Improving Cross-Domain Few-Shot Classification with Multilayer Perceptron

Shuanghao Bai¹, Wanqi Zhou¹, Zhirong Luan², Donglin Wang^{3*}, Badong Chen^{1*}

{baishuanghao, zwq785915792}@stu.xjtu.edu.cn; chenbd@mail.xjtu,edu.cn; luanzhirong@xaut.edu.cn; wangdonglin@westlake.edu.cn;

Background

Motivation The introduction of MLP projector after the encoder:

Unsupervised Learning

 SimCLR and MoCo v2: MLP is adopted after the encoder to improve the models' transferability.

Supervised Learning

SupCon and a study of SupCon: extend the self-supervised batch contrastive approach to the fully-supervised setting, including the MLP after the encoder.

However, Wang et al. argue that previous works overlooked the ablation of the MLP and incorrectly attributed the enhanced transfer performance solely to the contrastive mechanism within the loss function. They demonstrate the effectiveness of MLP.

Туре	Method	ChestX	CropD	DeepW	DTD	Euro	Flower	I
	BL [11]	26.98	65.44	55.27	59.58	83.81	77.59	42
	BL+MLP	28.62	70.48	57.54	61.96	84.26	81.49	42
Non onicodio	BL++ [11]	25.49	48.22	50.86	51.76	75.79	66.15	4
Non-episodic	BL+++MLP	28.09	65.62	57.65	64.33	85.83	81.47	44
	RFS [6]	27.68	58.38	51.02	62.31	76.33	75.62	4
	RFS+MLP	29.09	66.87	56.42	67.78	83.14	86.24	40
Meta-learning	ANIL [8]	24.41	48.69	46.93	46.55	63.96	61.27	3′
	ANIL+MLP	25.02	58.10	49.35	53.30	75.73	66.45	3
	MTL [16]	24.15	33.27	43.14	49.43	54.27	58.18	3.
	MTL+MLP	25.19	51.23	46.06	49.41	65.19	51.34	34
Metric-learning	PN [10]	26.38	55.59	47.50	50.55	70.96	63.56	32
	PN+MLP	27.07	60.76	47.83	50.49	73.22	62.63	3.
	DN4 [17]	27.34	53.62	50.94	58.67	76.52	75.01	42
	DN4+MLP	28.38	67.48	56.40	62.15	82.61	80.78	3
	CAN [18]	27.46	52.82	53.14	56.85	73.77	71.40	42
	CAN+MLP	28.57	67.63	<u>58.93</u>	64.31	83.66	79.81	4

All few-shot classification methods with MLP outperform the vanilla methods.

a) Paradigm for non-episodic based methods with MLP

evaluation datasets

Average 66.67+2.81 55.87 **66.32**+10.45 63.22 60.73 73.82 73.05 90.55 81.27 67.90+7.17 80.04 52.04 55.09+3.05 47.78 57.93 **49.27**+1.49 54.28 54.37+0.09 **66.27**+3.96 57.64 69.96 83.03 **65.13**+7.49 73.64 71.54 97.08 75.68

10000

ICASSP

2024 KOREA

IEEE International Conference on Acoustics, Speech and Signal Processing

with MLP

• We initiate the first known and comprehensive effort to study MLP in CDFSC, and further introduce three distinct frameworks in accordance with three types of few-shot classification methods to verify the effectiveness of MLP.

We empirically demonstrate that MLP helps existing few-shot classification algorithms significantly improve cross-domain generalization performance on 12 datasets and even compare favorably against state-of-the-art CDFSC algorithms.

Our analyses indicate that MLP helps obtain better discriminative ability and mitigate the distribution shift. Additionally, we find that batch normalization plays the most crucial role in improving transferability.

Experimental Results

 MLP can mitigate the distribution shift between the pre-training and

- T-SNE visualization.
- average intra-class distance and inter-class distance.

c) Paradigm for metric-learning based methods with MLP

Met	hod	RFS	RFS+MLP	RFS	RFS+MLP	
Dat	aset	ChestX		CropD		
D_1	(↓)	6.85	6.78	6.37	5.83	
V	(\downarrow)	2.73	2.69	2.64	2.61	
r ((\downarrow)	1.21	1.20	0.85	0.80	
Dat	aset	Euro		ISIC		
D_1	(↓)	3.83	3.57	6.09	5.66	
V	(\downarrow)	1.73	1.51	2.35	2.05	
r ((\downarrow)	0.49	0.43	1.04	0.92	

MLP help the model obtain better discriminative ability of cluster compactness.

• The lower intra-class distance, intra-class variance, and the ratio between the