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ABSTRACT

* A Monte Carlo approximation of the generalized Sliced-
Wasserstein (GSW) distance has large complexity in high-
dimensional settings.
* We propose deterministic and fast approximations of the GSW
distance based on Gaussian projections when the defining functions
are polynomial function and linear neural network function.

GENERALIZED SLICED-WASSERSTEIN DISTANCE (GSW)

Sliced-Wasserstein distance between two probability measures
µ ∈ Pp(Rd) and ν ∈ Pp(Rd) based on Gaussian projections
θ∗ : x 7→ ⟨x, θ⟩ is defined as follows:

SWp(µ, ν) :=

(∫
Rd
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where γd := N (0d, d
−1Id) and Wp(θ

∗
♯µ, θ

∗
♯ν) denotes the Wasser-

stein distance between one-dimensional probability measures,
which admits the following closed-form:
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with θ∗♯µ(V ) := µ
(
(θ∗)−1(V )

)
for any subset V ⊆ R.

Generalized Sliced-Wasserstein Distance between probability
measures µ ∈ Pp(Rd) and ν ∈ Pp(Rd) based on Gaussian projec-
tions is given by:

GSWp(µ, ν) :=

(∫
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where gθ is a possibly non-linear function.

CONDITIONAL CENTRAL LIMIT THEOREM FOR GAUSSIAN
PROJECTIONS

Theorem 1 (Reeves et al., 2017). For any µ ∈ P2(Rd),∫
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where C > 0 is some universal constant and

m2(µ) := Eµ[∥X∥2], A(µ) := Eµ

∣∣∥X∥2 −m2(µ)
∣∣,

Bk(µ) :=
[
Eµ⊗µ

∣∣⟨X,X ′⟩k
∣∣]1/k.

FAST APPROXIMATION OF GSW WITH POLYNOMIAL FUNCTION

Polynomial Function. For a multi-index α = (α1, . . . , αd) ∈ Nd

and a vector x = (x1, . . . , xd) ∈ Rd, we denote |a| = α1 + . . . + αd

and xa = xα1

1 . . . xαd

d . Then, a polynomial function of degree m is
defined as

gpoly(x, θ) :=
∑
|α|=m

θαx
α, (5)

where θ := (θα)|α|=m ∈ Rq−1 such that ∥θ∥2 = 1 with q =(
m+d−1
d−1

)
being the number of non-negative solutions to the equation

α1 + . . . + αd = m.
Theorem 2. Let X ∼ µ ∈ P2(Rd) and Y ∼ ν ∈ P2(Rd). As-
sume that (Xα)|α|=m ∼ µq and (Y α)|α|=m ∼ νq. Additionally, let
ηµq

= N (0q, q
−1m2(µq)) and ηνq = N (0q, q

−1m2(νq)). Then, under
some mild assumptions on µ and ν, we have that∣∣poly −GSW2(µ, ν)−W2(ηµq

, ηνq)
∣∣ ≤ O(d−

m
8 ), (6)

where µq and νq are centered versions of µq and νq.
Fast Approximation of poly −GSW .
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where mµq
and mνq are means of µq and νq, respectively.

FAST APPROXIMATION OF GSW WITH LINEAR NEURAL
NETWORK TYPE FUNCTION

Linear Neural Network Function. Let X ∼ µ, Y ∼ ν and
Θ(1), . . . ,Θ(n) be random matrices of size d × d independent of X

and Y such that their entries are i.i.d random variables following
N (0, d−1). Then, a linear neural network function is:

gneural(x, θ) := ⟨θ,Θ(1) . . .Θ(n)x⟩ (8)

Theorem 3. Let X∗ := Θ(1) . . .Θ(n)X and Y ∗ := Θ(1) . . .Θ(n)Y

have probability distributions µ∗ and ν∗, respectively. Then, under
some mild assumptions on µand ν, we have that

|neural−GSW2(µ, ν)−W2(µ
∗, ν∗)| ≤ O(3

n
4d−

1
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1
8).

Fast Approximation of neural−GSW .
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EXPERIMENTS

Figure 1: Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of
projections between empirical distributions on samples that are drawn from Multivariate Gaussian distributions and
Gamma distributions.

Figure 2: Approximation error between approximated GSW with the Monte Carlo GSW with a huge number of
projections between empirical distributions on samples that are drawn from autoregressive processes of order one
AR(1).


