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ABSTRACT

3D object detection plays a crucial role in intelligent vision
systems. Detection in the open world inevitably encounters
various adverse scenes while most of existing methods fail
in these scenes. To address this issue, this paper proposes a
monocular 3D detection model, termed AEAM3D, which ef-
fectively mitigates the degradation of detection performance
in various harsh environments. Additionally, we assemble a
new adverse 3D object detection dataset encompassing some
challenging scenes, including rainy, foggy, and low light
weather conditions. Experimental results demonstrate that
our proposed method outperforms current state-of-the-art ap-
proaches by an average of 3.12% in terms of APpry4g for car
category across adverse environments.

Index Terms— 3D object detection, monocular vision,
image enhancement

1. INTRODUCTION

Generally vision-based object detection plays a critical role
in autonomous driving while 3D object detection remains a
complex task. A common approach frequently utilize LIDAR
sensors or stereo cameras for depth estimation[1} 2| [3]. Yet
they significantly increase the cost of implementing practical
systems [4]. Consequently, monocular 3D object detection[3}
6l 7] has emerged as a promising alternative.

Existing monocular 3D object detection techniques can be
broadly classified into two categories: those based on single
images, such as M3D-RPN[§]] and MonoDLE[S] and those
leveraging auxiliary information, including Rol-10D[9] and
Pseudo-LiDARJ10]]. Nevertheless, these methods have en-
countered several issues. (i) 3D object detection is inevitable
to face real-world adverse conditions, causing degraded im-
age quality [[11} [12]. (¢¢) Monocular 3D detection is inher-
ently limited by the single viewpoint, leading to uncertainties
in depth estimation. (iii) The scarcity of datasets induces the
failure of capturing adverse weather conditions characteristic.
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Fig. 1. The comparison illustrating 3D object detection meth-
ods in adverse scenes: (a) existing models overlooking en-
vironmental context; (b) conventional solutions using im-
age restoration, potentially yielding unsuitable images; (c)
AEAM3D employing adaptive learning strategy which penal-
izes perceptual errors.

To address these issues, we propose a novel monocular
3D object detection method, dubbed AEAM3D. Our ap-
proach incorporates an adaptive learning strategy allowing
better adaption to complex scenarios. In addition, we in-
troduce a diverse dataset, including seven harsh conditions.
Figure 1 demonstrates that our proposed model outperforms
state-of-the-art(SOTA) 3D object detectors and cascade of
image enhancement and 3D detection models. Our contribu-
tions are three-fold:

* We introduce a robust network specifically designed to
handle a variety of adverse environments, significantly
improving the performance of monocular 3D object de-
tection models across a wide range of challenging real-
world situations.

* We propose an adaptive learning strategy during the
training process to extract resilient features that remain
less susceptible to degrading factors, aiding the model
in discerning various inclement environments.

* To support 3D object detection in harsh environments,
we have compiled a comprehensive dataset comprising
7,481 images for seven demanding conditions.
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Fig. 2. The pipeline of AEAM3D. The core components, adaptive learning (Sec. 3.2) regularizes features from Common
Feature Extractor to help model perceive clean meta features that are not degraded by adverse factors.

2. METHOD

Under inclement weathers, the specific spectral interaction
between objects and camera may be affected by absorption
and scattering of suspended water droplets, dust, and other
particulates, inducing the loss of depth information [13]].
Thus we present a monocular 3D object detection model for
adverse environments, namely AEAM3D.

2.1. Adverse Condition Datasets Generation

We compile datasets encompassing several adverse weather
conditions. The process of synthesizing these conditions
bases on their corresponding atmospheric effects. The fog
condition is modeled based on the atmospheric light attenu-
ation theory [14], and rain with rain streaks and fog effect is
on [[15)]. In addition, the image brightness is reduced using lu-
minance correction method to simulate low light conditions.

