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Introduction

•The proximity operator of an arctangent penalty is derived, expressed using hyper-
bolic functions of sine and cosine.

•An arctangent regularization iterative thresholding (ARIT) algorithm is proposed, which
offers closed-form solutions for subproblems associated with the arctangent penalty.

•Experimental results demonstrate that the ARIT algorithm achieves better performance
than several existing iterative thresholding algorithms in terms of the probability of suc-
cessful recovery, phase transition and running time.

Compressed Sensing and Sparse Recovery

Compressed sensing (CS) [1] is a sampling technique that allows an s-sparse signal
x ∈ RN to be stably recovered from a much smaller number of measurements than that
required by the Nyquist-Shannon sampling theory. The primary objective of CS is to
recover x from a low-dimensional measurements vector b:

b = Ax + v ,

where A ∈ RM×N (M ≪ N) is the measurement matrix and v ∈ RM is a noise vector.

Arctangent Penalty and Regularization Problem

The arctangent penalty is expressed as [2]:

Rc(x) := arctan(c|x |),

where c > 0 is a constant. The arctangent regularization
problem is defined as:

min
x∈RN

{
∥Ax − b∥2

2 + λ

N∑
i=1

arctan(c|xi|︸ ︷︷ ︸
Fλ,c(x)

)

}
.

As the above minimization problem is a non-convex and
non-smooth optimization problem which is hard to solve
directly, we apply the majorization-minimization (MM)
method to solve it. A surrogate function is constructed:

Gλ,c,η,z(x) = Fλ,c(x) + (x − z)T
(
ηI − ATA

)
(x − z),

where η ≥ ∥A∥2
2 and z is a certain vector. Minimizing

Gλ,c,η,z(x) is equivalent to minimizing

Qλ,c,η,z(x) = ∥x − T (z)∥2
2 +

λ

η

N∑
i=1

arctan(c|xi|),

where

T (z) = z +
1
η

AT (b − Az).

Closed-form Thresholding Operator

For given λ, η, c ∈ R+ and u ∈ R, denote

gu,λ,η,c(x) := (x − u)2 +
λ

η
arctan(c|x |), (1)

p(u) :=
1

3c2 −
u2

9
, q(u) :=

λ

4ηc
− u

3c2 −
u3

27
,

If λ satisfies 0 < λ < 16
√

3η
9c2 , then the global minimizer of

(1) is given by:

x = h(u) =


sign(u)h̄(|u|), |u| > λc

2η

0, |u| ≤ λc
2η

, (2)

where

h̄(|u|) =


−2r cosh(

ϑ

3
) +

|u|
3
, p(|u|) < 0

(−2q(|u|))
1
3 +

|u|
3
, p(|u|) = 0

−2r sinh(
ϑ

3
) +

|u|
3
, p(|u|) > 0

with r = sign(q(|u|))
√

|p(|u|)| and

ϑ =


arcosh

(
q(|u|)

r3

)
, p(|u|) < 0

arsinh

(
q(|u|)

r3

)
, p(|u|) > 0

.

The ARIT algorithm

Input: b, A, constants η ≥ ∥A∥2
2, c > 0,

0 < k < 16
√

3
9 , and ε > 0.

Initialize: n = 0,x [0] = 0,0 < λ[0] ≤ kη
c2 .

until the stopping rule is met:

1: T
(
x [n]

)
= x [n] + 1

ηA
T (

b − Ax [n]
)
;

2: if
∥∥Ax [n] − b

∥∥
2 ≥ ε then

λ[n+1] = min

{
λ[n],

2η|T (x [n])|
[s+1]

c , ι

}
;

3: else

λ[n+1] = λ[n];

4: end if

5: x [n+1] = Hλ[n+1],η,c
(
T
(
x [n]

))
;

Note that Hλ,η,c(u) = [h(u1), . . . ,h(uN)]
T ;

6: n = n + 1;

Output: vector x [n].

Experimental Results

We compare the ARIT algorithm with the IHT [3], half [4], log-sum [5], AIT-soft [6], and AIT-SCAD [6] algorithms in the following aspects.
Probability of Successful Recovery

(a) s = 16, noiseless case (b) s = 32, noiseless case

(c) s = 16, noisy case (d) s = 32, noisy case

Figure: Probability of successful recovery for recovering s-sparse signals in noiseless and noisy
cases with N = 256. We consider x to be successfully recovered if ∥x−x̂∥2

∥x∥2
< 0.001 + 2∥v∥2

∥Ax∥2
[7],

where v is the noise vector, and x and x̂ are the true signal and recovered signal, respectively.

Phase Transition

(a) noiseless case (b) noisy case
Figure: Phase transition curves for 50% successful recovery rate with N = 1024.

Running Time

(a) noiseless case (b) noisy case

Figure: Average running time required for a successful recovery with M = 128 and N = 256.
When an algorithm successfully recovers x with a probability over 90%, we record its average
running time for performing a successful recovery.
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