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» We introduce a robust network specifically designed to
handle adverse environments, significantly improving the
performance of monocular 3D object detection models
across various challenging real-world situations.
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discerning various inclement environments.

» To support 3D object detection in harsh environments, we
have compiled a comprehensive dataset comprising 7,481
images for seven demanding conditions.
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Adaptive Learning Strategy

We propose a novel adaptive learning strategy comprising an
encoder and a decoder, which are specifically designed to act as a
constraint, rather than focus on 1mage restoration. Particularly the
encoder assists the model in rectifying inaccurate feature perception
under adverse conditions. The decoder employs learnable scene
penalization queries to penalize incorrect perception by which the
model can suppress potential errors. Notably, this learning strategy 1s
only required during training.

3D Object Detection in Adverse Scenes

Monocular 3D object detection takes an RGB 1mage as input and constructs a 3D
bounding box for the object in 3D space. Concretely, 2D detection backbone from
low-level constraint features is applied to produce high-level deep features, and then
these features are aggregated to get deep. Subsequently, we apply three 2D detection
heads 1n deep features F to predict 2D heatmap H. Through using ROIAlign 1n deep
feature map with 2D box information, the features are generated whose size 1s 7x7
and finally used 1n the 3D detection heads to predict the object 3D center offset O3d,
3D size S3d and direction ©.

Experiments

Quantitative and Qualitative Comparisons: comparison of the latest 3D object
detection methods on the moderate fog, thick fog, moderate rain, heavy rain,
dense rain and low light dataset based on AP3D of car category. Our method
improvements across different weather

achieves significant performance
conditions.
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SMOKE
MonoFLEX
MonoDLE
GUPNet
DID-M3D
DEVIANT

HomoLoss
CubeR-CNN

CVPR20
CVPR21
CVPR21
ICCV21
ECCV22
ECCV22
CVPR22
CVPR23

8.86 598 4.53
19.97 14.11 11.86
14.77 12.15 10.02
21.06 15.02 12.34
2219 1552 126l
22.74 15.92 13.16
14.31 12.27 11.12
21.11 14.97 12.55

5.10 331 2.28
18.37 13.28 10.57
17.35 12.89 11.27
19.91 14.24 11.57
22.19 15.96 12.86
22.90 16.11 13.25
19.32 13.26 11.51
20.81 14.77 12.12

7.33 5.24 4.03
17.21 12.94 11.55
15.65 13.34 12.33
19.69 14.24 12.36
22.42 15.30 12.43
22.35 15.99 12.45
18.23 13.19 12.56
20.37 14.14 12.38

597 3.78 277
16.99 11.83 10.12
15.64 12.63 11.13
17.36 12.95 10.76
21.40 14.79 12.05
20.18 13.93 11.96
17.69 13.01 12.23
22.36 13.67 11.11

5.64 3.88 3.21
15.35 12.14 10.38
14.94 11.20 9.78
16.71 12.40 10.64
20.56 14.07 11.88
20.20 13.85 12.26
16.33 13.40 10.76
19.17 13.54 10.99

548 4.03 3.49
1043 832 7.75
14.69 11.99 10.60
9.84 6.36 5.09
21.92 14.79 12.10
22.40 15.16 12.33
15.88 13.89 11.42
20.11 14.37 11.89

AEAM3D
Improvement

23.13 16.03 13.19

+0.38 +0.11 +0.03

" LowlLi ght

23.24 16.28 13.35
+0.34 +0.17 +0.10

23.08 16.01 12.98
+0.66 +0.02 +0.53

Heavy Rain

23.06 15.77 12.92
+1.66 +0.98 +0.87

21.31 15.40 12.52
+0.75 +1.33 +0.26

22.55 15.70 12.80
+0.15 +0.54 +0.49

Thick Fog

Comparison of our method with the combinations of our base 3D detection
network and popular enhancement models under various challenging conditions.

Car 3D @I10U=0.7

Scene | Methods Venue Easy Mod. Hard
Trans CVPR22 12295 16.03 13.21

Thick | MSBDN | CVPR20 |20.11 14.14 11.55
Fog GCA WACVI9 [21.21 14.08 12.49
DCPDN | CVPRIS8 | 19.97 13.25 11.34

Ours - 23.13 16.03 12.95

Trans CVPR22 [20.29 13.89 11.67

o — RESCAN | ECCVIS8 | 20.06 13.81 10.99
Rair | VRGNet | CVPR21 |21.55 12.98 11.01
PRENet | CVPRI9 [20.11 13.34 10.67

Ours - 23.06 15.77 12.92

Trans CVPR22 1 147 10.53 O.18

o SCI CVPR22 | 19.88 14.12 10.68
T Schi IAT BMVC22|19.84 13.59 10.94
g SID CVPRI8 | 17.78 12.21 10.32
Ours - 22.55 15.70 12.82

Ablation study for the components of our method.
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EasyT Mod. T Hard{
X 18.53 13.09 10.89
v 119.12+0.59 14.43+1.34 11.74+0.85
X 120.35+1.82 14.86+1.77 12.11+1 22
vV 123.2244.69 15.5912.46 12.3141 .42




