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Introduction

7]

e Thriving tendency towards integrating DNNs with classical e Possible to represent the discrete-time signals in FrE'T e The information propagates through encoder cells. Table 2:Try/Usd for various architectures and orders a.
signal processing tools; e.g. F'T, STFT, WT. domain e The final hidden state information is passed to the decoder.

e FrE'T as a generalized version of F'T', controlled by a fraction e Like DF'T computed via matrix-vector multiplication, e The output vectors of the decoder are multiplied with Model
order a. DETFT can also be expressed similarly. DErET of order —a to calculate the inverse FrE'T, then a GRUG4 RNNG4 GRUG4pg RNNGAppy; cgGRUGH cgGRUS2

e No additional computational load; fast computation o Let X, € R” is a sequence of length L and the formal converted to one-dimensional sequences. 82 3?7’2 ‘SS Zggf iggé g:gg ?:2;
algorithm with O(NlogN) time complexity [Ozaktas et al., definition for DFrFT of A, is given as a matrix e In the backward pass, the mean-squared error (MSE) 0.7 9.61 1017 4343 43.05 0.03  8.48
1996]. multiplication: between the predicted sequence and the decoder training 82 gigg 2:35 19%018 18:4318 S:ig 3:113

o Allowing signal representation in a continuum between time Xpo = WA, (1) sequence is calculated. 10 974 815  10.74 1092 857 973
o requency . . Lo oun e wm

where X, is manifested as a column vector, and W is the o | | | | ‘

e Different information flows and feature extractions in neural L x L DRFT matrix with order a as given below: Datasets L4 1003 1005 4908 458 938 823
networks with FrF'T [Sahinug et al., 2022]. . B 15 9.05 1017 6270 6296 922  8.68

e Working with best signal representation in the underlying WHm, n| = E=0.kA( o )y F [mle™" "y n]. (2)

e Mackey-Glass Chaotic Time Series:

e [t is generated from a nonlinear, time delay differential system that
is described by the following differential equation:

network. where (L), = L mod 2 and wuy is the kth discrete

Hermite-Gaussian function [Candan et al., 2000].

Table 3:Electric consumption for various architectures and orders a.

Contributions dr Bx(t —T) . Model
At 1+ 200t —T) v(t), (7) a GRUG64 RNN64 GRU647p,, RNN647 p,, cgGRU64 cgGRU32
Time Series Prediction Using Fractional | 05 2854 1198 7952 7143 1725  22.30
o Introduci R ¢ hi 1 . L where 8 = 0.2, v =0.1, dt = 0.1, and T = 17. Starting values up to 06 2196 1092  59.73 == 03 1939 20.30
NnLro . u.CIHg. . O Inachine . earnm.g y Fourier RepreseﬂtatiOﬂS T-th second are initialized as 1 + u|—0.1, +0.1] where u stands for 07 2062 1158  56.78 47 9 16.27 19.78
combining it with RNNs for time series the uniform distribution. 08 2665 10.34 1298 1433 1514 2171
prediction. + UCI Electricity Load Dataset o lo% logn r Tal w4 o
e Motivated by using a generalized transform for e Contains the electricity consumption of 370 customers from Jan. 1, 1117.24 1152 1294  8.03  16.86 20.62
. . . - QIS (R 2011, to Jan. 1, 2015, in 15 min. resolution, and values are in kW. 1.2 18.58 10.40  11.89 8.65 1718  19.70
infinitely many transformations to enhance 1 2 = " ’ T L »
Y Y TXF TXF T"‘F TXF e Due to many missing values, data before 2011 is not utilized. Each 1.3 2538 10.64  53.55 47.26 18.65  25.6
model performance. P T t - value is divided by 4 (since 15 minutes is one-fourth of an hour) to 1;1 12?;? 113?92 géig ??jg gﬁ ;ggf
e FrFT-based RNNs surpass those in time or - 1 P 1 ~ , convert energy consumption into kWh. i ' ' ' ' '
frequency domain for prediction performance. wetmete R e T I e USD-TRY Currency Exchange Ratio:
.l . . e WaxT, | - = 2 : e Data of th h tio bet USD and Turkish li
e Additionally, incorporating FrFT order a as a e y‘”l i l y‘""l ypl aba Of VHE CUITELLY SHCALSE Tatlo bEvWEEH AL HHTRIH A Table 4:Best model performances of the proposed method compared to base-
l bl t X, € RMXT F-(u) where 1~y m € {12,.., K} (TRY) from Jan. 1, 2007, to Jan. 1, 2020. lines that use GRU/RNN
earna e parame er. \x1x2 X3 - 1w -me_-lxj :;VPJ’p—1 [W_l YaY3Y2 )1

Dataset

FEATURE EXTRACTION

Model NMSPE (%)

RNN64 (;=0.944) 0.0035
cgGRU64 (a=1.1) 0.004
GRUG64yaseline 0.23
RNN64yaseline 5.48

cgGRU32 (@;=1.277)6.59
cgGRU64 (a=1.3) 8.06

Results

Primer on Fractional Fourier Transform Figure 1:End-to-end FrFT based time series prediction with sequence models. Mackey-Glass

o Normalized mean-squared percentage error (NMSPE) as our

e For a € R, the ath order FrF'T F“ of a function or signal . .
evaluation metric:

e The first stage is FrE'T-based feature extraction:
f(t) € L2(R) is defined as follows:

TRY-USD

N (y:—1:)2 :
Xplm] = w,|n — Sm|X,[n), (3) e Defined as 1OOZZZ}V<yZy§J§> and expressed as a percentage: y; is GRUGpaseline 10.30
_ Ta _ 0 =10/ : RNN64},a5eline 12.01
Falu) = FL () Hu) = 25 Kaolu, ) f(¢)dE, e the target value and ¢; is the predicted value. b
Ka ( u, t) _ Aqb 62'77(u%mﬁqﬁ—2utcscq§+t260t¢)7 XW — W(Xn) c R 9 <4> Electric Consumptiongf\?ggi (a1:<(;§5083> ?5210
: Table 1:Mackey-Glass for various architectures and orders a. . R
Ay =\1 —icotg, ¢ =an/2, X e = WXy (5) e
) baseline .
Agb eiw(u%atgb—2utcsc¢+t200t(b) if q # e Model
M
. Xpo € CTM s X" € C7, (6) a GRUG4 RNN64 GRUG4;p,, RNNG4,p; cgGRUG cgGRU32
Ka(ua t) — 6(“ — t) ita =4k — 2 m=1
0.5 0.030 0.022 71.84 71.63 0.005 0.022 References
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processes only time-domain data.
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