

ABSTRACT

Monte Carlo approximation of the generalized Sliced-Wasserstein (GSW) distance has large complexity in highdimensional settings.

* We propose deterministic and fast approximations of the GSW distance based on Gaussian projections when the defining functions are polynomial function and linear neural network function.

GENERALIZED SLICED-WASSERSTEIN DISTANCE (GSW)

Sliced-Wasserstein distance between two probability measures $\mu \in \mathcal{P}_p(\mathbb{R}^d)$ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ based on Gaussian projections $\theta^* : x \mapsto \langle x, \theta \rangle$ is defined as follows:

$$SW_p(\mu,\nu) := \left(\int_{\mathbb{R}^d} W_p^p(\theta_{\sharp}^*\mu,\theta_{\sharp}^*\nu) \, \mathrm{d}\gamma_d(\theta) \right)^{\frac{1}{p}}, \tag{1}$$

where $\gamma_d := \mathcal{N}(\mathbf{0}_d, d^{-1}\boldsymbol{I}_d)$ and $W_p(\theta_{\sharp}^*\mu, \theta_{\sharp}^*\nu)$ denotes the Wasserstein distance between one-dimensional probability measures, which admits the following closed-form:

$$W_p^p(\theta_{\sharp}^*\mu, \theta_{\sharp}^*\nu) = \int_0^1 \left| F_{\theta_{\sharp}^*\mu}^{-1}(z) - F_{\theta_{\sharp}^*\nu}^{-1}(z) \right| \mathrm{d}z, \qquad (2$$

with $\theta_{\sharp}^* \mu(V) := \mu((\theta^*)^{-1}(V))$ for any subset $V \subseteq \mathbb{R}$.

Generalized Sliced-Wasserstein Distance between probability measures $\mu \in \mathcal{P}_p(\mathbb{R}^d)$ and $\nu \in \mathcal{P}_p(\mathbb{R}^d)$ based on Gaussian projections is given by:

$$GSW_p(\mu,\nu) := \left(\int_{\mathbb{R}^d} W_p^p(g_{\sharp}^{\theta}\mu, g_{\sharp}^{\theta}\nu) \, \mathrm{d}\gamma_d(\theta) \right)^{\frac{1}{p}}, \tag{3}$$

where g^{θ} is a possibly non-linear function.

CONDITIONAL CENTRAL LIMIT THEOREM FOR GAUSSIAN PROJECTIONS

Theorem 1 (Reeves et al., 2017). For any $\mu \in \mathcal{P}_2(\mathbb{R}^d)$

$$\int_{\mathbb{R}^{d}} W_{2}^{2} \Big(\theta_{\sharp}^{*} \mu, \mathcal{N}(\mathbf{0}_{d}, d^{-1} \mathfrak{m}_{2}(\mu)) \Big) \mathrm{d}\gamma_{d}(\theta) \\
\leq C d^{-1} \Big\{ A(\mu) + [\mathfrak{m}_{2}(\mu) B_{1}(\mu)]^{1/2} + \mathfrak{m}_{2}(\mu)^{1/5} B_{2}(\mu)^{4/5} \Big\}, \quad (4)$$

Fast Approximation of the Generalized Sliced-Wasserstein Distance

Dung Le^{†,*}, Huy Nguyen^{\$,*}, Khai Nguyen^{\$,*}, Trang Nguyen^{‡,*}, Nhat Ho^{\$}

[†]École Polytechnique, ^oThe University of Texas at Austin, [‡]VinAI Research

where C > 0 is some universal constant and

$$\mathfrak{m}_{2}(\mu) := \mathbb{E}_{\mu}[||X||^{2}], \ A(\mu) := \mathbb{E}_{\mu}$$
$$B_{k}(\mu) := \left[\mathbb{E}_{\mu \otimes \mu} |\langle X, X' \rangle^{k}|\right]^{1/k}.$$

FAST APPROXIMATION OF GSW WITH POLYNOMIAL FUNCTION

Polynomial Function. For a multi-index $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}^d$ and a vector $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, we denote $|a| = \alpha_1 + \ldots + \alpha_d$ and $x^a = x_1^{\alpha_1} \dots x_d^{\alpha_d}$. Then, a polynomial function of degree m is defined as

 $g_{\text{poly}}(x,\theta) := \sum \theta_{\alpha}$

where $\theta := (\theta_{\alpha})_{|\alpha|=m} \in \mathbb{R}^{q-1}$ such that $\|\theta\|_2 = 1$ with q = $\binom{m+d-1}{d-1}$ being the number of non-negative solutions to the equation $\alpha_1 + \ldots + \alpha_d = m.$

