

四川師範大學

A Novel Iterative Thresholding Algorithm for Arctangent Regularization Problem

Zihao He[†], Qianyu Shu[‡], Jinming Wen^{†*}, and Hing Cheung So[§] Jinan University[†], Sichuan Normal University[‡], Pazhou Lab^{*}, City University of Hong Kong[§]

Introduction

• The proximity operator of an arctangent penalty is derived, expressed using hyperbolic functions of sine and cosine.

• An arctangent regularization iterative thresholding (ARIT) algorithm is proposed, which offers closed-form solutions for subproblems associated with the arctangent penalty. • Experimental results demonstrate that the ARIT algorithm achieves better performance than several existing iterative thresholding algorithms in terms of the probability of successful recovery, phase transition and running time.

Compressed Sensing and Sparse Recovery

Compressed sensing (CS) [1] is a sampling technique that allows an *S*-sparse signal $\mathbf{X} \in \mathbb{R}^{N}$ to be stably recovered from a much smaller number of measurements than that required by the Nyquist-Shannon sampling theory. The primary objective of CS is to recover **x** from a low-dimensional measurements vector **b**:

$$\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{v},$$

where $\mathbf{A} \in \mathbb{R}^{M \times N}$ ($M \ll N$) is the measurement matrix and $\mathbf{v} \in \mathbb{R}^{M}$ is a noise vector.

0İ

Arctangent Penalty and Regularization Problem	Closed-form Thresholding Operator	The ARIT algorithm
The arctangent penalty is expressed as [2]:	For given $\lambda, \eta, \mathbf{C} \in \mathbb{R}^+$ and $\mathbf{U} \in \mathbb{R}$, denote	Input: b, A, constants $\eta \ge \ A\ _2^2$, $c > 0$,
$\mathcal{R}_{c}(x) := \arctan(c x),$	$g_{u,\lambda,\eta,c}(x) := (x - u)^2 + \frac{\lambda}{-} \arctan(c x), (1)$	$0 < k < \frac{16\sqrt{3}}{3}$ and $\varepsilon > 0$

$$\mathcal{N}_{\mathcal{C}}(\boldsymbol{\lambda}) = \operatorname{arctar}(\boldsymbol{C}|\boldsymbol{\lambda}|),$$

where c > 0 is a constant. The arctangent regularization problem is defined as:

$$\min_{\boldsymbol{x}\in\mathbb{R}^{N}}\left\{\|\underbrace{\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}}\|_{2}^{2}+\lambda\sum_{i=1}^{N}\operatorname{arctan}(\boldsymbol{c}|\boldsymbol{x}_{i}|)\right\}.$$
$$\mathcal{F}_{\lambda,c}(\boldsymbol{x})$$

As the above minimization problem is a non-convex and non-smooth optimization problem which is hard to solve directly, we apply the majorization-minimization (MM) _W method to solve it. A surrogate function is constructed: $\mathcal{G}_{\lambda,c,\eta,z}(\mathbf{x}) = \mathcal{F}_{\lambda,c}(\mathbf{x}) + (\mathbf{x} - \mathbf{z})^T \left(\eta \mathbf{I} - \mathbf{A}^T \mathbf{A}\right) (\mathbf{x} - \mathbf{z}),$ where $\eta \geq \|\mathbf{A}\|_2^2$ and \mathbf{z} is a certain vector. Minimizing $\mathcal{G}_{\lambda, \boldsymbol{C}, \eta, \boldsymbol{Z}}(\boldsymbol{X})$ is equivalent to minimizing

$$\mathcal{Q}_{\lambda, \boldsymbol{c}, \eta, \boldsymbol{z}}(\boldsymbol{x}) = \|\boldsymbol{x} - \mathcal{T}(\boldsymbol{z})\|_2^2 + \frac{\lambda}{\eta} \sum_{i=1}^{N} \operatorname{arctan}(\boldsymbol{c}|\boldsymbol{x}_i|),$$

where

$$\mathcal{T}(\boldsymbol{z}) = \boldsymbol{z} + \frac{1}{\eta} \boldsymbol{A}^{\mathsf{T}} (\boldsymbol{b} - \boldsymbol{A} \boldsymbol{z}).$$

