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ABSTRACT

We have seen recent advances in the fields of Machine Learn-
ing (ML), Deep Learning (DL), and Artificial intelligence (AI)
that the models are becoming increasingly complex and large
in terms of architecture and parameter size. These complex
ML/DL models have beaten the state of the art in most fields
of computer science like computer vision, NLP, tabular data
prediction and time series forecasting, etc. With the increase in
models’ performance, model explainability and interpretabil-
ity has become essential to explain/justify model outcome,
especially for business use cases. There has been significant
improvement in the domain of model explainability for Com-
puter Vision and Natural Language Processing (NLP) tasks
with fundamental research for both black-box and white-box
techniques. In this paper, we proposed novel time series ex-
plainability techniques SPASE for black-box time series model
forecasting and anomaly detection problems.

Index Terms— Spatial, Saliency, Explainability, Time-
Series, Quantile Density

1. INTRODUCTION

Machine learning models for time series tasks, such as fore-
casting and anomaly detection, present unique explainability
challenges due to the distinct nature of time series data. Exist-
ing techniques like LIME, SHAP, and CAM are not specifically
designed for time series data, and their direct application may
not provide intuitive explanations. While these post-hoc tech-
niques offer black-box (LIME, SHAP) and white-box (CAM)
explanations, they neglect considerations for explainability dur-
ing model building. Additionally, techniques like DeepLIFT
[1] and Integrated Gradient [2], which utilize gradient maps to
explain salience regions, are limited to CNN models. Existing
spatial saliency techniques from computer vision have their
limitations when applied to time series data.

Time series data explanations can be less intuitive due to
isolated data points and varying model architectures. Thomas
et al. [3] discussed vision and language model explanation
methods applicable to time-series data, but didn’t provide quan-
titative results or comparisons. Theissler et al. [4] presented
a categorization of existing explanation techniques without
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introducing new ones. To overcome these limitations, we pro-
pose SPASE (Spatial Saliency Explanation) technique, which
provides spatial saliency over quantile regions. Its detailed
overview is in the methodology section. The experiments on
time series explanation for ADaaS [5]/Azure Core Workload
Insights data and Electricity data are also included. Details on
prior art are in the related work section. The term ‘features’ is
used interchangeably with ‘time stamps’ in this context. The
SPASE model’s operation is demonstrated in Figure 1.

2. RELATED WORK

Interpretability and explainability of machine learning models
are essential, especially in CV, NLP, and tabular data fields.
This section discusses key techniques for improving time se-
ries data explainability. LIME is a local explainability method
that highlights feature importance for class prediction using
linear approximation [6]. Being model-agnostic, LIME only
needs the prediction function, not the model’s internal details.
SHAP assigns ‘importance’ to features based on their impact
on model outputs [7]. It uses local and global perspectives to
detail feature importance. CAM localizes image objects based
on class labels using the global average pooling layer on Con-
volution Neural Networks [8]. Grad-CAM and Grad-CAM++
are CAM extensions that provide detailed explanations for
visual objects based on class labels [9, 10, 11].

3. METHOD

In this section, we describe our approach Spatial Saliency
Explanation aka SPASE for time series data. We specifically
focused on black box models for an explanation as time series
models can be built upon multiple architectures like RNN,
LSTM, CNN, or transformer-based networks. In SPASE, we
propose an explanations technique that is model agnostic and
treats model prediction as an output from the black box.

3.1. SPASE: Spatial Saliency Explanation

SPASE is a post-hoc, black-box, and global model explana-
tion technique, where it generates a global explanation for
model-trained time series data for forecasting. Below are a
few nomenclatures or notations, which we will be using to
describe the SPASE technique.



Fig. 1. For a given input time series sample the SPASE model shows important features/ time stamps (Ranges: 1980-1991),
which are the end of the series. It also shows the density score for different quantiles and its range. The Red color in the table
shows less importance and blue indicates more importance feature range and its quantile

M(X, y) = (RN×D, RN )

X = Training data
N = Number of data points(time series)
D = Number of feature(time stamps)

T = [T 0, T 1, . . . TR], where T is subset of X

T i = (R1×D, R1), a data-point from T ⊆ X

(1)

SPASE backbone is two important components Spatial and
Saliency, and both these are important aspects of time series
explanation.

1. Spatial: it refers to a set of features which are in prox-
imity of each other and typically mean continuous re-
gions/ranges in time series.

2. Saliency: it refers to the contribution of a certain range
or points toward the model prediction i.e., time series
forecasting.