2.2. Adaptive Learning Strategy

We propose a novel adaptive learning strategy comprising an
encoder and a decoder, as depicted in Figure 2, which are
specifically designed to act as a constraint, rather than fo-
cus on image restoration. Particularly the encoder assists the
model in rectifying inaccurate feature perception under ad-
verse conditions. The decoder employs learnable scene pe-
nalization queries to penalize incorrect perception by which
the model can suppress potential errors. Notably, this learn-
ing strategy is only required during training.

Given a degraded image [ of size H x W x 3, a com-
mon feature extractor is applied to generate low-level features

w

(% X = x (). These features are then put into the encoder

which employs SwinBlocks at different stages.

Encoder: During each stage we use patch merging where
the resolution is reduced to assist the module in learning both
coarse and fine contents, and the merged features are passed
on to the subsequent stage. SwinBlocks are then perform
feature transformation while maintaining the resolution. A
SwinBlock comprises a shifted window-based MSAgw and
an MLP. Layer Normalization ((LN) is applied prior to each
MSAw and MLP module, and a residual connection is incor-
porated each module. MSAw and MSAgw denote window
based self-attention using traditional and shifted window. Fol-
lowing [16], self-attention is calculated as:

Attention(Q, K, V) = SoftMax (QK” /Vd + B) V,
ey
where (), K, V are queries keys and values that have same
dimensions. B is relative position bias.
Decoder: In the decoder, scene penalization queries are uti-
lized to output a task feature vector. Cross-attention is applied
in this module, with K and V taken from the same output fea-
tures as the last stage of the encoder, and Q being the learn-
able queries. The output features of the decoder serve as the
weather type task vector and are fused with the features pro-
duced by each stage of the encoder.

2.3. 3D Object Detection in Adverse Scenes

Figure 2 shows the framework of our approach, monocular 3D
object detection takes an RGB image as input and constructs
a 3D bounding box for the object in 3D space. Concretely,
2D detection backbone from low-level constraint features is
applied to produce high-level deep features, and then these
features are aggregated to get deep features with resolution
F € R§X%xC, Subsequently, we apply three 2D detection
heads in deep features F' to predict 2D heatmap H. Through



using RO 4534y in deep feature map with 2D box informa-
tion, the features are generated whose size is 7 x 7 and finally
used in the 3D detection heads to predict the object 3D center
offset Oz, 3D size S34 and direction ©.

2.4. Loss Functions

Throughout the training process, we concurrently compute
the losses associated with the adaptive learning strategy and
the 3D object detection task. Our adaptive learning strategy
employs the smoothr; loss to penalize the incorrect percep-
tion of features in challenging scenarios. This loss function is
formulated as follows:

0.5E2
|E| - 0.5

if | E| <1
otherwise ,

Esmooth L, — { (2)

where E represents the difference between the perceived
scene and real scene.

For 3D object detection, the loss function is as the follow-
ing formula, containing 2D detection part and 3D detection
part. The 2D offset Oz refers to the residual towards rough
2D centers and Sap denotes the 2D box height and width.
We follow [17]] to use loss functions Lz, Lo,,, Ls,,. For the
dimensions of the 3D object, we use the typically designed
Ls,, and multi-bin to calculate Lg for the prediction of the
object observation angle. The instance depth loss is Lp,,,..
We set the weight of each loss term to 1.0. The overall loss is:

L=Lyg+Loyy+ L8y +Lsyy+ Lo+ Loy, + L, 3)

3. EXPERIMENTS

This section compares the results of our method for 3D object
detection in various adverse environments. Our experiments
are performed on 4 Nvidia TITAN XP and a batch size of 8.

3.1. Datasets and Metric

We evaluate our methods and 5 state-of-the-art under syn-
thetic KITTI 3D dataset. Following the methodology of [18]],
the dataset is partitioned into 3,712 sub-training sets and
3,769 validation sets. Detection outcomes are presented in
three levels of difficulty, namely easy, moderate, and hard.
We use average precision as the evaluation metric. We train
the network for 140 epochs, following the Hierarchical Task
Learning (HTL) strategy. Input images are resized to a res-
olution of 1280 x 384, with pixel values in the range of [0,
255]. The pixel intensities are then adjusted based on the
mean pixel intensity of the entire dataset.

