss LCT .

LCT =
1

N
ln

exp(s(ypre, y
+)/τ)

exp(s(ypre, y+)/τ) +
∑

exp(s(ypre, y−)/τ)
(10)

Finally, we use the Kullback-Leibler (KL) divergence to com-
pute a weighted sum of the loss functions, resulting in the
ultimate Joint Contrastive Loss function:

L = LCE + (1 + KL(α, yplm)) · LCT (11)

3. EXPERIMENTS

3.1. Datasets and Evaluation Metric

We conduct experiments on the following four public RE
datasets to verify the effectiveness of our model: SemEval
2010 Task 8 (SemEval) [15], TACRED [16], TACRED-
Revisit [17], Re-TACRED[18] and adopted the F1 score as
the evaluation metric.

3.2. Comparison With State-of-the-Art Methods

3.2.1. Supervised setting

As we can see in Table 1, our APC model exhibits a promis-
ing improvement in supervised setting. SpanBERT[19],
KnowBERT[20], LUKE[21], MTB[22] and GDPNet[23] are
the methods both based on the fine-tuning paradigm. Despite
they have well-designed downstream classifiers and knowl-
edge injection, their performance lags behind the methods
based on the prompt-tuning paradigm such as PTR[5] due
to the existing gap between the objectives of the upstream
and downstream tasks. Downstream relation classifier can
not benefit significantly from pre-training, and fine-tuning
relies on the scale and quality of annotated data, which
severely limits methods based on the fine-tuning paradigm.
KnowPrompt[4] is a strong competitor, but compare to it,
we directly use contextual information as prior knowledge
instead of just considering prior probabilities of entities. This
prevents the establishment of shortcuts between relation cat-
egories and entities, thereby enabling us to achieve better
performance.
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Table 1: The F1 scores(%) of RE on different datasets in su-
pervised setting. The best results are bold.

Model Extra Data SemEval TACRED TACREV ReTACRED
Fine-tuning-[Roberta] w/o 87.6 68.7 76.0 84.9

R-BERT[24] w/o 89.3 69.4 - -
SpanBERT[19] w/ - 70.8 78.0 85.3
KnowBERT[20] w/ 89.1 71.5 79.3 89.1

LUKE[21] w/ - 72.7 80.6 -
MTB[22] w/ 89.5 70.1 - -

GDPNet[23] w/o - 71.5 79.3 -
RE-DPM[25] w/o 89.9 71.5 79.3 -

SPOT[26] w/o 89.4 - - 89.4
RELA[27] w/o 89.6 71.2 79.7 -

PTR-[Roberta][5] w/o 89.9 72.4 81.4 90.9
KnowPrompt[4] w/o 90.1 72.4 81.7 91.1

APC(ours) w/ 90.3 72.7 82.7 91.4

3.2.2. Few-shot setting

According to the result shown in Table 2, APC retains
its advantages in few-shot setting. Moreover, in few-shot
setting, methods like AdaPrompt[10] and PTR[5], based
on the prompt-tuning paradigm, exhibits more notable im-
provements than those based on the fine-tuning paradigms.
Specifically, our approach has led to an average increase of
16.6%, 13.2%, 11.1%, and 15.3% in F1 scores across the four
datasets compared to vanilla fine-tuning methods, which indi-
cates that our method exhibits a more pronounced advantage
in few-shot settings.

Table 2: The F1 scores(%) of RE on different datasets in few-
shot setting. The best results are bold.

Dataset Method K=8 K=16 K=32 Mean

Semeval

Fine-tuning 41.3 65.2 80.1 62.2
GDPNet[23] 42 67.5 81.2 63.6

AdaPrompt[10] - - - -
PTR[5] 70.5 81.3 84.2 78.4

APC(ours) 70.2 80.9 85.3 78.8

TACRED

Fine-tuning 12.2 21.5 28 20.6
GDPNet[23] 11.8 22.5 28.8 21.1

AdaPrompt[10] - - - -
PTR[5] 28.1 30.7 32.1 30.3

APC(ours) 31.9 34.5 35.0 33.8

TACREV

Fine-tuning 13.5 22.3 28.2 21.4
GDPNet[23] 12.3 23.8 29.1 21.8

AdaPrompt[10] 25.2 27.3 30.8 27.8
PTR[5] 28.7 31.4 32.4 30.8

APC(ours) 30.7 34.1 35.7 33.5

Re-TACRED

Fine-tuning 28.5 49.5 56 44.7
GDPNet[23] 29.0 50.0 56.5 45.2

AdaPrompt[10] - - - -
PTR[5] 51.5 56.2 62.1 56.6

APC(ours) 53.9 60.6 65.5 60.0

3.3. Ablation Study

To evaluate our proposed modules, we carry out ablation
study and report the experimental results on SemEval and
TACREV in Table 3, which demonstrates the effective of
the proposed modules. The first row of Table 3 showes the
performance of the baseline methods, which only uses the

[MASK] token as the prompt template for RE. As shown
in Table 3, APC is 1.6% and 1.2% higher than the baseline
and the context-aware prompt tokens bring the most signif-
icant improvement. It is worth noting that domain-specific
pre-training did not lead to a significant improvement on the
SemEval dataset. The main reasons for this are (1) the chal-
lenging nature of relation type classification in the SemEval
dataset, such as ”Cause-Effect(e1, e2),” and (2) the lack of
text containing relevant domain knowledge in the general
corpora. However, it still had a certain positive impact on the
model’s performance.

Table 3: The F1 scores(%) of the ablation study in super-
vised setting. Legend : CPG: Context-aware Prompt Gene-
tor; IAP: In-domain Adaptive Pretraining; JCL: Joint Con-
trastive Loss.

Module Datasets
CPG IAP JCL SemEval TACREV

88.7 81.5√
89.7 (+1.0) 82.3 (+0.8)√
88.7 (+0.0) 81.7(+0.2)√
89.1 (+0.4) 81.9(+0.4)√ √
89.9 (+1.2) 82.5 (+1.0)√ √
90.1 (+1.4) 82.5(+1.0)√ √
89.5 (+0.8) 82.1 (+0.6)√ √ √
90.3 (+1.6) 82.7 (+1.2)

4. CONCLUSIONS

To overcome the limitations of traditional RE methods based
on fine-tuning paradigm, we propose a novel prompt-tuning
based RE method (APC). Our proposed APC has a prompt
generator which generates more effective prompt tokens from
entity and context information. These context-aware prompt
tokens can better provide the priori knowledge for pre-trained
language models, improving the relation extraction capability.
Furthermore, we propose the in-domain pre-training strategy
and joint comparison loss functions that can further improve
the performance of APC. According to the experimental re-
sults on four public datasets, our method has more advantages
in both supervised and few-shot setting. In future work, we
will introduce the external knowledge to give PLMs stronger
knowledge prior to further improve the model inference.
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