Spatial saliency for time-series data provides us with im-
portant insights about feature ranges that are contributing most
towards the time series forecasting in the given model. For
SPASE explanation, we first get the individual token-based
saliency for all the time series/data points in. To get the indi-
vidual token-based saliency, we can leverage any black box
token-based saliency method from prior work like LIME or
SHAP. In this paper, we used LIME [6] to achieve token-based
saliency. Token-based saliency time stamps for time series can
be denoted as LK(T i). We get each time series from lime and
filter out the top-k salient feature/time stamp, we chose K =
10 for our experiment, this can be a user-defined parameter as
well. contains the list of all top contributing features for the
model prediction.

L(T i
D) = [l0, l1, . . . lD]

LK(T i) = Top K salient token from L(T i
D)

(2)

3.2. Quantile Density

We derived the spatial saliency from a sampled dataset (T) us-
ing the quantile-based density estimation for top contributing
features LK(T ). To get the quantile density for each quantile
range of time series features, we first generate the frequency
distribution histogram and the quantile range for LK(T ). Then
for each quantile, we calculate the density of feature contri-
butions towards the model prediction. We consider quantile
ranges and their density as Spatial regions in time series and
their saliency.

Hist(LK(T ), Nb) = [h1, h2, . . . h(Nb)]

Q(LK(T ), NQ) = [q1, q2, . . . q(NQ)]

qi = (qilow, q
i
high)

Hqi = [List of h]i ∈ qi

(3)

Nb and NQ are a number of bins and quantiles, these two
can be user-defined parameters depending upon how wide and
deep an explanation they are looking for. In our experiments,
we choose Nb=150 and NQ=5. qi here is a tuple denoting
quantile or spatial range of time stamps or contributing fea-
tures. The spatial saliency explanation SS(qi) for qi quantile
is derived from the equation below.

SS(qi) =
Hqi

R ∗ (qihigh − qilow)

SS = [SS(q1), SS(q2). . . . . . SS(qNq )]

(4)

Here, SS represents the spatial saliency for a given dataset
and R denotes the total number of data points/time series in Set
T. Quantile density as saliency acts as a good explanation for
users about what continuous ranges of time stamps/features
contribute and by how much to the model prediction. An
example of a spatial saliency explanation is provided in the
Results section. Table 1 shows the quantile density as per



Fig. 2. LIME-based SPASE explanation for Azure Core dataset. It provides a global explanation for the model and, the top
contributing time-stamps and their distribution. We can see quantiles for top contributing time-stamps are skewed toward the
prediction point(right-side) with mean density at 1405. The first two quantiles at 1980 and 1872 provide insights that most recent
time-stamps are contributing most for prediction point(1993)

Fig. 3. SHAP-based SPASE explanation for Azure Core
dataset. The top contributing feature and their distribution
provide similar insights as LIME. They are skewed toward the
prediction point(right-side) with mean density at 1937 more
than LIME and top contributing features are more isolated and
only occur after timestamps 1750. A more detailed analysis is
provided in the results section.

equation (1) and a more detailed overview of SPASE results is
provided in the next section.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

4.1.1. Azure Core Workload Insights Data

We utilized Azure Core workload insights data collected by the
Mario service from Azure Monitor insights for our algorithm
development and proof-of-concept testing. The time-series
data, stored in an optimized database, includes metrics de-
scribing system aspects at specific time points. We trained our
anomaly detection model on a week’s ‘Availability’ metrics
data consisting of around 16k time series, each with 1992 data
points. We ran validation of our results on the 15k time-series
inference data hourly.

Fig. 4. LIME-based SPASE explanation for Electricity dataset.
The top contributing features mean density is 91 and they are
homogeneously distributed across all timestamps, unlike the
explanation for the Azure Core dataset where the top contribut-
ing features were skewed towards the right side.

4.1.2. Electricity Data

The UCI Electricity Load Diagrams Dataset [12], containing
the electricity consumption of 370 customers – aggregated on
an hourly level. We use the past week (i.e., 168 hours) to find
anomalies over the last 24 hours.

4.2. Results

We demonstrated SPASE’s explainability using two datasets,
Electricity and Azure Core, and two token-based black-box
techniques, LIME and SHAP. We identified the top-10 con-
tributing features from 50 random training data samples.
Histogram-based frequency distributions of these features
are visualized in Figures 2 and 3, and quantile wise density
values are presented in Table 1. A direct comparison of
LIME’s explanation on Azure Core data is in Table 3. Further
subsections will discuss these results and explanations.