3.2. Comparison with 3D Detection Methods

This section conducts a comprehensive comparison between
AEAM3D and several SOTA monocular 3D object detection
techniques. The car category’s 3D detection accuracy, de-
noted by AP3D g4, serves as the benchmark for comparison.

As presented in Table 1, our method achieves significant
performance improvements across different weather condi-
tions. Under the heavy rain dataset, our method exceeds DID-
3D by 1.66%, 0.98%, and 0.87% on easy, moderate and hard
settings. On the thick fog, our method outperforms GUP-
Net by 3.33%, 2.04%, and 1.78% at a 0.7 IoU threshold.
Meanwhile AEAM3D substantially surpasses DID-M3D and
MonoDLE in the low light, with improvements of 0.91% and
3.71% AP3D g4 under moderate setting.

3.3. Comparison with Restoration Methods

In this section, we extend to compare our base 3D detection
network with various image restoration techniques, as shown
in the table 2. TransWeather is trained in these three weather
conditions since it is designed to adapt to various weather
scenarios. Other methods are trained under specific environ-
ments tailored to their corresponding effects.

The performance of AEAM3D is comparable to Tran-
sWeather in dense fog, but shows significant improvement
under heavy rain conditions. Under low light conditions it
has significantly improved by 7.85%, 5.17%, and 3.64% un-
der the three settings of easy, mod, and hard, respectively. In
addition, our method is also significantly superior to all other
task specific methods. For example, under dense fog con-
ditions, our method improved by 3.13%, 2.14%, and 1.80%
compared to MSBDN under three different settings, respec-
tively. In summary, our proposed method not only attains
state-of-the-art accuracy in harsh environments when com-
pared to the leading 3D object detection techniques, but it
also outperforms existing image restoration methods.

3.4. Ablation Study

To investigate how each module in AEAM3D enhances de-
tection, we randomly selected one seventh of medium rain,
heavy rain, dense rain, thin fog, thick fog, dense fog, and low
light to obtain a mixed dataset, and then tested each module
on this dataset. The results are shown in Table 3.

We evaluate the effectiveness of our adaptive learning
strategy by examing respectively the impact of the encoder
and the decoder on the overall performance. The encoder’s
contribution is examined by comparing settings (a—b). The
results demonstrate that the encoder consistently improves
the overall performance by 0.34% for (a—b) under moderate
settings. Then we assess the decoder through experiments
(a—c). At the same time the improvements of experiments
(b—d) and (c—d) indicate that both parts of the module prove
to be indispensable for optimal performance.



Table 1. Comparison of the latest 3D object detection methods on the moderate fog, thick fog, moderate rain, heavy rain, dense

rain and low light dataset based on AP3p of car category.

Methods Venue Mod. Fog Thick Fog Mod. Rain Heavy Rain Dense Rain Low Light
Easy Mod. Hard| Easy Mod. Hard| Easy Mod. Hard| Easy Mod. Hard| Easy Mod. Hard| Easy Mod. Hard
SMOKE CVPR20| 8.86 5.98 4.53| 5.10 3.31 2.28| 7.33 5.24 4.03] 597 3.78 2.77| 5.64 3.88 3.21| 548 4.03 3.49
MonoFLEX (CVPR21|19.97 14.11 11.86(18.37 13.28 10.57|17.21 12.94 11.55/16.99 11.83 10.12|15.35 12.14 10.38/10.43 8.32 7.75
MonoDLE |CVPR21|14.77 12.15 10.02(17.35 12.89 11.27|15.65 13.34 12.33|15.64 12.63 11.13(14.94 11.20 9.78|14.69 11.99 10.60
GUPNet ICCV21|21.06 15.02 12.34|19.91 14.24 11.57|19.69 14.24 12.36|17.36 12.95 10.76|16.71 12.40 10.64| 9.84 6.36 5.09
DID-M3D [ECCV22|22.75 15.52 12.61(22.19 15.96 12.86|22.42 15.30 12.43|21.40 14.79 12.05(20.56 14.07 11.88|21.92 14.79 12.10
DEVIANT |ECCV22|22.74 15.92 13.16|22.90 16.11 13.25|22.35 15.99 12.45|20.18 13.93 11.96|20.20 13.85 12.26|22.40 15.16 12.33
HomoLoss |CVPR22|14.31 12.27 11.12|19.32 13.26 11.51|18.23 13.19 12.56|17.69 13.01 12.23|16.33 13.40 10.76|15.88 13.89 11.42
CubeR-CNN [CVPR23|21.11 14.97 12.55(20.81 14.77 12.12|20.37 14.14 12.38|22.36 13.67 11.11{19.17 13.54 10.99(20.11 14.37 11.89
AEAM3D 23.13 16.03 13.19(23.24 16.28 13.35{23.08 16.01 12.98(23.06 15.77 12.92|21.31 15.40 12.52{22.55 15.70 12.80
Improvement . +0.38 +0.11 +0.03|+0.34 +0.17 +0.10(+0.66 +0.02 +0.53|+1.66 +0.98 +0.87(+0.75 +1.33 +0.26(+0.15 +0.54 +0.49