Theorem 2. Let $X \sim \mu \in \mathcal{P}_2(\mathbb{R}^d)$ and $Y \sim \nu \in \mathcal{P}_2(\mathbb{R}^d)$. Assume that $(X^{\alpha})_{|\alpha|=m} \sim \mu_q$ and $(Y^{\alpha})_{|\alpha|=m} \sim \nu_q$. Additionally, let $\eta_{\mu_q} = \mathcal{N}(\mathbf{0}_q, q^{-1}\mathfrak{m}_2(\mu_q))$ and $\eta_{\nu_q} = \mathcal{N}(\mathbf{0}_q, q^{-1}\mathfrak{m}_2(\nu_q))$. Then, under some mild assumptions on μ and ν , we have that

$$\left|\operatorname{poly} - GSW_2(\overline{\mu}, \overline{\nu}) - W_2(\eta_{\overline{\mu}_q}, \eta_{\overline{\nu}_q})\right| \le \mathcal{O}(d^{-\frac{m}{8}}),$$
 (6)

where $\overline{\mu}_q$ and $\overline{\nu}_q$ are centered versions of μ_q and ν_q . **Fast Approximation of** poly -GSW.

$$\widehat{\operatorname{poly} - GSW_2^2(\mu, \nu)} = \widehat{\operatorname{poly} - GSW_2^2(\overline{\mu}_q, \overline{\nu}_q)} + q^{-1} \|\widehat{m}_{\mu_q} - \widehat{m}_{\nu_q}\|^2$$
$$= q^{-1} \left(\sqrt{\widehat{\mathfrak{m}}_2(\overline{\mu}_q)} - \sqrt{\widehat{\mathfrak{m}}_2(\overline{\nu}_q)} \right)^2 + q^{-1} \|\widehat{m}_{\mu_q} - \widehat{m}_{\nu_q}\|^2, \tag{7}$$

where m_{μ_a} and m_{ν_a} are means of μ_q and ν_q , respectively.

FAST APPROXIMATION OF GSW WITH LINEAR NEURAL NETWORK TYPE FUNCTION

Linear Neural Network Function. Let $X \sim \mu, Y \sim \nu$ and $\Theta^{(1)}, \ldots, \Theta^{(n)}$ be random matrices of size $d \times d$ independent of X

 $_{\iota}||X||^{2} - \mathfrak{m}_{2}(\mu)|,$

$$_{\alpha}x^{\alpha},$$
 (5

 $\mathcal{N}(0, d^{-1})$. Then, a linear neural network function is:

$$g_{\text{neural}}(x,\theta) := \langle \theta, \Theta^{(1)} \dots \Theta^{(n)} x \rangle$$

$$X^* := \Theta^{(1)} \dots \Theta^{(n)} X \text{ and } Y^* := \Theta^{(1)} \dots \Theta^{(n)} Y$$
distributions μ^* and ν^* , respectively. Then, under
ptions on μ and ν , we have that
$$2SW_2(\mu,\nu) - W_2(\mu^*,\nu^*) | \leq \mathcal{O}(3^{\frac{n}{4}}d^{-\frac{1}{4}} + d^{-\frac{1}{8}}).$$
tion of neural $-GSW$.

Theo have some

$$g_{\text{neural}}(x,\theta) := \langle \theta, \Theta^{(1)} \dots \Theta^{(n)} x \rangle$$
(8)
prem 3. Let $X^* := \Theta^{(1)} \dots \Theta^{(n)} X$ and $Y^* := \Theta^{(1)} \dots \Theta^{(n)} Y$
probability distributions μ^* and ν^* , respectively. Then, under
mild assumptions on μ and ν , we have that
 $|\text{neural} - GSW_2(\mu, \nu) - W_2(\mu^*, \nu^*)| \le \mathcal{O}(3^{\frac{n}{4}}d^{-\frac{1}{4}} + d^{-\frac{1}{8}}).$
Approximation of neural $- GSW.$

Fast

$$\widehat{\operatorname{neural} - GSW}_2^2(\mu, \nu) = d$$

Gamma distributions.

Figure 2: Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of projections between empirical distributions on samples that are drawn from autoregressive processes of order one AR(1).

and Y such that their entries are i.i.d random variables following

EXPERIMENTS

Figure 1: Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of projections between empirical distributions on samples that are drawn from Multivariate Gaussian distributions and