HEAR-YOUR-ACTION: HUMAN ACTION RECOGNITION BY ULTRASOUND ACTIVE SENSING

Risako Tanigawa and Yasunori Ishii Panasonic Holdings Corporation

Active sensing \rightarrow Privacy preserved method but NOT well investigated \rightarrow We propose a new task for human action recognition by ultrasound active sensing.

Fig. 1 Concept diagram of our work. Action classes are estimated based on reflected ultrasound. Ultrasound was chosen due to inaudible to humans.

[□] 2. Proposed method

Sensing system (Fig. 2)

- \blacktriangleright Tweeter emitted chirp signal from 20 kHz to 40 kHz at interval of 11.8 ms.
- \triangleright MEMS microphone received ultrasound and sampling frequency was set to 96 kHz.
- \blacktriangleright Measurable range was from 0.30 m to 2.0 m from the sensor.

Feature Extraction

- > We focus on extracting features by observing the changes in the propagation characteristics of ultrasound associated with human movements.
- \succ Two types of features:

(1) Time-series reflected waves

- Extracting reflected wave for each period of the chirp signal (y_i : *i*-th reflected wave)
- Concatenating the waves as $F_{ref} = [y_1, y_2, ..., y_N]$

(2) Time-series envelopes of reflected waves

- Calculating envelope of the reflected wave to eliminate the influence of phase
 - $(\hat{y}_i: i-\text{th envelope of reflected wave})$
- Concatenating the envelopes of reflected waves as $F_{env} = [\hat{y}_1, \hat{y}_2, ..., \hat{y}_N]$

□ 3. Dataset

- > We created a dataset for ultrasound action recognition because there was no existing dataset
- \triangleright Data was recorded in three different rooms (Fig. 4)
 - Ra: anechoic chamber, Rb: Room without furniture, Rc: Room with furniture
- \succ Each data includes a single subject and a total number of subjects are four, aged from 23 to 28.
- \succ They continuously performed one action for about one minute.
- \blacktriangleright 8 action classes:

hand-waving, throwing, kicking, picking-up, walking, lying-down, sitting, standing \succ The total duration is 2,004 seconds.

- 4. Experimental result

➤ Action classification were performed with SVM [1] and VGG [2]. > We evaluated 7 different conditions by changing the pairs of data used for training and evaluation.

Ra: Anechoic Rb: Room without Rc: Room with furniture chamber furniture

Fig. 4 Schematic diagram of data acquisition condition and pictures of room.

- > Experimental conditions and accuracy results are in Table 1.
 - Model comparison: VGG was better than SVM except for No. 4 with F_{el}
 - Feature comparison: F_{env} had 11.6 points higher than F_{ref} in SVM.
- \triangleright Performance tended to depend on room conditions and subjects.
 - No. 1, 2 (same-room-same-subject): reached 99.8% in the best - No. 3-6 (same-room-different-subject): depended on subjects
 - No. 7 (different-room): low accuracy

	2	_	T/E	_	_	_	_	97.3	98. 7	98.3	99.8
7	3	_	_	E	Т	Т	Т	81.1	80.1	89.3	89.5
	4	_	_	Т	Е	Т	Т	52.9	73.5	72.1	60.0
env	5	-	_	Τ	Т	E	Т	18.1	43.8	46.7	51.2
	6	-	_	Τ	Т	Т	E	0.8	35.2	40.2	49.6
	7	Т	Т	E	E	E	E	20.7	14.1	22.7	22.2
	Average								61.5	66.7	66.7

Table 1. Experimental conditions and accuracy results. The character "T" and "E" represents the data used for training and evaluation, respectively. #1~#4 represents subject ID.

5. Conclusions	References —
\triangleright We confirmed that action can be estimated with high performance under simple conditions	 [1] C. Cortes et al., <i>Mach. learn.</i>, 273–297, 1995. [2] K. Simonyan et al., arXiv, 1409.1556, 2014.