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ABSTRACT

Defocus deblurring is a classic problem in image restoration
tasks. The formation of its defocus blur is related to depth.
Recently, the use of dual-pixel sensor designed according
to depth-disparity characteristics has brought great improve-
ments to the defocus deblurring task. However, the difficulty
of real-time acquisition of dual-pixel images brings difficul-
ties to algorithm deployment. This inspires us to remove
defocus blur by single image with depth information. We
propose a single-image depth-enhanced defocus deblurring
network, which uses a depth map estimated by the monoc-
ular depth estimation network to guide the network defocus
deblurring. We design a deep information fusion unit, which
greatly improves the effect of deblurring. Experiments show
that on the single image defocus deblurring task, the experi-
mental results demonstrate the superiority of our method.

Index Terms— defocus deblurring, depth, deep informa-
tion fusion

1. INTRODUCTION

Scene points that are outside the depth of field of the lens
are out of focus when shooting with the camera [1]. This
phenomenon is called defocus blur. The creation and removal
of defocus blur has huge application scenarios, especially in
the field of photography. Think about the magic of bokeh and
sharpening people. The current method for defocus blurring
is starting from a single blurred image to remove defocus blur
[2, 3]. But it is still a challenge to remove large-scale blur.
Recent work [1] proposes a method to remove defocus
blur using the left and right views of a dual-pixel (DP) sensor
as input. This approach comes from the way sensors work,
similar to stereo views [4] that provide disparity cues. DP
sensor can capture defocus disparity with left and right views.
Using this reliable disparity information, the amount of spa-
tial blur can be estimated, reducing defocus blur. However,
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Fig. 1. Qualitative comparison of the generalization experi-
ments on the RealDOF test set.

PSNRT SSIMT | Params(M)] MACs(G)|
DefocusGAN [7] | 24.08  0.723 | 4.59 2812
Ours (1-branch) | 2435  0.729 | 2.65 163.9

Table 1. Quantitative comparison of the generalization exper-
iments on the RealDOF test set.

DP sensors are not widely deployed, and the inability to ob-
tain real-time data limits its application. Some recent works
have turned to use single-image to defocus deblurring. [5]
proposed IFAN, [3] proposed KPAC, [6] and [7] utilized DP
views to assist single-image defocus deblurring. We found
that the above methods are still not ideal for the recovery of
image details.

That being the case, is it more efficient to use depth in-
formation directly to remove defocus blur? We know that the
disparity information provided by the DP sensor is related to
depth. Depth can assist in the elimination of defocus blur. At
present, the combination of massive data and deep learning
provides powerful prior information for monocular depth es-
timation [8]. Depth estimation is a channel for understanding
3D information from 2D images [9]. Methods for monoc-
ular depth estimation with self-supervised learning, such as
Monodepth [10] and MonodepthV2 [11], have good scalabil-
ity and generalization. So we use the depth map estimated by
monocular assisted defocus deblurring is feasible in the idea.

Based on these findings, we propose a single-image
depth-enhanced defocus deblurring network to alleviate the
defocus blur problem. Especially, we propose an efficient
fusion module to fuse depth and blur information for effec-
tive single-image defocusing deblurring, which is mainly
composed of gated recurrent unit (GRU) [12]. Partitioning
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Fig. 2. Ilustration of the proposed depth-enhanced single-image defocusing deblurring network. The network consists of three
parts, blur feature extraction module, deep feature encoding module, and GRU fusion decoding module. The proposed network

can make good use of depth information for defocus deblurring.

deblurring according to depth information can guide the net-
work to deal with the amount of blurring in different regions.
In Table 1, we compare the generalization performance of the
proposed network with state-of-the-art network DefocusGAN
[7] on the RealDOF test set [5]. The proposed method has
good generalization performance. As shown in Figure 1, the
proposed method performs well on walls with varying depths
and can restore the texture of tiles.
Our main contributions are summarized as:

* We propose a single-image depth-enhanced defocus de-
blurring network that effectively exploits depth infor-
mation for defocus deblurring compared to previous
methods.

* Experimental results show that the proposed method is
effective with a small number of parameters and per-
forms well in the single-image defocus deblurring task.

2. PROPOSED METHOD

We propose a single-image depth-enhanced defocus deblur-
ring network. The network is divided into three parts, (a) blur
feature encoding module, (b) deep feature encoding module,
(c) GRU fusion decoding module. Figure 2 shows the illus-
tration of the depth-enhanced defocus deblurring network.

2.1. Overall Pipeline

Given an image Iz € RH*WX3, first, use the convolu-
tional layer to extract the shallow feature Fy € RT*WxC1,
Then through 4 groups of residual channel attention blocks
(RCAB), gradually downsample to 1—16 of the original reso-
lution. Complete the feature extraction and encoding work,
during which the number of channels remains the same. Then
use the monocular depth estimation network (MonodepthV2
[11] is used here) to estimate the depth map. Downsample
the depth map to % the original resolution step by step, and

2641

get 4 sets of depth feature vectors with channel C5 through
the same depth encoder. Finally, use GRU and RCAB to
fuse and upsample the depth and blur feature vectors step
by step, use the residual to connect the previous blur feature
vectors of the same resolution, and finally use the decoder
to restore the feature vectors to defocus deblurred images
Ipp € RIXWX3 Tnthe experiment, we set C; and Cs to 64
and 16 respectively.

