
Figure 2. Algorithm overview. (Yellow) The Data Sampler interacts with the environment and stores track. (Purple) The State Representor
expresses each state class as a action node by clustering. (Red) The BT Generator combines various modules and evaluates them.

UNRAVELING EXPLAINABLE REINFORCEMENT
LEARNING USING BEHAVIOR TREE STRUCTURES

Kejia Wan1; Yuntao Liu2; Hengzhu Liu1 ; Xinhai Xu2
1National University of Defense Technology

2Academy of Military Sciences

Kejia Wan
National University of Defense Technology
Email: wankejiaai@163.com

Contact

While deep reinforcement learning (DRL) has shown remarkable proficiency in solving complex problems,
its lack of interpretability hinders its safe and scalable application in real-world contexts. To address this
issue, Explainable Reinforcement Learning (XRL) has emerged as a valuable approach to enhance the
transparency and trustworthiness of machine-based decisions. One prominent approach within XRL is the
incorporation of interpretable components, such as decision tree models (DT), to develop efficient and
explainable models. However, existing decision tree models often overlook the sequential characteristics of
RL tasks and fail to provide comprehensive insights into the decision-making process. This limitation calls for
the exploration of alternative methods that can capture the temporal nature of policies.
To tackle these challenges, we propose an innovative framework called XRLBT, which introduces behavior
tree structures (BT) to explainable reinforcement learning. XRLBT clusters the state space by aggregating
temporally related states, enabling the construction of behavior tree structures aligned with the target DRL
model. Unlike previous decision tree models, XRLBT incorporates an exploration technique specifically
designed for temporal policies in DRL.
We acknowledges the emergence of the Behavior Tree structure as a fundamental component in capturing
the sequential characteristics of RL tasks. We compare the interpretability offered by different methods,
including DRL as a black box, decision trees providing consistent explanations, and BTs offering distinct
explanations at each time slice, as shown in Figure.1.

Introduction

Figure 1. Illustration of explanations of three methods on the bowling. (a) The
DRL functions as a black box, providing outputs solely based on the overall
input. (b) The DT allows for the explanation based on certain input features,
but this explanation remains consistent at every time step. (c) The BT provides
distinct explanations at each time slice.

Table 1. The performance comparison of DQN model and four different XRL algorithms based on tree structure. The optimal
hyperparameters leading to the best results for the XRLBT method are included in the table.

This section outlines the key components and steps involved in the XRLBT framework, as shown in Figure.2.
We begin by introducing the Data Sampler component of XRLBT. We describe the RL agent that takes an N-
dimensional state and produces an M-dimensional Q value. The action selector chooses the action
corresponding to the largest Q value, and the agent receives a reward from the environment. To generate
experiences for training, a buffer pool is used to store tuples comprising the state, action-value function,
action, reward, and subsequent state. When the buffer pool reaches its capacity, batches of data are
sampled from the buffer for further processing.
Next, we introduce the State Representor component, which addresses the challenge of representing
continuous state data in a discrete behavior tree structure. We discuss the use of clustering techniques to
identify patterns and relationships within the data. Instead of discretizing the state space via gridding, we
propose using clustering based on the temporal dynamics of the data. We define similarity between clusters
using the time derivatives of state features, capturing the change in state between timesteps. The K-MEANS
function is employed to obtain cluster boundaries, yielding a set of states related to each cluster.
To construct the behavior tree nodes, we describe the process of incorporating the clustered states into the
BT structure. We create condition nodes that represent the boundary values of each state class obtained
from clustering. By combining these nodes, the behavior trees are formed. It is important to note that the
state set used for constructing the behavior tree nodes must contain sequential states, capturing the chain
of thoughts similar to human thinking. We discuss the evaluation and testing of the generated BTs,
considering the trade-off between performance and tree size.

Method

We conducted extensive experimentation across six
benchmark environments to assess the effectiveness of XRLBT.
The results showcased exceptional performance of the
generated behavior tree structures, as shown in Table.1. The
behavior tree structures, constructed based on clustered
states, provided comprehensive insights and logical sequential
decisions, addressing the challenges of explainability and
performance in DRL applications. Comparisons with SOTA
algorithms demonstrated the superiority of the proposed
framework. The generated behavior tree structures
outperformed existing interpretability methods for DRL
models, such as decision tree models, in terms of transparency,
trustworthiness, and performance.
We delves into the interpretation of a behavior tree (BT) in the
context of a specific example, the bowling game.
A BT generated for the bowling game is presented in Figure 3.
Upon analyzing the structure of the BT, it becomes apparent
that the action nodes tend to cluster, forming three distinct
subtrees interconnected by selection nodes. For example,
within the right subtree, the left subtree is responsible for
continuous movement as long as the bowling ball's position
remains within a 10-pixel deviation from the horizontal center.
The right subtree promptly adjusts the position downward
when the ball's position exceeds the horizontal center by 10
pixels, maintaining this downward adjustment until the
position falls below the horizontal center. When the position
deviates by 10 pixels from the horizontal center, the subtree
triggers an upward adjustment, sustaining it until the bowling
pin is successfully hit.

Result and Case

Figure 3. Illustration of a generated BT for the Atari game of BOWLING.