$$g_{u,\lambda,\eta,c}(x) := (x - u)^{2} + \frac{1}{\eta} \arctan(c|x|), \qquad (1)$$

$$p(u) := \frac{1}{3c^{2}} - \frac{u^{2}}{9}, \ q(u) := \frac{\lambda}{4\eta c} - \frac{u}{3c^{2}} - \frac{u^{3}}{27},$$
If λ satisfies $0 < \lambda < \frac{16\sqrt{3}\eta}{9c^{2}}, \text{ then the global minimizer of}$
(1) is given by:
$$x = h(u) = \begin{cases} \operatorname{sign}(u)\overline{h}(|u|), \ |u| > \frac{\lambda c}{2\eta} \\ 0, \qquad |u| \le \frac{\lambda c}{2\eta} \end{cases}, \qquad (2)$$
where
$$\overline{h}(|u|) = \begin{cases} -2r\cosh(\frac{\vartheta}{3}) + \frac{|u|}{3}, \ p(|u|) < 0 \\ (-2q(|u|))^{\frac{1}{3}} + \frac{|u|}{3}, \ p(|u|) = 0 \\ -2r\sinh(\frac{\vartheta}{3}) + \frac{|u|}{3}, \ p(|u|) > 0 \end{cases}$$
with $r = \operatorname{sign}(q(|u|))\sqrt{|p(|u|)|}$ and
$$\vartheta = \begin{cases} \operatorname{arcosh}\left(\frac{q(|u|)}{r^{3}}\right), \ p(|u|) < 0 \\ \operatorname{arsinh}\left(\frac{q(|u|)}{r^{3}}\right), \ p(|u|) > 0 \end{cases}.$$

$$0 < k < \frac{16\sqrt{3}}{9}, \text{ and } \varepsilon > 0.$$
Initialize: $n = 0, \mathbf{x}^{[0]} = \mathbf{0}, 0 < \lambda^{[0]} \le \frac{k\eta}{c^2}.$
until the stopping rule is met:

1: $\mathcal{T} (\mathbf{x}^{[n]}) = \mathbf{x}^{[n]} + \frac{1}{\eta} \mathbf{A}^T (\mathbf{b} - \mathbf{A}\mathbf{x}^{[n]});$

2: if $||\mathbf{A}\mathbf{x}^{[n]} - \mathbf{b}||_2 \ge \varepsilon$ then

 $\lambda^{[n+1]} = \min \left\{ \lambda^{[n]}, \frac{2\eta |\mathcal{T}(\mathbf{x}^{[n]})|_{[s+1]}}{c}, \iota \right\};$

3: else

 $\lambda^{[n+1]} = \lambda^{[n]};$

4: end if

5: $\mathbf{x}^{[n+1]} = \mathcal{H}_{\lambda^{[n+1]},\eta,c} (\mathcal{T} (\mathbf{x}^{[n]}));$

Note that $\mathcal{H}_{\lambda,\eta,c}(\mathbf{u}) = [h(u_1), \dots, h(u_N)]^T;$

6: $n = n + 1;$

Output: vector $\mathbf{x}^{[n]}.$

Experimental Results

We compare the ARIT algorithm with the IHT [3], half [4], log-sum [5], AIT-soft [6], and AIT-SCAD [6] algorithms in the following aspects. **Probability of Successful Recovery Phase Transition**