2.2. Blur feature encoding module

We input the blurred image I € RH*W>3 into the net-
work, encode the image using a convolutional layer, and ob-
tain shallow features Fy € RH*W>64 To obtain richer repre-
sentations, we use residual channel attention blocks (RCAB)
instead of convolutional layers to process shallow features.
RCARB first uses average pooling to obtain the channel infor-
mation of the feature and then multiplies the feature after con-
volution to realize the channel attention operation. Residual
addition is then performed to implement the residual channel
attention operation. Here we use 3 RCABs cascades to extract
rich feature information. Then downsample it to % the origi-
nal resolution. Repeat this operation to obtain feature blocks

. 1 1 1 . .
with 7, 5, and 7 resolutions in sequence.

2.3. Deep feature encoding module

Our innovation is to use depth information to guide defocus
deblurring. First, we need to get the depth map. Here we
use MonodepthV2 for depth map generation. Since Mon-
odepthV2 is trained in an unsupervised method, it is better
in generalization.

After obtaining the depth map, we upsample the depth
map to the full resolution of the blurred image. Then down-
sample to %, i, é of the resolution in turn, and align with the
resolution of the features extracted from the blurred image.
We use the deep feature extraction module to extract the fea-
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Method Indoor Outdoor Indoor & Outdoor
PSNRT SSIMT LPIPS| | PSNRT SSIMtT LPIPS| | PSNRT SSIMT MAE| LPIPS| | Params(M)

JNB [13] 25.52 0.784 0.188 21.16 0.632 0.274 23.28 0.706 0.049  0.232 -
EBDB [2] 25.83 0.790 0.326 21.21 0.631 0.407 23.47 0.708 0.049  0.368 -
DMENet [14] 25.70 0.789 0.315 21.51 0.655 0.402 23.55 0.720 0.049  0.360 26.94
DPDNet(single) [1] | 26.52 0.828 0.179 22.08 0.689 0.229 24.25 0.757 0.044  0.204 35.25
IFAN [5] 27.80 0.856 0.131 22.70 0.719 0.179 25.18 0.786 0.041 0.156 10.48
KPAC [3] 28.02 0.852 0.129 22.64 0.702 0.190 25.26 0.774 0.041 0.161 2.06
MDPNet [6] 28.02 0.840 0.186 22.82 0.689 0.261 25.35 0.763 0.040  0.225 46.86
DefocusGAN [7] 28.31 0.857 0.086 22.94 0.718 0.135 25.56 0.786 0.039  0.111 4.59
Ours (2-branch) 28.29 0.861 0.084 23.07 0.721 0.134 25.61 0.789 0.038  0.109 4.11

Table 2. Quantitative comparisons with single-image defocus deblurring methods. The best results are indicated in boldface.
Results are on the DPDD dataset. (test set consists of 37 indoor and 39 outdoor scenes.)

Blurry image

MDPNet

Fig. 3. Qualitative comparison with single-image defocus deblurring methods on the DPDD dataset. We show the deblurring

results of different methods.

ture information of the depth map. The depth extraction mod-
ule includes a convolutional layer and 3 RCABs for extracting
depth information. The input here is Ipepr, € B3, out-
putas Fpepen, € RVXWX16,

2.4. GRU fusion decoding module

After obtaining blur features and depth features, since defo-
cus blur is spatially variable and related to depth, we need to
consider how to effectively fuse depth information to achieve
good defocus deblurring. Due to the unique gating mecha-
nism, GRU [12] has better feature fusion characteristics with
few parameters. Therefore, through the update and forgetting
mechanism of GRU, we can achieve the matching of depth
information and blur information, and flexibly deal with blur
information in different regions. The use of GRU in stereo
matching demonstrates its superiority [15]. We feed the depth
information as the hidden state h. Let the blur feature be the
input z of the GRU node, Then get the gating signal z, Then
we splice h and x, update the hidden state through the tanh
activation function, and get new state h’. Finally, we use the
gating signal update to get the output y.

To better deal with large-scale blurring, we use GRU deep
fusion module to perform deblurring decoding operations on
blurred features at different resolutions. We first perform
residual cascade operation on the low-resolution blur features

and then input 3 RCABs for processing, perform upsampling
operations, and then use GRU for deep fusion. Do this for
features at ¢, %, 3 and full resolution. Finally, a shallow con-
volutional decoder is used to output the features as defocus
deblurred images Ipp € RH*W 3,

2.5. Overall Loss Function

Here, we introduce the loss function used for training. Sim-
ilar to previous work [1], we use L1-loss as the content loss
L. Because L1-loss can recover high-frequency information
more effectively. Compared to previous methods for defocus
deblurring, we use a perceptual loss [16] L, to update the
model.

We use the losses above weighted to get Lg to train the
model, where « is a hyperparameter to balance different types
of loss.

