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Introduction

• Thriving tendency towards integrating DNNs with classical
signal processing tools; e.g. FT, STFT, WT.

• FrFT as a generalized version of FT, controlled by a fraction
order a.

• No additional computational load; fast computation
algorithm with O(NlogN) time complexity [Ozaktaş et al.,
1996].

• Allowing signal representation in a continuum between time
and frequency.

• Different information flows and feature extractions in neural
networks with FrFT [Sahinuç et al., 2022].

• Working with best signal representation in the underlying
network.

Contributions

• Introducing FrFT to machine learning by
combining it with RNNs for time series
prediction.

• Motivated by using a generalized transform for
infinitely many transformations to enhance
model performance.

• FrFT-based RNNs surpass those in time or
frequency domain for prediction performance.

• Additionally, incorporating FrFT order a as a
learnable parameter.

Primer on Fractional Fourier Transform

• For a ∈ R, the ath order FrFT Fa of a function or signal
f (t) ∈ L2(R) is defined as follows:

Fa(u) = Fa{f (t)}(u) = ∫ ∞
−∞ Ka(u, t)f (t)dt,

Ka(u, t) = Aϕeiπ(u2cotϕ−2utcscϕ+t2cotϕ),

Aϕ =
√√√√1 − icotϕ, ϕ = aπ/2,

Ka(u, t) =



Aϕeiπ(u2cotϕ−2utcscϕ+t2cotϕ) if a ̸= 2k

δ(u − t) if a = 4k − 2
δ(u + t) if a = 4k + 2,

where k is an integer. FrFT operates with period 4 such
that Fa = F b where a ≡ b mod 4 [Ozaktaş et al., 2001,
Tao et al., 2009].

• Possible to represent the discrete-time signals in FrFT
domain

• Like DFT computed via matrix-vector multiplication,
DFrFT can also be expressed similarly.

• Let Xn ∈ RL is a sequence of length L and the formal
definition for DFrFT of Xn is given as a matrix
multiplication:

XF a = W aXn, (1)

where Xn is manifested as a column vector, and W a is the
L × L DFrFT matrix with order a as given below:

W a[m, n] = L∑
k=0,k ̸=(L−1+(L)2)

uk[m]e−iπ
2kauk[n], (2)

where (L)2 ≡ L mod 2 and uk is the kth discrete
Hermite-Gaussian function [Candan et al., 2000].

Time Series Prediction Using Fractional
Fourier Representations

Figure 1:End-to-end FrFT based time series prediction with sequence models.

• The first stage is FrFT-based feature extraction:
Xn[m] = wn[n − Sm]Xn[n], (3)

XW = W(Xn) ∈ RM×τ , (4)

XF a = W aX⊺
W , (5)

XF a ∈ Cτ×M 7→
xm

F


M

m=1 ∈ Cτ , (6)

where W is a mapping from a sequence to matrix of where each
row is a windowed segment Xn[m] and W a ∈ Cτ×τ is a DFrFT
matrix of a

• Second stage: Many-to-many encoder-decoder with GRU
or basic RNN cells, resulting in two variants.

• First stage features feed the second stage’s encoder; decoder
processes only time-domain data.

Model Training

• The information propagates through encoder cells.
• The final hidden state information is passed to the decoder.
• The output vectors of the decoder are multiplied with

DFrFT of order −a to calculate the inverse FrFT, then
converted to one-dimensional sequences.

• In the backward pass, the mean-squared error (MSE)
between the predicted sequence and the decoder training
sequence is calculated.

Datasets

• Mackey-Glass Chaotic Time Series:
• It is generated from a nonlinear, time delay differential system that

is described by the following differential equation:
dx

dt
= βx(t − T )

1 + x10(t − T )
− γx(t), (7)

where β = 0.2, γ = 0.1, dt = 0.1, and T = 17. Starting values up to
T -th second are initialized as 1 + u[−0.1, +0.1] where u stands for
the uniform distribution.