Low Light

Fig. 3. Qualitative results on the validation set of hybrid dataset which contain all types of weather. We use

Heavy Rain

Thick Fog
, red, blue

boxes to denote ground-truth, our predictions and predictions of CubeR-CNN respectively.

Table 2. Comparison of our proposed method with the com-
binations of our base 3D detection network and popular en-
hancement models under various challenging conditions.

Car 3D@I0U=0.7

Scene ‘ Methods ‘ Venue }

Easy Mod. Hard

Trans [ CVPR22122.95 16.03 13.21

Thick | MSBDN | CVPR20 |20.11 14.14 11.55
Fog GCA | WACVI9|21.21 14.08 12.49
DCPDN | CVPRIS8 [19.97 13.25 11.34

Ours - 23.13 16.03 12.95

Trans [ CVPR22120.29 13.89 11.67

Heavy | RESCAN | ECCV18120.06 13.81 10.99
Rainy VRGNet | CVPR21 [21.55 12.98 11.01
PRENet | CVPRI19|20.11 13.34 10.67

Ours - 23.06 15.77 12.92

Trans [ CVPR22 T 147 10.53 O.18

Low SCI CVPR22 | 19.88 14.12 10.68
Light IAT |BMVC22|19.84 13.59 10.94
SID CVPRI8 | 17.78 12.21 10.32

Ours - 22.55 15.70 12.82

3.5. Qualitative Results

Figure 3 reveals the superior performance of AEAM3D com-
pared to the current SOTA approach, CubeR-CNN][19], in
three distinct environments. For example, in low light scenar-
ios, where the environment is comparatively dark, GUPNet
tends to miss objects, whereas AEAM3D accurately identifies
nearly all objects. These observations highlight the consider-
able advantages of our method over other optimal approaches,

Table 3. Ablation study for the components of our method.
Results are reported on hybrid datasets.

Enc|Dec 3D@IoU=0.7
EasyT Mod.T Hard?t
@l X | X 18.53 13.09 10.89
®)|| X | v [19.1240.50 14.43+1.34 11.7T440.85
(C) \/ X 20.35T1_82 14.86T1_77 12'11T1-22
(d) v |/ 2322?«1.69 15'55T2-’16 12'31T1-42

that is, resilience against environmental challenges.

4. CONCLUSION

In this study, we introduce AEAM3D, a monocular 3D ob-
ject detection model incorporating an adaptive learning strat-
egy and demonstrate exceptional performance in an array of
challenging environments, including fog, rain, and low-light
conditions. The adaptive learning strategy effectively regular-
izes the model, enabling AEAM3D to adapt to and perceive
features across inclement weather conditions. This innovative
approach substantially advances the practical applicability of
monocular 3D object detection models. Extensive experimen-
tal results attest to the superiority of our proposed method
over state-of-the-art approaches, both qualitatively and quan-
titatively, across various adverse environments.
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