Le=Letax, (1)

3. EXPERIMENTAL RESULTS

3.1. Datasets

Like most methods [5, 3, 6], We use the dataset DPDD pro-
vided by [1] for training and testing. There are 500 sets of
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images in this dataset, and each set of images includes a defo-
cused blurred image, a pair of DP views, and an all-in-focus
(AiF) image, we follow its settings and divide 500 groups of
pictures into 350, 74, and 76 groups according to the training
set, validation set, and test set.

During the training phase, the hyperparameter « is set to
0.012, and the initial learning rate is set to 2 X 10~—*, which
decreases by half every 30 epochs. and it gradually converges
after 45 epochs. The batch size of both networks is set to 4
and optimized using the Adam optimizer, where b1 = 0.9,
b2 = 0.999. We implemented the method using Pytorch and
trained on an NVIDIA RTX 3090 GPU.

We also use the RealDOF test set [5] to verify the gen-
eralization of the network. The RealDOF test set contains
50 pairs of images, each pair consists of a defocused image
and its corresponding all-in-focus image. We use the model
trained on DPDD dataset to directly test on RealDOF test set.

3.2. Performance evaluation

Like many works, to evaluate the performance of defocus de-
blurring, we use the test set provided by [1] for testing. We
compare the results with recent single-image defocus deblur-
ring works. JNB [13], EBDB [2], and DMENet [14] are meth-
ods based on defocus maps. After they estimate the defocus
map, they use non-blind deconvolution to defocus deblurring.
DPDNet (single) [1], IFAN [5], MDPNet [6] and Defocus-
GAN [7] are direct estimation methods that can directly re-
store AiF images.

For the above methods, we use the code and weights pro-
vided by the authors for testing. (IFAN uses data augmen-
tation, we remove this method and retrain according to the
code and training method provided by the authors.) For JNB,
EBDB, and DMENet, following the advice of [1], we use the
deconvolution method [17, 18] to recover the AiF image us-
ing the estimated defocus map. We also evaluate the number
of network parameters in the inference stage to characterize
the size of the model.

We use the commonly used metrics PSNR, SSIM, MAE,
and LPIPS for defocus deblurring to evaluate the quality of
the images. Table 2 shows the quantitative results of our
method and other methods. Our method shows higher quality,
outperforms all current methods with few model parameters,
and restores image details to a great extent, improving the re-
alism of images. Figure 3 shows a qualitative comparison.
Traditional methods based on defocus maps and deconvolu-
tion have large blur areas. The effect of MDPNet and IFAN
is greatly improved compared with the previous results, but
often produces unnatural textures such as artifacts. For exam-
ple, the texture of red walls and bronze figures. In particular,
compared with these method, our method can better handle
the texture of the image and recover the contours of objects.
We can see that our method can better recover large-area blur,
image details.

Method
Base RCAB GRU fusion

Metrics
SSIMT

2-branch  3-branch | PSNRT MAE|

v 24.77 0.766  0.042
v v 25.26 0.775  0.041
v v v 25.52 0.784  0.039
v v v v 25.61 0.789  0.038
v v v v 25.65 0.785  0.039

Table 3. Quantitative results of the ablation experiments on
the DPDD dataset.

Fusion Method PSNRT SSIMT MAE| LPIPS|
Input fusion 25.41 0.780  0.040 0.116
Convolution fusion | 25.23 0.782 0.040 0.114
GRU fusion 25.52 0.784 0.039 0.113

Table 4. Quantitative comparison of different deep fusion
methods. Results are on the DPDD dataset.

3.3. Ablation study

Effects of each module. To demonstrate the effectiveness
of each part of the module, we conduct ablation experiments
in which all models are trained under the same conditions.
Specifically, we use UNet [19] as a baseline model. Based on
this, we gradually add RCAB and GRU components. We also
gradually increase the parallel UNet-like branches and deeply
integrate with GRU to better extract image information.

As can be seen in Table 3, RCAB can significantly im-
prove the performance of deblurring due to the efficient fu-
sion of channel information. But without the hint of depth
information, its effect on large-scale blur is still not good. In
the case of using GRU to fuse depth information, it performs
better for the processing of letters with a greater degree of
ambiguity. To further enhance the model’s ability to deblur,
we add a similar parallel branch structure, which brings better
results.

The influence of different fusion methods. We want to
know whether GRU has implemented an efficient integration
method, so we compare three fusion methods, as shown in
Table 4. One way is to feed the blurred image and the depth
map together into the network for processing. One way is to
use convolutional layers to deal with blurry image features
and deep image features. One way is the GRU deep fusion
method we proposed. The GRU fusion module performed
the best. According to the mechanism of GRU, we think that
the special updating and forgetting mechanism of GRU can
effectively deblur with depth information.

4. CONCLUSION

We propose a single-image depth-enhanced defocus deblur-
ring network. The proposed network can effectively handle
large-area blur and effectively reconstruct image details and
textures. In experiments, we verify the effect of each com-
ponent in the model, achieving great performance with fewer
parameters.
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