Fig. 5. SHAP-based SPASE explanation for Electricity dataset.
Top contributing features mean density is 90 and show similar
distribution as LIME but they are more sparse and isolated. A
more detailed analysis is provided in the results section.

LIME SHAP
# QUANTILE RANGE SALIENCY RANGE SALIENCY

1ST (1980.0, 1991.0] 0.02364 (1986.2, 1991.0] 0.06167
2ND (1872.0, 1980.0] 0.00372 (1979.0, 1986.2] 0.03889
3RD (1373.4, 1872.0] 0.00041 (1968.0, 1979.0] 0.03363
4TH (670.8, 1373.4] 0.00029 (1828.0, 1968.0] 0.00174
5TH (0, 670.8] 0.00031 (0, 1828.0] 0.00012

Table 1. Spatial Saliency explanation for Azure Core dataset
as time series quantile (feature ranges) and their importance
values as estimated density for token-based techniques from
LIME and SHAP

4.2.1. Azure Core Workload Insights Data Explanations

Figure 2 displays the frequency distribution of LIME-based ex-
planation for Azure Core workload data, with the mean density
situated around 1405 features, indicating crucial end-of-series
features. Table 1 presents five quantiles, their feature ranges,
and spatial saliency scores, revealing that feature ranges in
quantiles 1 and 2 are more crucial for future predictions while
4 and 5 contribute less. Figure 3 illustrates these findings and
notes a maximum density of features at the series end, further
supported by SHAP. SHAP’s mean density for top contributing
features is 1937, higher than LIME’s 1405, showing a skew
towards the end with the 4th quantile’s lower bound at 1828
compared to LIME’s 670.

4.2.2. Electricity Data Explanations

We used the publicly available Electricity dataset 4.1.2 to
demonstrate SPASE’s generalization and extensibility. Figures
4 and 5 present spatial saliency-based explanations. The mean
density of top contributing features using LIME is 91, indi-
cating recurrent top contributors in each quantile interval and
reflecting the non-stationary nature of the series. This season-
ality among top contributing features/time stamps is similarly
exhibited by SHAP-based spatial saliency, with a mean density
of top contributing features at 90. The 3rd quantile, with a
lower width and high saliency value, contributes more to the
forecasting than other quantiles as per Table 2.

LIME SHAP
# QUANTILE RANGE SALIENCY RANGE SALIENCY

1ST (141.2, 163.0] 0.00936 (140.0, 163.0] 0.01479
2ND (108.0, 141.2] 0.00645 (108.0, 140.0] 0.00825
3RD (83.6, 108.0] 0.00909 (91.0, 108.0] 0.01342
4TH (43.0, 83.6] 0.00626 (40.0, 91.0] 0.00687
5TH (0, 43.0] 0.00609 (0, 40.0] 0.00505

Table 2. Spatial Saliency explanation for Electricity dataset
as time series quantile (feature ranges) and their importance
values as estimated density for token-based techniques from
LIME and SHAP

LIME TOP-5 FEATURE IMPORTANCE

1ST 1991 2.6706
2ND 1979 0.3905
3RD 1647 0.2995
4TH 288 0.2529
5TH 1087 0.2466

Table 3. Example of LIME-based feature importance, as we
can see token-based (individual features) importance for time
series explanation does not provide much information than
isolated points and their importance value

4.3. Validation and Benefit Analysis

We validated SPASE using a human evaluation study with
30 annotators, achieving 93% Precision and 86% Recall for
identifying important regions in a 5k time-series. Post-SPASE
integration, Azure MLaaS reported a 20% sales increase in
time-series model-based products, Azure Core Workload in-
sights users reported better outcome understanding, and user
interaction on the Azure Core workload insights dashboard
increased by 40%. This led to a 25% retention increase in
Azure Core workload insights products.

5. CONCLUSION

Using our approach SPASE, we can provide regions/ranges
in the time-series data and reasons for model prediction in
Anomaly detection as a service and Azure Core workload in-
sights fault detection service. We are providing time-series
explainability as a spatial saliency feature in production for
multiple Azure MLaaS. Apart from these services, time-series
explainability has wider implications to any model service
based on time-series data. Interpretability/Explainability is an
important aspect needed to provide transparency of outcomes,
especially in applications like healthcare, manufacturing, elec-
tronics, etc., where the use of time-series data is prevalent.
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