• UCI Electricity Load Dataset
• Contains the electricity consumption of 370 customers from Jan. 1,

2011, to Jan. 1, 2015, in 15 min. resolution, and values are in kW.
• Due to many missing values, data before 2011 is not utilized. Each

value is divided by 4 (since 15 minutes is one-fourth of an hour) to
convert energy consumption into kWh.

• USD-TRY Currency Exchange Ratio:
• Data of the currency exchange ratio between USD and Turkish lira

(TRY) from Jan. 1, 2007, to Jan. 1, 2020.

Results

• Normalized mean-squared percentage error (NMSPE) as our
evaluation metric:

• Defined as 100
∑N

i=1(yi−ŷi)2
∑N

i=1(yi)2 and expressed as a percentage: yi is
the target value and ŷi is the predicted value.

Table 1:Mackey-Glass for various architectures and orders a.

Model
a GRU64 RNN64 GRU64LP16 RNN64LP16 cgGRU64 cgGRU32

0.5 0.030 0.022 71.84 71.63 0.005 0.022
0.6 0.021 0.034 64.14 64.20 0.010 0.020
0.7 0.026 0.026 47.14 47.55 0.011 0.032
0.8 0.020 0.017 2.256 3.614 0.006 0.054
0.9 0.024 0.013 0.039 0.027 0.010 0.039
1.0 0.023 0.034 0.044 0.012 0.015 0.175
1.1 0.027 0.031 0.040 0.041 0.004 0.078
1.2 0.033 0.023 0.942 2.556 0.011 0.029
1.3 0.018 0.019 46.85 46.91 0.009 0.013
1.4 0.024 0.016 64.13 64.19 0.009 0.014
1.5 0.016 0.017 71.71 71.81 0.013 0.035

Table 2:Try/Usd for various architectures and orders a.

Model
a GRU64 RNN64 GRU64LP16 RNN64LP16 cgGRU64 cgGRU32

0.5 9.33 9.78 63.22 63.31 9.07 8.81
0.6 9.72 9.32 49.01 48.95 8.95 7.65
0.7 9.61 10.17 43.43 43.05 9.03 8.48
0.8 9.84 9.28 10.08 10.40 8.84 8.49
0.9 9.99 8.72 9.91 10.39 9.23 9.10
1.0 9.74 8.15 10.74 10.92 8.57 9.73
1.1 9.54 9.03 10.08 10.39 9.33 8.94
1.2 9.43 9.89 10.83 10.92 8.84 8.48
1.3 9.70 10.44 44.55 44.58 8.06 8.15
1.4 10.13 10.05 49.08 48.89 9.38 8.23
1.5 9.05 10.17 62.70 62.96 9.22 8.68

Table 3:Electric consumption for various architectures and orders a.

Model
a GRU64 RNN64 GRU64LP16 RNN64LP16 cgGRU64 cgGRU32

0.5 28.54 11.98 79.52 71.43 17.25 22.30
0.6 21.26 10.92 59.73 55.93 19.39 20.30
0.7 20.62 11.58 56.78 47.2 16.27 19.78
0.8 26.65 10.34 12.98 14.33 15.14 21.71
0.9 19.95 10.36 12.47 7.51 18.41 19.00
1.0 19.00 10.54 10.12 8.38 16.98 20.63
1.1 17.24 11.52 12.94 8.03 16.86 20.62
1.2 18.58 10.40 11.89 8.65 17.18 19.70
1.3 25.38 10.64 53.55 47.26 18.68 25.65
1.4 18.82 10.42 61.86 56.41 19.72 18.38
1.5 21.54 12.19 85.77 71.43 18.41 20.31

Table 4:Best model performances of the proposed method compared to base-
lines that use GRU/RNN.

Dataset Model NMSPE(%)

Mackey-Glass RNN64 (al=0.944) 0.0035
cgGRU64 (a=1.1) 0.004
GRU64baseline 0.23
RNN64baseline 5.48

TRY-USD cgGRU32 (al=1.277)6.59
cgGRU64 (a=1.3) 8.06
GRU64baseline 10.30
RNN64baseline 12.01

Electric ConsumptionGRU64 (al=0.858) 6.20
RNN64LP16 (a=0.9) 7.51
GRU64baseline 10.84
RNN64baseline 14.76
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