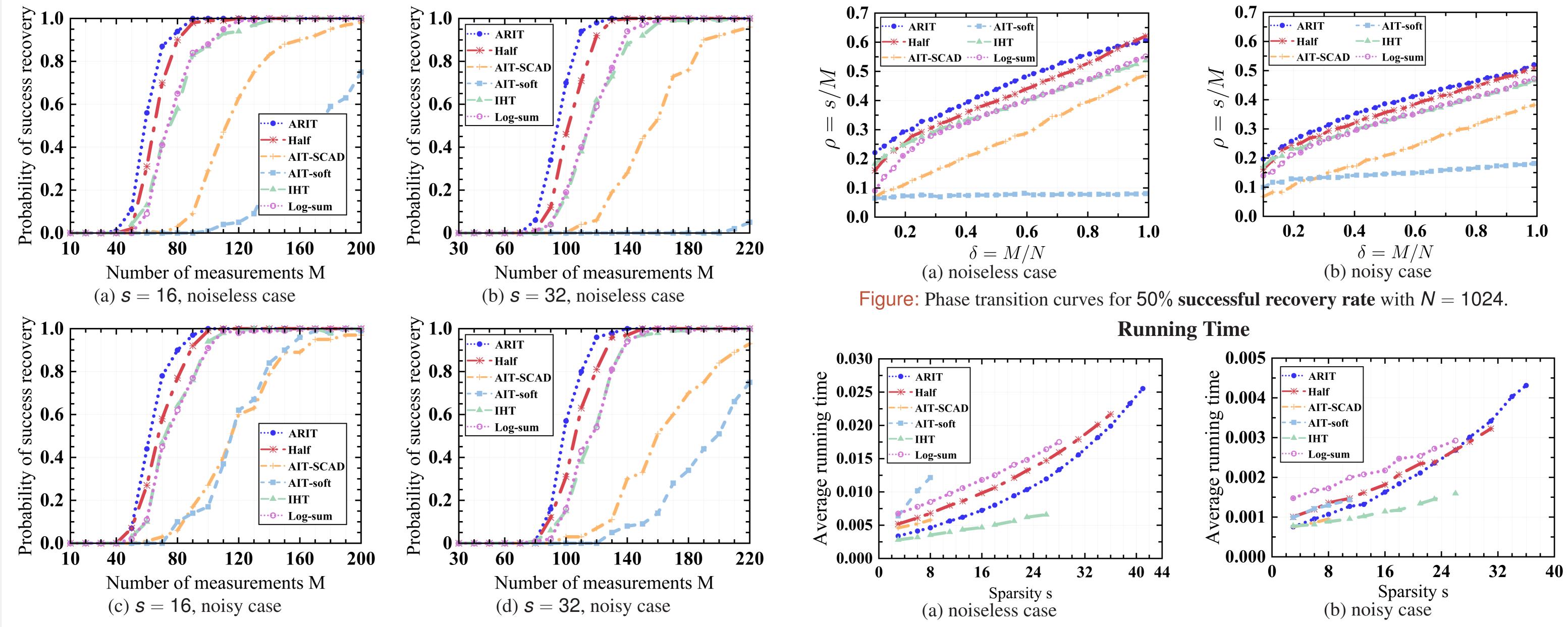


Figure: Probability of successful recovery for recovering *S*-sparse signals in noiseless and noisy cases with N = 256. We consider x to be successfully recovered if $\frac{\|x - \hat{x}\|_2}{\|x\|_2} < 0.001 + \frac{2\|v\|_2}{\|Ax\|_2}$ [7], where **v** is the noise vector, and **x** and $\hat{\mathbf{x}}$ are the true signal and recovered signal, respectively.

Figure: Average running time required for a successful recovery with M = 128 and N = 256. When an algorithm successfully recovers x with a probability over 90%, we record its average running time for performing a successful recovery.

References

[1] D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[2] E. J. Candès, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted ℓ_1 minimization," J. Fourier Anal. Appl., vol. 14, pp. 877–905, 2008.

[3] R. Garg and R. Khandekar, "Gradient descent with sparsification: An iterative algorithm for sparse recovery with restricted isometry property," in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 337–344. [4] Z. Xu, X. Chang, F. Xu, and H. Zhang, "L_{1/2} regularization: A thresholding representation theory and a fast solver," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 23, no. 7, pp. 1013–1027, 2012.

[5] X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, and Z. Zhao, "An iterative threshold algorithm of log-sum regularization for sparse problem," IEEE Trans. Circuits Syst. Video Technol., pp. 1–1, 2023. [6] Y. Wang, J. Zeng, Z. Peng, X. Chang, and Z. Xu, "Linear convergence of adaptively iterative thresholding algorithms for compressed sensing," IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2957–2971, 2015. [7] J. D. Blanchard, J. Tanner and K. Wei, "Conjugate gradient iterative hard thresholding: Observed noise stability for compressed sensing," IEEE Trans. Signal Process., vol. 63, no. 2, pp. 528–537, 2015.

