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LDR inputs | * Quantitative and Qualitative Assessment of HDR Imaging Performance
- The proposed TUnet is a feature map estimated in the spatial attention on Kalantari’s datasets Usmg PS%#@&SSIM' SSIM-1
mechanism, and features maps that can minimize the ghosting artifacts ’ '
occurring in multiple-LDR inputs are input in Fig. 1.
2. Architecture and components of transformer-based U-shape
network (TUnet)
— Transformer-based u-shape network (TUnet), whose architecture is
elaborated in Fig. 1.
— TUnet architecture incorporates various components such as the swin-
| . 5 transformer and residual block. Spectral transform (SpT) component Souce DRs  HDR uf;_;fm Ou r osedyethod Solected patch
Low Dynamic Range (LDR) High Dynamic Range (HDR) comprises a sequence of operation: Fast Fourier Transform (FFT), & gl P
High-Dynamic Range Imaging ' convolution, and inverse FFT.
— High Dynamic Range (HDR) imaging seeks to enhance image quality by _Joz
combining multiple Low Dynamic Range (LDR) images captured at e §q§_> | (THN—— ————e—— | —
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— Traditional deep learning approaches often employ reconstruction loss, § § 2 - O s / ;
but this method can lead to ambiguities in feature space during training. 2l = | § ¥ - E = P TMO  KalantariDeepHDRAHDRNet HDR-GAN CV-ViT ~ Our GT
aditional Loss Functt S C &S - Methods PSNR-u SSIM-u PSNR-I SSIM-I
raailtional LOsSS runction o al . :
: & S Kalantar 42.83 0.9877 41.49 0.9858
— Mean square error (MSE, £,) | — 2 e |
' PN ; 5 i Prabhakar 41.95 0.9873 41.82 0.9876
‘=(x ) ( 1) ( ) | : _ HDR-GAN 43.92 0.9905 41.57 0.9865
0 Y | Fig. 2. Structure of the frequency-spatial (FS) block in Tunet. g CAMT 14 2 09916 15 18 0 9882
— x and y respectively represent the ground truth and predicted images, : § ' ' ' '
d* the distance between these two in the latent space, and unit matrix | 3. Incorporating curvature in latent space via gravitated latent ARDRNet 43.63 0.9900 41.14 0.9702
\ ic 3 metric tensor / space loss AHDRNet+£.; ¢ 44.15 0.9916 42.18 0.9702
| - Inthe proposed method, we modify the unit matrix as follows, similar Ours 44.46 0.9919 43.20 0.9904
Proposed Method ™ to applying the form of "virtual gravity" to introduce a curved surface * Ablation study across various GLS loss function
. . into the latent space by replacing the metric sensor with a learnable PSNR-u SSIM-u PSNR-1 SSIM-1
Goal: Gravitated latent space loss generated by metric tensor for | parameter. l, 44.39 09916 4300 09902
igh- i ' ' | o o T (x i
high-dynamic range imaging lois = (T(x) T®)) (agglg ‘ ng))) (Tgyg) PocsL 44.40 0.9919 43.02 0.9903
Contribution ' 3 T o ' 2, 44.42 0.9917 43.14 0.9903
1. Incorporating spatial attention in HDR reconstruction from ~ Y615 represents the proposed GLS loss function, o(-) the sigmoid
' , function, T (-) the tone-mapping operator. t16Ls 44.46 0.9919 43.20 0.9904
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