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ABSTRACT

* A Monte Carlo approximation of the generalized Sliced-
Wasserstein (GSW) distance has large complexity in high-
dimensional settings.

* We propose deterministic and fast approximations of the GSW
distance based on Gaussian projections when the defining functions
are polynomial function and linear neural network function.

GENERALIZED SLICED-WASSERSTEIN DISTANCE (GSW)

Sliced-Wasserstein distance between two probability measures
i € P,(RY and v € P,(RY) based on Gaussian projections
0% . x — (x,0) is defined as follows:

(/ Wr(o:p, 0 v )d%z(H));, (1)

where 7y == N(04,d™"'I;) and W,(0; 1, 0;v) denotes the Wasser-
stein distance between one—dlmensmnal probability measures,
which admits the following closed-form:

W Hﬁ,u,@ﬂ / |F ()
with 651(V') = ((6%)

SW(p, v)

dz, (2)

for any subset V' C R.

Generalized Sliced-Wasserstein Distance between probability
measures 1 € P,(R?) and v € P,(R?) based on Gaussian projec-
tions 1s given by:

GSWp(p,v) - (/ W2(glp, v )dw(ﬁ))p, (3)

where ¢’ is a possibly non-linear function.

CONDITIONAL CENTRAL LIMIT THEOREM FOR GAUSSIAN
PROJECTIONS

Theorem 1 (Reeves et al., 2017). For any 11 € Pg(Rd),
/ Wy (9&" p, N (0, d_lmz(u))) dy4(0)
Rd

< Cd™ { Alpr) + [malp) By ()] + mof) P Balpn) 7} (4)

where (' > (0 1s some universal constant and

mali) = E,|X [P, A) = E,
= Nk L/k
_tu®u‘<X>X> H '

—ma(p)|,

FAST APPROXIMATION OF GSW WITH POLYNOMIAL FUNCTION

,Ozd) c N¢
L xq) € RY, we denote |a| = a1 + ... + ag
z,’. Then, a polynomial function of degree m is

Z 0.,x", (9)

a|=m

Polynomial Function. For a multi-index o = (a, . ..
and a vector x = (1, ...
and ¢ = 2" ...
defined as

gpoly £, (9
where 0 = (0,)aj=m € R?' such that ||#]], = 1 with ¢ =
(m;fll_l) being the number of non-negative solutions to the equation
a1+ ...+0g=m
Theorem 2.Let X ~ pu € Po(RY) and Y ~ v € Po(R?). As-
sume that (X%) g j=m ~ pg and (Y?)qj=m ~ v, Additionally, let
M, = N (0y, ¢~ 'my(py)) and My, = N (0, q 'ms(v,)). Then, under
some mild assumptions on | and v, we have that

‘p()ly - GSWQ(ﬁ? ﬁ) o WQ(nﬁqa 777(1) S O(d_%)a (6)

where i, and U, are centered versions of j, and v,

Fast Approximation of poly — GSW.
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poly — GSW (1, v) = poly — GSW,(Ti,, Ty) + q M|y, — ||
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where m,, and m,, are means of j, and v, respectively.

FAST APPROXIMATION OF GSW WITH LINEAR NEURAL
NETWORK TYPE FUNCTION

Linear Neural Network Function. Let X ~ pu, ¥ ~ v and
OW. ... O be random matrices of size d X d independent of X

and Y such that their entries are 1.1.d random variables following
N(0,d™1). Then, a linear neural network function is:

Gnewral (X, 0) == (0, oW @(”>:1:> (8)

Theorem 3.Let X* .= O .. . O"WX and Y* = 0V .. ey
have probability distributions |~ and v*, respectively. Then, under
some mild assumptions on pand v, we have that

neural — GSWa(u, v) — Wa(p*, v*)| < O(31d ™7 + d 7).
Fast Approximation of neural — GSWV.
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Figure 1: Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of
projections between empirical distributions on samples that are drawn from Multivariate Gaussian distributions and
Gamma distributions.
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Figure 2: Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of

projections between empirical distributions on samples that are drawn from autoregressive processes of order one
AR(1).



