

Gravitated Latent Space Loss Generated by Metric Tensor for High-Dynamic Ran

Heunseung Lim¹, Jungkyoo Shin², Hyoungki Choi¹, Dohoon Kim¹, Eunwoo Kim², Joonki Paik^{1, 2, *} Department of Image¹, Department of Artificial intelligence², Chung-Ang University, Seoul, Korea hslim@ipis.cau.ac.kr, neo293@cau.ac.kr, Hyunggi120@ipis.cau.ac.kr, dhkim@ipis.cau.ac.kr, eunwoo@cau.ac.kr, hslim@ipis.cau

Introduction

High Dynamic Range (HDR)

High-Dynamic Range Imaging

- High Dynamic Range (HDR) imaging seeks to enhance image quality by combining multiple Low Dynamic Range (LDR) images captured at varying exposure levels.
- Traditional deep learning approaches often employ reconstruction loss, but this method can lead to ambiguities in feature space during training.

Traditional Loss Function

– Mean square error (MSE, ℓ_2)

$$d^{2} = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

-x and y respectively represent the ground truth and predicted images, d^2 the distance between these two in the latent space, and unit matrix is a metric tensor.

Proposed Method

Goal: Gravitated latent space loss generated by metric tensor for high-dynamic range imaging

Contribution

- Incorporating spatial attention in HDR reconstruction from LDR inputs
- Architecture and components of transformer-based U-shape network (TUnet)
- Incorporating curvature in latent space via gravitated latent space loss Down-sampling Up-sampling

shape network (TUnet) used in our proposed method

Image Processing and Intelligent Systems Laboratory

LDR inputs

occurring in multiple-LDR inputs are input in Fig. 1.

network (TUnet)

- elaborated in Fig. 1.
- convolution, and inverse FFT.

space loss

parameter.

$$\ell_{GLS} = (T(x) \quad T(y)) \begin{pmatrix} \sigma(g_1) & \sigma g_2 \\ \sigma(g_3) & \sigma(g_4) \end{pmatrix} \begin{pmatrix} \end{array}$$

function, $T(\cdot)$ the tone-mapping operator.

ge Ir	nagir	١g	
.ac.kr 🔇	Image and Intell	Processing Jugent Systems Laboratory	SHUNG-AND CAU
sessmen	t of HDR I	maging Perfor	mance
NR-μ, PS	SNR- <i>l</i> , SSIM	Μ-μ, SSIM-l	
	NEL MARTIN		
0	6		
r proposed	method S	elected patch	
t HDR-GAN	CV-ViT	Our GT	
$SIM-\mu$	PSNR-l	SSIM-l	_
0.9877	41.49	0.9858	
9905	41.82	0.9870	
.9916	42.18	0.9884	
.9900	41.14	0.9702	
.9916	42.18	0.9702	
.9919	43.20	0.9904	
		CCIN/ I	
$\frac{9916}{9916}$	13.00	0 0002	
9919	43.00	0.9902	
.9917	43.14	0.9903	
.9919	43.20	0.9904	
¥			
1	ρ_{1}	ℓ_{1GLS}	
f Metric	Tensor		

Yan, Qingsen, et al. "Attention-guided network for ghost-free high dynamic range imaging." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. [2] Niu, Yuzhen, et al. "HDR-GAN: HDR image reconstruction from multi-exposed LDR images with

[3] Liu, Zhen, et al. "Ghost-free high dynamic range imaging with context-aware transformer."